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Chapter 1

Introduction

1.1 On the General Concept of Regularity

Finite automata together with regular languages form one of the cornerstones of the-

oretical computer science. They are actively investigated mathematical objects which

are of unquestionable importance both from a theoretical and practical point of view

[RS97]. Their widespread use is mainly due to two facts. First, words can serve as

models for a wide range of sequential systems, as they can simulate sequential behavior

quite naturally. Second, the concept of regular word languages can be defined in several

different, but equivalent ways. To establish the terms and notations of the concepts

which we will work with, we will fix the following terminology:

• Regularity will mean acceptance by finite automata.

• Recognizability will mean algebraic recognizability by finite algebras or finite-

index congruences.

• Rationality will mean expressibility by rational (also called regular) expressions.

• MSO-definability will mean definability by monadic second-order logical formu-

las.

The names for these concepts reflect the names used by a French school on formal

languages. But considering that these concepts are equivalent, and hence that they

are freely interchangeable, some authors give them different meanings. For example

it is common to speak about recognizability by automata, or to talk about regular

expressions instead of rational ones.

In the following we will use these concepts not just for word languages, but also

for languages of other structures. In addition, we shall employ the following notations

for the corresponding language classes: Reg, Rec, Rat and MSO. The classical results

1



2 CHAPTER 1. INTRODUCTION

of automata theory (due to Büchi, Kleene, Myhill and Nerode) demonstrate that the

equalities Reg = Rec = Rat = MSO hold for languages of finite words.

It should be emphasized here that these four concepts are not simply four different

ways of defining the same class of word languages, but rather each of them contains the

essence of this class from a different perspective. In certain situations one of them may

have some advantage and be better suited than the other three. E.g. the closure under

homomorphism directly follows from the concept rationality, while closure under inverse

homomorphisms is easily implied by recognizability. In model checking abstract speci-

fications are frequently written in logical formulas, while in pattern matching rational

expressions are quite useful.

Of course, there are many other computational models that have more complex

structures than finite words. These include infinite words [PP04, Wil94], trees [GS84],

traces [DR95], partially ordered sets (posets for short) [Pra86, LW98, LW00, Kus03a],

message sequence charts [Kus03b] and graphs [Cou91, CW05]. These models were intro-

duced and applied to capture such computational aspects like timing and concurrency.

When investigating these more complex models the natural question arises – which

is of crucial importance – about what results of the classical theory of words can be

generalized and how. In many important cases the above notions can be suitably defined

and are known to be equivalent. But sometimes we are faced with serious problems. It

is not always clear how to choose an appropriate algebraic or logical framework. And,

for instance, for graphs, for posets, and even for sp-posets in general, the concept of an

automaton that captures recognizability is not known. For a general overview of this

topic, we refer to the paper by Weil [Wei04a] which surveys the concept of recognizability

in computer science.

The subject of this thesis is about the generalization of the fundamental results of

classical automata theory to higher dimensions. Both finite and infinite higher dimen-

sional words and their languages will be defined and investigated.

Fortunately, we can restrict our studies to just the two-dimensional case, since both

our concept and results can be readily generalized to any finite number of dimensions.

1.2 Two-dimensional Words (Biwords)

The reader may recall that a monoid is a set equipped with an associative operation

which has an identity element. Next, let us fix an alphabet Σ. As usual, Σ∗ denotes

the free monoid over Σ. The elements of Σ∗ are called words, while the subsets of Σ∗

are called languages.
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In a similar way, a binoid is a set equipped with two associative operations and these

two operations share a common identity element. After we can consider the free binoid

over Σ, which we will be denoted by Σ∗(•, ◦). This is well-defined by universal algebraic

considerations. In the following the elements of Σ∗(•, ◦) will be called biwords, while the

subsets of Σ∗(•, ◦) will be binoid languages (over Σ). It is natural to describe biwords

by terms using the letters of Σ, parentheses and two operation symbols, but we will also

find that biwords can be represented in several other equivalent ways. First, we only

consider perhaps the most intuitive one of them, which will be called two-dimensional

words.

To construct two-dimensional words from the letters of Σ, we need two independent

concatenation operations. The first one will be called the horizontal concatenation

(denoted by •), while the second one will be called the vertical concatenation (denoted

by ◦).

We will build two-dimensional words inductively from smaller elements called blocks.

Initially we can use just the letters of Σ as blocks, then we can form more complex

blocks by using the two concatenation operations. Naturally, the horizontal concatena-

tion places some finite number of blocks to the left/right of each other, while the vertical

concatenation places the blocks above/beneath each other. Now two-dimensional words

are defined as those blocks that can be obtained from the elements of Σ by a finite num-

ber of applications of the two concatenations. We also have an empty two-dimensional

word ε, which has no letters. The two-dimensional word which can be given by the

term a • 〈b ◦ 〈c • d〉〉 • 〈e ◦ f〉 is illustrated in Figure 1.1.

a
b

c d

e

f

Figure 1.1: The two-dimensional word a • 〈b ◦ 〈c • d〉〉 • 〈e ◦ f〉.

Evidently the binary version of both concatenations is an associative operation on

the set of two-dimensional words. Moreover, the empty two-dimensional word serves

as an identity element for both operations. It is not hard to see that the algebra of

two-dimensional words over an alphabet Σ is isomorphic to the free binoid generated

by Σ in the variety of all binoids.

It is generally agreed that automata models operate on elements of some free algebra.
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Classical finite automata operate on words, i.e. on elements of the free monoids (or on

the elements of the free semigroups if we consider just nonempty words.) Tree automata

operate on trees, which are the free Σ-algebras, and so on. Thus, if we want to generalize

the notion of automata to higher dimensions, it is natural to examine how they operate

on biwords, i.e. on the elements of the free binoids.

1.3 The Main Results of the Thesis

In the following we shall investigate the possibility of the extension of the four basic

notions (namely recognizability, logical definability, regularity and rationality) to binoid

languages.

Fortunately, one of the four concepts, namely recognizability, is uniquely determined

by the fact that biwords (and hence binoid languages as well) are naturally equipped

with two associative operations. Thus binoids are the only obvious choice for the alge-

braic framework for binoid languages.

Formulating the concept of logical definability is not as straightforward as recogniz-

ability, but it can be done with the help of a free algebra theorem presented in [Ési00]

concerning so-called (m,n)-semigroups. Here (m,n)-semigroups are algebras, where m

associative plus n associative and commutative operations are defined. Applying this

theorem to the special case of binoids (i.e. when m = 2 and n = 0), we get a descrip-

tion of nonempty biwords (considered as elements of the free bisemigroups) by labeled

sp-biposets.

In fact biposets are relational structures of the form (P,<h, <v), where<h and<v are

arbitrary partial order relations on the set P . If we add a labeling function λ : P → Σ,

where Σ is an alphabet, then (P,<h, <v, λ) is a labeled biposet. Now the fact that

biposets, and also their special cases – sp-biposets – are relational structures, allows us

to interpret logical formulas on them, as in biposets the horizontal and vertical order

relations are explicitly present. By doing so we obtain the concept of MSO-definability.

For the concept of regularity we introduce a new automata model called parenthesiz-

ing automata (PA for short). This model is one of the main contributions of the thesis.

The name “parenthesizing” comes from the realization that a PA can be viewed as the

union of two ordinary finite automata, where one component handles the horizontal

concatenation of the subbiwords while the other handles their vertical concatenation.

In addition, the two components are coupled by special, so-called parenthesizing tran-

sitions, which are labeled by parenthesis symbols. (See Definition 3.1 for more details.)

Next, we consider several rational classes of binoid languages, whose definitions
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depend on what operations are allowed from the following list: Boolean operations

(union, intersection, complementation), horizontal product (•), vertical product (◦),

horizontal iteration (∗•) and vertical iteration (∗◦). Let Fin[op1, . . . , opn] denote the

class of those binoid languages that can be generated from the finite binoid languages

by a finite number of applications of the operations op1,. . . ,opn. In the thesis the

following classes will be defined

• HRat = Fin[∪, •, ∗•, ◦ ] the horizontal rational languages,

• VRat = Fin[∪, ◦, ∗◦, • ] the vertical rational languages,

• BRat = Fin[∪, •, ∗•, ◦, ∗◦ ], the birational languages,

• GRat = Fin[∪, •, ∗•, ◦, ∗◦,¯ ], the generalized birational languages, where ,̄ is the

operation of taking the complement.

As usual, a binoid language is called finite if it contains a finite number of biwords.

Similarly, a binoid language L ⊆ Σ∗(•, ◦) is cofinite if its complementer with respect to

Σ∗(•, ◦) is finite. We denote the class of finite languages by Fin.

It is usual, and sometimes even necessary, to apply some restrictions on the struc-

tures being studied. These restrictions are sometimes naturally arise due to practical

limitations – e.g. the finite number of the available processors. Here we will study three

such restricted classes of binoid languages: HB – the class of horizontally bounded lan-

guages, VB – the class of vertically bounded languages, and BD – the class of bounded

(alternation) depth languages.

As for the definitions, the easiest way to define horizontally and vertically bounded

binoid languages is through their sp-biposet representations. Recall that a chain in a

poset is a subset in which each pair of elements is comparable, i.e. a totally ordered

subset. The height of a poset is the cardinality of a longest (maximum cardinality)

chain. If (P,<h, <v, λ) is a biposet, let its horizontal height be the height of the poset

(P,<h). Similarly let its vertical height be the height of the poset (P,<v). Now a binoid

language is horizontally (resp. vertically) bounded if there is an upper bound for the

horizontal (resp. vertical) height of the sp-biposet representations of its elements.

We say that a binoid language L has a bounded depth if there is an integer K such

that, for every biword w ∈ L, the maximal number of nested parentheses in the term

representation of w is at most K. Let BD denote the class of binoid languages that

have a bounded depth.

We established the inclusion relations among the considered classes. These can be

summarized in Figure 1.2. First of all the classes of recognizable, regular and MSO-

definable languages coincide. The class GRat of generalized birational binoid languages
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Figure 1.2: Comparison of language classes of finite biwords.

is strictly included in this class, which in turn strictly includes the class BRat of bira-

tional languages. The class BRat can be characterized as those regular binoid languages

that have bounded depth, and the class VRat as those that are horizontally bounded.

Similarly HRat is the intersection of the classes of regular (Reg) and vertically bounded

languages (VB). From the definitions it directly follows that the intersection of HB and

VB is the class of finite languages (Fin). Moreover, all inclusions suggested by the figure

are strict.

An important feature of parenthesizing automata that an automata may possess

any finite number of parenthesis pairs. The question emerges naturally if this feature

is really necessary, or the number of parentheses can be bounded. In other words, we

want to know whether there is a number K such that each regular binoid language

can be accepted by a parenthesizing automaton with at most K pairs of parentheses.

Theorem 3.32 will supply the answer to this question. We will show that no such K

exists, i.e. there is no upper bound. Furthermore, if Regm denotes the class of all

regular binoid languages that can be accepted by an automaton with m ≥ 0 pairs of

parentheses, then the classes Reg0 ( Reg1 ( Reg2 ( . . . form a strict hierarchy. And

we will prove that this hierarchy is proper even when we consider languages over any
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fixed alphabet Σ (Theorem 3.33).

An independent study on automata and regularity of binoid languages was done by

Hashiguchi et al., and their results were presented in a series of papers [HIJ00, HWJ03,

HSJ04]. They applied ordinary finite automata operating on term representation of

biwords to define two classes of regular binoid languages. See the next section for more

details. The aim of Section 3.12 is to relate this approach to our theory of parenthesizing

automata. We will see that the classes of regular languages defined in [HIJ00] are strictly

included in Reg. Moreover, we will show how the monoid approach of Hashiguchi et al.

can be extended to our (boarder) class of regular binoid languages. This means that

with appropriate definitions monoid automata are also capable of capturing the same

concept of regularity. This will give a fourth equivalent characterization of the class

Reg.

In Chapter 4 we will extend our investigations to infinite biwords. First we will

define ω-bisemigroups in the pattern of ω-semigroups related to infinite words [PP04].

Now ω-biwords as abstract objects are just the elements of the free ω-bisemigroups.

Similarly to the finite case, we can represent ω-biwords by certain infinite biposets.

Next, we will present a graph-theoretic characterization of these biposets. Afterwards,

we will examine the tree and term representations of ω-biwords. It will be followed

by the extension of recognizability, MSO-definability and regularity to ω-binoid lan-

guages. To extend regularity we will also need to define the concept and the operation

of parenthesizing Büchi-automata. Lastly we will prove that with the new concept

of parenthesizing Büchi-automaton the equivalence of regularity, recognizability and

MSO-definability remains true.

In the thesis we mostly concentrate on the general theory of regularity, but we

believe that the concept of binoid languages is sufficiently general to have some practical

applications as well. The reader can peruse the study by Hashiguchi et al. on bicodes

[HKJ02] and on a modified RSA cryptosystem based on bicodes [HHJ03]. In the future

biwords may also be used in modeling systems like sp-posets, which often serve as models

for the behavior of modularly constructed concurrent systems (cf. [Pra86]). It would

also be good to look for other concrete applications of our theory. Since the special

feature of biwords and their n-dimensional generalizations is that they are naturally

equipped with some nested structures, it seems obvious to look for applications where

some nestedness (of arbitrary depth) is present, e.g. in XML databases and in modeling

recursive function calls.
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1.4 Related Work

The studies which are relevant to our investigations can be divided into two groups.

First there are some papers that deal with the same thing, namely that of binoid

languages. This group includes the papers of Hashiguchi et al. [HIJ00, HWJ03, HSJ04]

and Dolinka [Dol05, Dol07]. Second, our concepts and methods are closely related to

that of other generalizations of automata and language theory, like those presented in

papers on infinite words, trees, posets, texts, traces, event structures, message sequence

charts and graphs. Since the literature for this is quite extensive we shall only mention

those which had the greatest influence on our work. For a more detailed and complete

overview please consult with [Wei04a] and [RS97].

1.4.1 (m,n)-structures

One of our starting points will be the concept of (m,n)-structures introduced by Ésik

in [Ési00], where m and n are nonnegative integers. They are a common generalization

of both posets and component reducible graphs (or cographs, [CLB81]), and form the

free algebras in the variety, where m associative plus n associative and commutative

operations are defined. These will be introduced in Section 2.4. We will also discuss

some of their special cases, of which the most important for us is that of sp-biposets.

This is because sp-biposets are a possible representation of biwords and they are essential

for the logical definability of binoid languages.

1.4.2 Poset Languages

Our investigations have been influenced to a great extent by the work of Lodaya and

Weil [LW98, LW00] and Kuske [Kus01, Kus03a] on series-parallel posets languages and

branching automata accepting them. These posets are also considered as a possible

model for the behavior of modularly constructed concurrent systems [Pra86, Nie01].

Posets are naturally equipped with two operations called series product and parallel

product [LW98]. In fact the parallel product is just disjoint union, and hence commu-

tative. Series-parallel posets (or just sp-posets) are those posets that can be generated

from the singletons by the two operations. It is known that sp-posets represent the el-

ements of the free “semi-commutative bisemigroups”, i.e. of the algebras equipped with

an associative and an associative and commutative operation [Gis88]. These algebras

are also called series-parallel algebras (or sp-algebras) [LW98, LW00]. Thus, sp-posets

languages can be regarded as a two-dimensional generalization of the classical theory
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to a situation where we have two associative operations, but one of them is also com-

mutative. Also, sp-posets may be characterized as those posets that does not contain

an induced subgraph isomorphic to the “N” directed graph [Gra81].

Gischer [Gis88] studied the equational theory of sp-posets and sp-poset languages.

In [LW98, LW00], Lodaya and Weil defined recognizable languages of sp-posets as well

as regular languages accepted by branching automata, and rational languages. They

showed that a language of sp-posets is regular iff it is rational, and that the recog-

nizable languages form a proper subclass of the regular languages. Aside from semi-

commutativity, their notion of recognizability corresponds to ours. On the other hand,

their notion of rationality is much more general than our notion of birationality, and

although our parenthesizing automata owe much to their branching automata, our ver-

sion is not a non-commutative version of branching automata. The above differences,

together with the well-known fact that rationality and recognizability are not equiva-

lent for free commutative semigroups, help explain why the above-mentioned results of

Lodaya and Weil seem so different from ours.

Nevertheless, Lodaya and Weil also obtained several results that are similar to ours.

They studied bounded-width poset languages that correspond to our vertically bounded

binoid languages (VB) and showed in [LW00] that for such languages, the concepts of

recognizability, regularity and series rationality are all equivalent. Moreover, Kuske

proved in [Kus03a] that for bounded width poset languages, these conditions are equiv-

alent to MSO-definability. These equivalences correspond to our Corollary 3.71, the

vertically bounded case.

What we called a birational binoid language corresponds to the series-parallel ratio-

nal sp-poset languages of Lodaya and Weil. In [Kus01, Kus03a], Kuske proved that any

series rational poset language is MSO-definable and that every MSO-definable poset

language is recognizable. On the other hand, there easily exist recognizable but not

MSO-definable sp-poset languages.

The main object of study in [LW01] is the extension of the classical framework

to automata over free algebras with a single associative operation and a collection of

operations not satisfying any nontrivial equations. It is shown that a suitably adapted

version of branching automata captures recognizable languages, and that there exists a

corresponding notion of rationality. Lodaya and Weil also discussed, albeit in a rather

indirect way, the situation when at least one of the additional operations is associative.

In this case they found that the recognizable languages form a proper subclass of the

regular languages that coincide with the rational languages. Their “asymmetric” notion
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of regularity is different from ours (which is “symmetric”), and their notion of rationality

(which they showed to correspond to regularity) is much more general than ours. Our

Proposition 3.52 is also found in [LW01].

A graph-theoretic characterization and a free algebra theorem of the posets that can

be constructed from the singletons by series and parallel products and by series ω-power

can be found in [BÉ98], while [ÉO99] discusses the case when a parallel ω-power is also

allowed.

1.4.3 2-structures and Text Languages

Our investigation also owes much to the work of Hoogeboom and ten Pas [HtP96, HtP97]

on text languages. In Section 3.11 we will use their result that establishes the equality

Rec = MSO for text languages in order to show that the same equality holds for binoid

languages as well.

Historically, text languages arose as special cases of 2-structures. 2-structures are

relational structures, and can actually be viewed as generalizations of graphs. They

were introduced to provide a convenient general framework for the investigation of

decompositional and transformational properties of graphs (and graph-like structures).

From this motivation 2-structures have been studied extensively and many results for

them are known. The interested reader can consult with the book edited by Ehrenfeucht

and Rozenberg [ER90].

As was mentioned previously, texts are special cases of 2-structures, but a text can

also be defined as a labeled set equipped with two linear order relations, or equivalently

as a word with an additional linear order, see Definition 3.62.

In Section 3.11 we shall find that biwords – more precisely the sp-biposet repre-

sentations of biwords – can be identified with some special cases of texts. These texts

are called alternating or uniformly nonprimitive texts. See [EHPR96] about uniformly

nonprimitive 2-strtuctures. We will describe the correspondence of sp-biposets and

alternating texts in detail in Section 3.11.3.

1.4.4 Finite Automata on Binoid Languages

Automata and languages over free binoids have also been studied independently of us

by Hashiguchi (with various coauthors) in a series of papers [HIJ00, HWJ03, HSJ04].

In these, the authors consider biwords in their term representation1. Here, of course,

term representations mean words over the extended alphabet E(Σ) = Σ ∪ {〈, 〉, •, ◦},

1In [HIJ00, HWJ03, HSJ04], term representations are called s-forms.
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where 〈 and 〉 are parenthesis symbols. Thus ordinary finite automata (from now on

monoid automata) can be used to define regular binoid languages. More precisely,

they defined two kinds of acceptance by monoid automata: the free binoid mode and

the free monoid mode. In the case of free monoid mode acceptance, given any word

x ∈ E(Σ)∗ the automaton decides whether x is a valid term representation of a biword

in the accepted language. In the case of free binoid mode acceptance, the inputs of

the automaton just come from the restricted set of valid term representations, and the

automaton only decides the question of whether the biword represented by the input

term belongs to the accepted language or not. Let RegFM (resp. RegFB) denote the class

of binoid languages that can be accepted in the free monoid (resp. free binoid) mode.

In [HIJ00] it was shown that RegFM ( RegFB. The main result of [HWJ03] can be

expressed in our terminology as BRat ⊆ RegFM. Similarly, [HSJ04] contains the proof

of the converse inclusion, namely that RegFM ⊆ BRat. In [HIJ00] phrase structure

grammars (B-grammars) generating term representations of binoid languages are also

introduced. In particular, they define left and right linear B-grammars and show that

these determine different language classes that lie somewhere between finite automata

in the free monoid, and the free binoid mode. The paper [HKJ02] deals with finite codes

over free binoids.

An obvious advantage of this approach as against parenthesizing automata is that

one is not forced to use ordinary automata to describe regular binoid languages. Rather,

any equivalent characterization of regular word languages (e.g. regular expressions or

MSO-formulas) can be employed instead.

However it should be mentioned that this approach is quite syntactic – which almost

always involves long definitions and proofs with many cases. In Section 3.12 we will

make a detailed comparison between Hashiguchi’s concepts of regularity and ours. In

addition, we will propose the use of condensed terms (cterms) instead of terms as it can

help simplify the concepts and proofs that are monoid-based.

1.4.5 Picture Languages

A different two-dimensional generalization of the classical framework is provided by pic-

ture languages. Pictures themselves can be viewed as labeled biposets with a very regular

rectangular structure. They come with two operations, corresponding to the horizontal

and vertical products, but these are only partially defined (cf. [GR96, GR97]). The

notion of recognizability is based on tilings and it has different properties, since rec-

ognizable picture languages are not closed under complementation and their emptiness
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problem is undecidable. For the description of picture languages using formal logic we

refer to [GRST94, Wil97].

In [Dol05], Dolinka demonstrated that picture languages and binoid languages satisfy

the same identities (for the operations of union, the two products, the two (Kleene)

iterations of the two products and some constants). See [Dol07] too for more details

about the axiomatization of the equational theory of binoid languages.

1.4.6 Visibly Pushdown and Nested Word Languages

Binoid languages are also closely related to visibly pushdown and nested word languages

[AM04, AM06].

The operation of our PA is very similar to that of a visibly pushdown automaton (or

VPA for short) [AM04] and a nested word automaton2 [AM06]. One could imagine that

a PA uses a pushdown storage which works in the following way. During an opening

parenthesizing transition labeled by 〈i the automaton puts the index i to the top of the

stack, and later the automaton can perform a closing parenthesizing transition labeled

〉i, only if the index i can be popped from the stack. Notice that a PA alters the stack

only when it performs parenthesizing transitions: opening parentheses corresponds to

push operations, while closing parentheses corresponds to pop operations. This is what

is called visibly pushdown behavior: each input symbol determines independently of the

actual state the type of stack operation to perform. This type can be a push or a pop

type operation or the machine might leave the stack unchanged. Similarly, each VPA

runs on words over a so-called pushdown alphabet. This is a triple Σ = 〈Σc,Σr,Σℓ〉,

where Σc is the call alphabet, Σr is the return alphabet, and Σℓ is the local alphabet. A

VPA perform a push, pop, or no stack operation by reading letters from Σc, Σr and Σℓ,

in turn. Apart from this a VPA behaves just like an ordinary pushdown automaton.

Acceptance is defined by final states.

Thus, it is not hard to see that each PA over Σ∗(•, ◦) with i pairs of parentheses

naturally corresponds to a VPA with i stack symbols (operating on words over a special

pushdown alphabet Σ̂ = 〈Σc,Σr,Σℓ〉, where Σc = {〈}, Σr = {〉} and Σℓ = Σ, cf.

[AM04].) However a PA operates on biwords, not on words. Hence the syntactic check

of the input – not just to check the well-balanced aspect of the parentheses, but also

to make sure that no empty or superfluous parenthesization occurs – falls outside the

task of a PA. Consequently i stack symbols are not enough for a VPA to simulate the

behavior of a PA with i pairs of parenthesis, but it can be proved that the set of valid

2Actually, the concept of a nested word automaton is a reformulation of that of a VPA.
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term or cterm representations can be accepted by a VPA with 3 stack symbols, and

hence 3i is an upper bound on the number of stack symbols that is necessary.

1.5 The Structure of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces biwords and binoid

languages, which are the basic objects of our investigations. Here we present both the

free algebra theorem and the graph-theoretic characterization within the more general

framework of (m,n)-structures of Ésik. Moreover, the representations of biwords, –

which are crucial to building the concepts of the next chapters – are also introduced

and discussed.

Chapter 3 is devoted to the finitary case, i.e. to the theory of languages of finite

biwords. Here we introduce our model of parenthesizing automata which operates on

biwords. Then we prove that the expressive power of parenthesizing automata coincides

with that of recognizability and MSO-definability. We will investigate various classes of

rational binoid languages, and study their relationships.

In Chapter 4 we extend our investigations to infinite biwords. The main result of

this chapter is the generalization of the equivalences from the finite case. Namely we

prove that with an appropriate generalization of the concept of parenthesizing automata

– called parenthesizing Büchi-automata – the equivalence of the recognizable, regular

and MSO-definable language classes holds for languages of infinite biwords as well.

Much of the material of this thesis is based on the following publications:

[ÉN04] Z. Ésik and Z. L. Németh, Higher dimensional automata. J. of Autom.

Lang. Comb. 9 (2004), 3–29.

[ÉN05] Z. Ésik and Z. L. Németh, Algebraic and graph-theoretic properties of

infinite n-posets. Theoret. Informatics Appl. 39 (2005), 305–322.

[Ném04] Z. L. Németh, A hierarchy theorem for regular languages over free bisemi-

groups. Acta Cybern. 16 (2004), 567–577.

[Ném06] Z. L. Németh, Automata on infinite biposets. Acta Cybern. 18 (2006),

765–797.

[Ném07] Z. L. Németh, On the regularity of binoid languages: a comparative ap-

proach. In: preproc. 1st Int. Conf. on Language and Automata Theory

and Appl., LATA’07, March 29 – April 4, 2007, Tarragona, Spain.
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Chapter 2 contains several ideas taken from the introductory parts of three papers

[ÉN04, Ném06, Ném07]. The primary source of Chapter 3 is [ÉN04], but two sections

of it, namely Section 3.8 and Section 3.12 present the results given in [Ném04] and

[Ném07], respectively. Finally, Chapter 4 is based on the concepts and results given in

[ÉN05] and [Ném06].

However the thesis seeks to provide more than just the enumeration of the results

of the above papers. It attempts to offer a precise account of the subject of regular

binoid languages, with more detailed proofs and examples, along with justifications of

the new concepts and conclusions. It also offers a new outlook on solved and unsolved

problems, and suggests possible future directions of research.



Chapter 2

Binoids and Biwords

2.1 Preliminaries

In the following, n and m always denote nonnegative integers. We write [n] for the set

{1, 2, . . . , n}, so [0] means the empty set, also written as ∅. Moreover, Σ denotes a finite

nonempty set, called an alphabet, whose elements are called letters, while Σm stands

for an alphabet that has m letters. The empty word, i.e. the word that has no letters,

will be denoted by ε. We write Σ∗ for the set of all words over Σ, and Σ+ for the set

of all nonempty words over Σ. As usual, |x|, the length of a word x, is the number of

letters in x, and |x|σ stands for the number of occurrences of symbol σ in x. We use

the notation Σn for the set of words over Σ of length n.

The set Ω denotes some finite set of parentheses. Of course, Ω and Σ are always

disjoint, and elements of Ω are usually written as 〈1, 〉1, 〈2, 〉2, . . . We also assume here

that each Ω is partitioned into sets of opening and closing parentheses, denoted by Ωop

and Ωcl respectively, which are in bijective correspondence. For any integer j ≥ 0, let

Ωj stand for a set of j pairs of parentheses, that is Ωj = { 〈1, 〉1, . . . , 〈j , 〉j }. Here it is

convenient to choose Ω0 := ∅.

Next, let us recall some standard concepts of algebra. A binary relation on a set S

is a subset ρ ⊆ S×S. If (x, y) ∈ ρ, we write xρy. We say that a relation ρ on a set S is

• reflexive if for all x in S, xρx holds;

• irreflexive if for all x in S, xρx does not hold;

• symmetric if for all x, y ∈ S, xρy implies yρx;

• transitive if for all x, y, z ∈ S, xρy and yρz implies xρz.

A relation ρ that is reflexive, symmetric and transitive is known as an equivalence

relation. A (strict) partial order is a relation that is both irreflexive and transitive. A

15
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partial order ρ on a set S such that for all elements x, y ∈ S either xρy or yρx holds, is

called a linear order.

As usual a graph or undirected graph is a pair G = (V,E), where V is a set of

vertices and E is a set of unordered pairs of distinct vertices, called edges. If E is a set

of ordered pairs of vertices, we have a directed graph or digraph. A walk in a (directed or

undirected) graph is a sequence of vertices such that from each vertex in the sequence

there is an edge to the next vertex in the sequence. A walk with no repeated vertices is

called a path. A walk in which only the first and the last vertices are the same is referred

to as a cycle. Graphs without cycles are called acyclic graphs. DAG is an abbreviation

for directed acyclic graphs.

An n-ary operation on a set A is a function An → A, (n ≥ 0). An algebraic structure,

or algebra for short, is a set A together with a collection of operations on A. The 2-ary

operations are also called binary operations, and often denoted by infix notation like

x ◦ y. A binary operation ◦ on A is commutative if a ◦ b = b ◦ a, for all a and b in

A. Moreover, ◦ is associative if (a ◦ b) ◦ c = a ◦ (b ◦ c), for all a, b and c in A. A

neutral element or identity of a binary operation ◦ on A is an element e in A such that

e ◦ a = a ◦ e = a holds for all a in A. If A is an algebra and ρ is an equivalence relation

on A, then ρ is called a congruence of A if it is invariant under all operations of A. E.g.

if ◦ is a binary operation, then x1 ρ x2 and y1 ρ y2 imply (x1 ◦ y1) ρ (x2 ◦ y2).

2.2 Bisemigroups and n-semigroups

Definition 2.1 We call a set equipped with n associative binary operations an n-semi-

group. The usual notation for an n-semigroup is (S, ◦1, . . . , ◦n). A bisemigroup is an

n-semigroup for n = 2. The two binary operations of a bisemigroup are called the

horizontal product and the vertical product. They are denoted by • and ◦, respectively.

A bisemigroup is usually written as (B, •, ◦).

It is well-known [BS81] that for every alphabet Σ there is an (up to isomorphism

unique) bisemigroup that is freely generated by Σ in the variety of all bisemigroups.

This bisemigroup is called the free bisemigroup (generated by Σ), and is written as

Σ+(•, ◦).

Now we give some examples for bisemigroups. We have already seen an example

in the Introduction. In fact, nonempty two-dimensional words represent the elements

of the free bisemigroups. We will discuss free bisemigroups in more detail later on in

Section 2.6. Obviously, more general algebraic structures like semirings, rings and fields
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can also be regarded as bisemigroups. One algebraic drawback of picture languages

[GR97] is that for pictures the concatenation operations are only partially defined since,

for example, we cannot form the horizontal product of two pictures if they have a

different number of rows. But if we add a common zero element for both operations,

and we require the result of all formerly undefined products to be this new zero element,

then we get a bisemigroup as well. Note that this bisemigroup is not free.

The next example is the modeling of concurrent processes similar to that achieved

by sp-posets, but in the case when parallel composition is just associative, but not

commutative. This may happen if, when we form a parallel composition, we always

give an order of priority to the operands. In addition, we demand that if there is

insufficient free processor capacity to start both operand subprocess at the same time,

then the subprocess with the higher priority shall be started first. Naturally, if sufficient

free capacity is present at the beginning or is released later, then the two subprocesses

can run in parallel.

2.3 Binoids and n-monoids

Definition 2.2 An algebraic structure (S, ◦1, . . . , ◦n, 1) is called an n-monoid, if

(S, ◦1, . . . , ◦n) is an n-semigroup and 1 ∈ S is an identity element for all operations,

i.e. 1 ◦i s = s ◦i 1 = s, for all s ∈ S, i ∈ [n]. A binoid is an n-monoid for n = 2. Hence

a binoid is usually written as (B, •, ◦, 1).

As before, for every alphabet Σ there is a (unique up to an isomorphism) binoid

that is freely generated by Σ in the variety of all binoids. This binoid is called the free

binoid (generated by Σ) and is written as Σ∗(•, ◦).

Remark 2.3 Hashiguchi et al. have also defined algebras with two associative operations and

two identities, where the two identities are not necessarily the same. In [HIJ00, HWJ03, HSJ04]

these algebras are called bimonoids and of course they are not the same as our 2-monoids. But

our 2-monoids (or binoids) are also called binoids in [HIJ00, HWJ03, HSJ04]. On the other

hand, 2-monoids are called double monoids in [Gra81].

By definition every binoid can be regarded as a bisemigroup. Also, every bisemigroup

can be transformed to a binoid by adding a new identity element that serves as an

identity for both operations. Thus all of our previous examples of bisemigroups are

examples of binoids if we add an identity element to them.

Automata in general operate on elements of some free algebra. In the classical case,

automata run on words, i.e. on elements of free semigroups (or free monoids if we also
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consider the empty word.) Hence if we wish to generalize automata to higher dimensions,

it is natural to examine how they can operate on elements of free n-semigroups (or free

n-monoids). Thus in the rest of this chapter we will study free n-semigroups and n-

monoids, and representations of their elements. However, a fundamental observation is

that it is enough to just consider the case n = 2, as almost all of our results can be

extended to the general case in a straightforward way. Unfortunately, there are some

exceptions where the generalization is not so evident, but the reader should keep this

in mind.

Thus, free binoids and bisemigroups will be the central objects of our investigations.

There is no substantial difference between them, since adding or removing the identity

will have no influence on whether a given language belongs to the classes under study.

Earlier Hashiguchi et al. have developed their theory on free binoids, while in the

previous work of Ésik and Németh free bisemigroups were used. In order to facilitate

a comparison between these two approaches, in the thesis, except for Chapter 4 (cf.

Remark 4.1), we will employ free binoids.

2.4 (m,n)-structures

Before discussing free binoids and their elements, we will consider the more general

framework of (m,n)-semigroups and (m,n)-structures introduced by Ésik. This general

setting allows one to consider any finite number of operations that are associative, or

associative and commutative. The following definitions and results are from [Ési00]. In

the rest of this section we will assume that m+ n ≥ 1.

Definition 2.4 (cf. Definition 2.5 of [Ési00]) An (m,n)-semigroup is an algebra

(S,⊙1, . . . ,⊙m,⊗1, . . . ,⊗n), where ⊙1,. . . ,⊙m are associative, and ⊗1,. . . ,⊗n are as-

sociative and commutative binary operations on S.

Definition 2.5 (Definition 2.1 of [Ési00]) An (m,n)-structure over Σ, or just (m,n)-

structure, for short, is a finite set P of vertices equipped with m irreflexive transitive

relations <1, . . . , <m, n irreflexive symmetric relations ∼1, . . . ,∼n, and a labeling func-

tion λ : P → Σ subject to the following condition: for any two distinct vertices x, y ∈ P ,

either there is a unique i ∈ [m] with x <i y or y <i x, or else there is a unique j ∈ [n]

with x ∼j y. A homomorphism of (m,n)-structures is a function which preserves the

relations and the labeling. An isomorphism is a bijective homomorphism.

Remark 2.6 Note that (m,n)-structures are indeed quite general objects. It can easily be

verified that, by definition, there is a bijective correspondence between
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• (1, 0)-structures and labeled linear orders (words),

• (0, 1)-structures and multisets,

• (0, 2)-structures and labeled graphs,

• (1, 1)-structures and labeled partial orders (posets),

• (n, 1)-structures and labeled n-posets1, where n ≥ 1.

As usual, we do not distinguish between isomorphic (m,n)-structures, so that in the

definition below we may assume that P and Q are disjoint.

Definition 2.7 (Definition 2.3 of [Ési00]) Suppose that P = (P,<P
1 , . . . , <

P
m,∼

P
1

, . . . ,∼P
n , λ

P ) and Q = (Q,<Q
1 , . . . , <

Q
m,∼

Q
1 , . . . ,∼

Q
n , λQ) are disjoint (m,n)-structures.

For each i ∈ [m], we define P ⊙i Q to be the (m,n)-structure (P ∪ Q,<1, . . . , <m,∼1

, . . . ,∼n, λ) with

<k = <P
k ∪ <

Q
k , k 6= i, k ∈ [m] (2.1)

<i = <P
i ∪ <

Q
i ∪ (P ×Q) (2.2)

∼j = ∼P
j ∪ ∼

Q
j , j ∈ [n]

λ = λP ∪ λQ. (2.3)

For each j ∈ [m], let P ⊗j Q be the (m,n)-structure (P ∪Q,<1, . . . , <m,∼1, . . . ,∼n, λ)

with

<i = <P
i ∪ <

Q
i , i ∈ [m]

∼k = ∼P
k ∪ ∼

Q
k , k 6= j, k ∈ [n]

∼j = ∼P
j ∪ ∼

Q
j ∪(P ×Q) ∪ (Q× P )

λ = λP ∪ λQ.

Example 2.8 Note that each ⊙i is associative operation and each ⊗j is associative and com-

mutative, but associativity does not hold for different operations, e.g. a⊙1(b⊙2c) 6= (a⊙1b)⊙2c.

That is why writing a ⊙1 b ⊗1 c ⊙2 d without parentheses is ambiguous. Actually, it is known

that n+1 factors can be completely parenthesized in Cn number of ways, where Cn = 1

n+1

(
2n
n

)

is the nth Catalan number [WikA, Sta99]. Hence from a ⊙1 b ⊗1 c ⊙2 d we can have C3 = 5

different (2, 1)-structures using different parenthesizations. These are depicted in Figure 2.1.

In what follows we will identify the singleton (m,n)-structures by their letters and

assume that all (m,n)-structures are over a common, fixed alphabet Σ.

1n-posets are labeled sets equipped with n partial order relations (see Definition 2.12).
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a

b

c

d

a⊙1 ((b⊗1 c)⊙2 d)

a

b

c

d

(a⊙1 (b⊗1 c))⊙2 d

a

b

c

d

(a⊙1 b)⊗1 (c⊙2 d)

a

b

c

d

a⊙1 (b⊗1 (c⊙2 d))

a

b

c

d

((a⊙1 b)⊗1 c)⊙2 d)

Figure 2.1: Those (2, 1)-structures that can be obtained from a⊙1 b ⊗1 c⊙2 d using different

parenthesizations. Relations <1, <2 and ∼1 are represented by solid arrows, dashed arrows and

thick lines, respectively.

Definition 2.9 (Definition 2.6 of [Ési00]) An (m,n)-structure is reducible if it can

be generated from the singletons corresponding to the letters in Σ by the m+ n product

operations, i.e. when it can be reduced to a singleton by decomposition with respect to

the operations.

Let SΣ denote the set of all (m,n)-structures and let RSΣ be the set of all reducible

(m,n)-structures over Σ. It is clear that with the product operations of Definition 2.7

SΣ is an (m,n)-semigroup, and RSΣ is the least subalgebra of those subalgebras of SΣ

that contain Σ.

2.5 Free Algebra Theorems

The notion of a free algebra is one of the fundamental concepts of universal algebra

[BS81]. It can be defined at a rather abstract level, – even in terms of category the-

ory – but here we introduce it only for (m,n)-semigroups. We will use a well-known

characterization called the universal property.

Definition 2.10 An (m,n)-semigroup S is called freely generated by some set A ⊆ S

in the variety of all (m,n)-semigroups, if for every (m,n)-semigroup S′ and mapping



2.5. FREE ALGEBRA THEOREMS 21

h : A→ S′, there is a unique extension of h to a homomorphism h# : S → S′.

Theorem 2.11 (Theorem 2.8 of [Ési00]) RSΣ is freely generated by the set Σ in

the variety of all (m,n)-semigroups.

Proof. The proof of the above theorem is based on the following two properties of

reducible (m,n)-structures:

Property 1: Each reducible (m,n)-structure in SΣ can be constructed by the m + n

product operations from the singleton structures.

Property 2: For each reducible (m,n)-structure, its construction from the singletons

mentioned above (in Property 1) is unique apart from the associativity of the ⊙i and

the associativity and commutativity of the ⊗j operations (i ∈ [m], j ∈ [n]).

Property 1 is an immediately consequence of the definition of reducibility. Property

2 follows from the fact that the operations are “invertible” in the sense that a product

P ⊙i Q (i ∈ [n]) cannot be decomposed into any other product P ′ ⊙j Q
′ or P ′′ ⊗k Q

′′,

for any i 6= j ∈ [n] or k ∈ [m]. Of course it may happen that P ⊙i Q = P ′ ⊙i Q
′ holds

with P 6= P ′ and Q 6= Q′. But then both products must have a common refinement

P ⊙i Q = P ′ ⊙i Q
′ = P1 ⊙i P2 ⊙i . . . ⊙i Pk, so further decompositions of the operands

will lead to the same result. These two properties make it possible for us to prove

the universal property of SΣ. Indeed, for any (m,n)-structure S′, and any mapping

h : Σ→ S′, by Property 1, h#(P ) can be defined according to the decomposition of P

from the singletons. To compute h#(P ) one should apply the same operations in the

same order as P is built from the singletons, but using the images h(σ) ∈ S′ instead of

the singleton σ ∈ S. Finally, it is not hard to see that Property 2 ensures that h# is a

homomorphism, as required. �

As was mentioned in Remark 2.6, (m,n)-structures include many important special

cases. Hence Theorem 2.11 can also be used to give a description of the elements of

the free algebras in these special situations. These are summarized in Figure 2.2. First,

(1, 0)-semigroups and (1, 0)-structures correspond to the classical theory of semigroups

and (nonempty) words. Next, (n, 0)-semigroups (i.e. when we have n associative opera-

tions, and no operation that is both associative and commutative) are the n-semigroups

of Definition 2.1. Free n-semigroups can be described with the help of n-posets defined

as follows.

Definition 2.12 For any integer n ≥ 1, an n-poset over Σ is a structure (P,<1, . . . , <n

, λ), where P is a set, <1, . . . , <n, are strict partial order relations on P , and λ is a

labeling function λ : P → Σ.
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∗ Algebraic structures: Elements of the free algebras:

(1, 0) semigroups nonempty words
↓ ↓

(2, 0) bisemigroups sp-biposets
↓ ↓

(n, 0) n-semigroups constructible n-posets
↓ ↓

(m,n) (m,n)-semigroups [Ési00] reducible (m,n)-structures
↑ ↑

(1, 1) sp-algebras [LW98] sp-posets

∗ The number of associative, and associative & commutative operations.

Figure 2.2: Some algebras and their elements. Here arrows mean generalizations.

On n-posets n product operations can be defined exactly as in (2.1), (2.2) and (2.3).

Note that, in contrast to our definition of (m,n)-structures, here we do not require

that any two elements are related by exactly one relation. Still, it can be easily shown

that constructible n-posets, (i.e. those that can be constructed from the singletons,

and hence may be identified with reducible (n, 0)-structures) have the above-mentioned

totality property.

As we said earlier, the primary aim of the thesis is to develop an automata the-

ory over free n-monoids for any n ≥ 2, but it is usually enough to consider just the

n = 2 case. Accordingly, we will focus on constructible 2-posets. The term biposet

is a synonym for 2-poset, and constructible 2-posets will also be called series-parallel

biposets or simply sp-biposets.

Next, another important special case of (m,n)-semigroups and (m,n)-structures

is the situation when m = n = 1. Indeed, it is straightforward to identify a (1, 1)-

structure (P,<1,∼1, λ) with the labeled poset (P,<1, λ). Posets that correspond to the

reducible (1, 1)-structures are called series-parallel posets, or sp-posets for short, and in

[LW98, LW00, LW01] (1, 1)-semigroups are called sp-algebras.

2.6 Representations of Biwords

2.6.1 Preliminaries

First let us recall that Σ∗(•, ◦) denotes the free binoid generated by Σ, and the two

operations of Σ∗(•, ◦) are called the horizontal product and the vertical product. The
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elements of Σ∗(•, ◦) are called biwords (over Σ). In what follows we will use the term

biword in an abstract sense, but we will give concrete representations of it later on.

The identity of Σ∗(•, ◦), denoted by ε, is the empty biword. Each generator of Σ∗(•, ◦)

corresponding to a letter σ ∈ Σ is called a singleton biword and will also be denoted

by σ. The biwords that can be written as a horizontal (or vertical) product of two

nonempty biwords are called horizontal (or vertical). We call this property the type of

a biword. If a biword w is written in the form w = w1 • w2 • . . . • wn, where each wi is

nonempty, then this form is called a horizontal decomposition of w. Moreover, if each

wi is either a singleton or a vertical biword, then the decomposition is called maximal.

Obviously every horizontal biword has a unique maximal horizontal decomposition. For

vertical biwords vertical decompositions and maximal vertical decompositions are defined

symmetrically.

Of course there are several possible ways of describing biwords. They may be drawn

on a paper as two-dimensional words using boxes as we did in the Introduction. In

the previous section the sp-biposet representation was introduced. Biwords may also

be regarded as labeled ordered unranked trees. Furthermore, we will also employ two

linear representations, namely terms and condensed terms.

A common feature of all the representations is that the elements are constructed

inductively from the representations of the one-letter biwords by the two products opera-

tions. Moreover, these constructions are unique up to the associativity of the operations.

In other words, the analogous two properties in the proof of Theorem 2.11 hold. Hence

in every case we get the same algebra: Σ∗(•, ◦), the free algebra of biwords over Σ.

Next, we will also consider the description of biwords by i-terms and i-cterms,

which are ambiguous in the sense that a biword may have more than one i-(c)term

representation.

2.6.2 The Sp-biposet Representation

First of all, series-parallel biposets, or sp-biposets for short, are just constructible (2, 0)-

structures. Therefore, from Theorem 2.11 we immediately see that they represent the

elements of the free bisemigroups. Moreover, if we include the empty biposet as well,

they will represent the elements of the free binoids.

For reasons which will become clearer later on, we will reformulate their definition

starting from the notion of biposets instead of (2, 0)-structures. This will help clarify

the reason for the name “series-parallel” and we also fix both notation and terminology.

If we choose n = 2 in Definition 2.12, we get the notion of biposet.
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Definition 2.13 A Σ-labeled biposet, or biposet for short, is a 4-tuple (P,<P
h , <

P
v

, λP ), where P is a finite set of vertices, <P
h and <P

v are strict partial orders on P and

λP : P → Σ is a labeling function. If P = ∅, we get the empty biposet, denoted by ε.

We say that two biposets are isomorphic if there is a bijective function on the vertices

that preserves the partial orders and the labeling. Below we will make no distinctions

between isomorphic biposets.

Suppose that P = (P,<P
h , <

P
v , λP ) and Q = (Q,<Q

h , <
Q
v , λQ) are Σ-labeled biposets.

Without loss of generality, assume that P and Q are disjoint. We define their horizontal

or series product as P • Q = (P ∪ Q,<P•Q
h , <P•Q

v , λP•Q), and their vertical or parallel

product as P ◦ Q = (P ∪Q,<P◦Q
h , <P◦Q

v , λP◦Q), where

<P•Q
h = <P

h ∪ <
Q
h ∪(P ×Q), <P◦Q

h = <P
h ∪ <

Q
h ,

<P•Q
v = <P

v ∪ <
Q
v , <P◦Q

v = <P
v ∪ <

Q
v ∪(P ×Q),

and the labeling are λP•Q = λP◦Q = λP ∪ λQ.

It is quite apparent that both product operations are associative. Each letter σ ∈ Σ

may be identified by the singleton biposet labeled σ. Now, let SPB(Σ) denote the

collection of biposets that can be generated from the singletons corresponding to the

letters in Σ by the two product operations. The biposets in SPB(Σ) are called series-

parallel biposets, or sp-biposets for short.

The name “series-parallel” comes from the theory of posets. From a practical point

of view series-parallel posets can be viewed as models of modularly constructed con-

current processes (cf. [Pra86, Nie01, LW98, LW00]). In this modeling the two product

operations are the series product (which refers to the subsequent execution of two sub-

processes) and the parallel product (which models concurrent execution). In an analo-

gous way, our two products on biposets are also called the series product and parallel

product. However, unlike the parallel composition of posets, our parallel product is not

commutative. So perhaps the terms “horizontal and vertical” are more satisfactory, as

they make no distinction between the two operations. Nevertheless, for the generated

objects we will retain the name “series-parallel biposets” as they have a close connection

with series-parallel posets and series-parallel graphs.

Now we will make use of the free algebra theorem (Theorem 2.11) for the special

case of bisemigroups and sp-biposets.

Theorem 2.14 (cf. proposition 2.3 of [ÉN02]) The bisemigroup SPB(Σ) is freely

generated by Σ in the variety of all bisemigroups. Thus (SPB(Σ), •, ◦) is isomorphic to

Σ+(•, ◦), and (SPB(Σ) ∪ { ε }, •, ◦) is isomorphic to Σ∗(•, ◦).
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The sp-biposet representation of a biword w will be denoted by wbp. An example of the

sp-biposet representation of a biword will be given in Example 2.18.

2.6.3 The Term Representation

Perhaps the most obvious way of representing biwords is by the use of terms. Here

we describe how to associate a term wtm with each biword w ∈ Σ∗(•, ◦). To this

end, we will extend the alphabet Σ with operation symbols and parentheses. Let

E(Σ) := Σ ∪ { • , ◦ , 〈 , 〉 }. As usual, in the term representation we shall put paren-

theses around the subterm of horizontal biwords which appear as a vertical factor, and

symmetrically around the subterm of vertical biwords which appear as a horizontal

factor. This procedure can be stated more precisely in the following way.

Definition 2.15 If w ∈ Σ∗(•, ◦), then wtm will denote the term representation of w.

Let wtm be a word over E(Σ), defined inductively as follows.

(i) If w = ε is the empty biword, then wtm := ε.

(ii) If w = σ is a singleton biword, then wtm := σ.

(iii) If w = w1 • w2 with w1, w2 6= ε, then wtm := Hform(w1) • Hform(w2).

(iv) If w = w1 ◦ w2 with w1, w2 6= ε, then wtm := Vform(w1) ◦ Vform(w2).

In (iii), Hform(w) denotes the horizontal form of the biword w, defined as:

Hform(w) :=

{
wtm if w is a singleton or horizontal biword,

〈 wtm 〉 if w is a vertical biword.

In (iv), Vform(w), the vertical form of w, is defined symmetrically.

It should be mentioned here that in cases (iii) and (iv) the definition of wtm does

not depend on the choice of factorization since each •, ◦ and the concatenation of words

are associative operations.

2.6.4 The Condensed Term Representation

Another description of Σ∗(•, ◦) can be given by using condensed terms, or cterms for

short. This representation may not be interesting by itself. However, its importance

comes from the fact that our automata operate on condensed terms – processing them

sequentially – reading from left to right.
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The condensation of the description of the terms is based on a simple observation.

It is that the operation symbols can be omitted provided we know the type of a biword

in advance. Actually, the arrangement of the parentheses tell us precisely where we

should put the horizontal and vertical product operations between the factors. Formally,

condensed term representations are words from the set

{ ε } ∪Σ ∪ { •, ◦ }
(
Σ ∪ { 〈, 〉 }

)+
.

The representation of the empty biword and the singletons are obvious. For a

nonempty and nonsingleton biword, the first letter – the type-sign – gives the type of

the represented biword; namely • and ◦ mean the horizontal type and vertical type,

respectively. The remaining part is just the term representation after the operation

symbols have been deleted. Here we shall write wctm for the cterm representation of

biword w. Thus if wtm = 〈a • b〉 ◦ 〈c • 〈d ◦ e ◦ f〉 • g〉, then wctm =◦ 〈ab〉〈c〈def〉g〉.

Hence it is possible to recover the original term representation from a condensed

one. To achieve this, all we need to do is put back the operation symbols that were

omitted. On the outer level the type of the operations is given explicitly by the first

letter. Moreover, moving from left to right the type of the operation symbols alternates

between the parentheses. Finally, we should put an operation symbol after each letter

and closing parenthesis symbols, provided they are followed by another letter or by an

opening parenthesis symbol.

Sometimes it will be useful to write wctm− for the word we get from wctm by deleting

the type-sign of w. In the case of the empty biword and singletons there are no type-

signs, so let wctm− = wctm in such cases.

We can extend these notations to languages as well. Let Ltm := {wtm | w ∈ L } and

Lctm := {wctm | w ∈ L }. After, let TM(Σ) := Σ∗(•, ◦)tm and CTM(Σ) := Σ∗(•, ◦)ctm

denote the set of all (c)terms of biwords over Σ.

Example 2.16 The term representation of the biword depicted in Figure 1.1 is

wtm = a • 〈b ◦ 〈c • d〉〉 • 〈e ◦ f〉.

Now, the condensed term representation of this biword is as follows:

wctm =• a〈b〈cd〉〉〈ef〉

In addition, we have

wctm− = a〈b〈cd〉〉〈ef〉.
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2.6.5 The Tree Representation

We will also use finite ordered unranked trees to represent biwords. In this case, leaves

are labeled by letters from Σ, and the inner nodes are labeled by • or ◦. In addition, •

and ◦ alternate along any path from the root to a leaf.

Definition 2.17 If w is a biword, its tree form wtr is defined as follows.

(i) If w = ε, the empty biword, then wtr is the empty tree, also denoted by ε.

(ii) If w = σ is a singleton, then wtr is a tree consisting of a single vertex labeled by σ.

(iii) If w is a horizontal biword, consider the maximal horizontal decomposition w =

w1 • w2 • . . . • wm, (m ≥ 2). Now wtr is the tree whose root is labeled by • and

this root connects the subtrees wtr
1 , wtr

2 , . . . , wtr
m (in this order).

(iv) If w is a vertical biword, consider the maximal vertical decomposition w = w1 ◦

w2 ◦ . . . ◦ wm, (m ≥ 2). Now wtr is the tree whose root is labeled by ◦ and this

root connects the subtrees wtr
1 , wtr

2 , . . . , wtr
m (in this order).

Example 2.18 Recall our previous example of a biword, namely w whose term representation

is

wtm = a • 〈b ◦ 〈c • d〉〉 • 〈e ◦ f〉.

The two-dimensional word, sp-biposet and tree representations of w are depicted in Figure 2.3.

The sp-biposet representation of w is wbp = ({1, 2, . . . , 6}, <h, <v, λ), where <h and <v are the

transitive closures of the relations 1 <h 2, 1 <h 3, 3 <h 4, 2 <h 5, 2 <h 6, 4 <h 5, 4 <h 6,

and 2 <v 3, 2 <v 4, 5 <v 6, respectively. Moreover, λ(1) = a, λ(2) = b, λ(3) = c, λ(4) = d,

λ(5) = e, λ(6) = f . In the figure, horizontal and vertical relations are indicated by solid arrows

and dashed arrows, respectively.

It is evident that for any leaf node in wtr there is a corresponding vertex in wbp.

Hence we may and will identify the leaves of wtr by the corresponding vertices of wbp.

This allows us to speak about elements and subsets of wbp like those of wtr. Similarly, we

can associate vertices of wbp with the corresponding letters in the (c)term representation

wtm and wctm.

2.6.6 i-term and i-cterm Representations

As we shall see, in order to accept all recognizable binoid languages by either monoid

automata or parenthesizing automata, it is necessary to employ several pairs of paren-

theses. For this reason choose an integer i ≥ 0, recall that Ωi = { 〈1, 〉1, . . . , 〈i, 〉i }, and
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a
b

c d

e

f

(a)

a

b

c d

e

f

(b)

a

b

c d

e f

•

•

◦◦

(c)

Figure 2.3: The two-dimensional word representation (a); the biposet representation (b); and

the tree representation (c) of the biword a • 〈b ◦ 〈c • d〉〉 • 〈e ◦ f〉 .

let Ei(Σ) = Σ∪Ωi∪{•, ◦} be the extended alphabet with i different pairs of parentheses.

Next, suppose that wtm (or wctm) is a (c)term representation of a biword w ∈ Σ∗(•, ◦).

Now i-term (or i-cterm) representations of w are obtained by replacing the matching

pairs of parentheses with some pairs of indexed parentheses from Ωi in wtm (resp. in

wctm). Note that a biword can have several different i-(c)term representations. For

instance 〈2a • b〉2 ◦ 〈1c • d〉1 and 〈1a • b〉1 ◦ 〈1c • d〉1 are both 2-term representations

of the biword 〈a • b〉 ◦ 〈c • d〉. Now let TMi(Σ) and CTMi(Σ) stand for the i-term

and i-cterm representations of the biwords in Σ∗(•, ◦), respectively. For a binoid lan-

guage L ⊆ Σ∗(•, ◦), any word language L′ ⊆ TMi(Σ) (resp. L′ ⊆ CTMi(Σ)) such that

ηi(L
′) = Ltm (resp. ηi(L

′) = Lctm) shall be referred to as an i-term representation

(resp. i-cterm representation) of L. Here ηi is the mapping that deletes the indices of

the parentheses, i.e. the homomorphism ηi : Ei(Σ)∗ → E(Σ)∗ which extends

η̃i(x) =





x if x ∈ Σ ∪ { •, ◦ };

〈 if x ∈ Ωi,op;

〉 if x ∈ Ωi,cl,

for all x ∈ E(Σ).

2.6.7 Characterizations of TMi(Σ) and CTMi(Σ)

Before stating the theorems that characterize TMi(Σ) and CTMi(Σ) we need to intro-

duce some technical definitions. First, we will define a homomorphism which deletes all

the letters of Σ and the operation symbols from the words over Ei(Σ). To this end, let

πi : Ei(Σ)∗ → Ω∗
i be the unique extension of the mapping

πi(x) =

{
x if x ∈ Ωi,

ε if x ∈ Σ ∪ { •, ◦ }.
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For any i > 0, the Dyck language (cf. [Har78]) over the alphabet Ωi, denoted Dycki,

is defined by the context free grammar with start symbol S and rules

S → SS | 〈1S〉1 | 〈2S〉2 | . . . | 〈iS〉i | ε.

It is well-known and is not hard to see that Dycki consists of all the balanced strings

of parentheses over Ωi. Now suppose that x ∈ Ei(Σ)∗. The number of opening and

closing parentheses in x is then

|x|〈 =
∑

1≤k≤i

|x|〈k , and |x|〉 =
∑

1≤k≤i

|x|〉k .

Furthermore, for all 1 ≤ j ≤ |x|, we let dpx(j) := |x1 . . . xj |〈 − |x1 . . . xj |〉. Thus dpx(j)

can be regarded as the depth of the parenthesization at the jth position in x. Now we

will characterize the elements of TMi(Σ) and CTMi(Σ) in Ei(Σ)+ .

Lemma 2.19 For all x ∈ Ei(Σ)+ we have x ∈ TMi(Σ) iff the following conditions

hold.

(1) πi(x) ∈ Dycki, i.e. the use of parentheses in x is balanced.

(2) x 6= x1〈k〈lx2〉l〉kx3, for any 〈k, 〉k, 〈l, 〉l ∈ Ωi, and x1, x2, x3 ∈ Ei(Σ)∗ such that

πi(x2) ∈ Dycki, i.e. there is no double parenthesization in x.

(3) x 6= 〈kx′〉k, for any 〈k, 〉k ∈ Ωi and x′ ∈ Ei(Σ)∗ such that πi(x
′) ∈ Dycki, i.e. there

is no outer parenthesization in x.

(4) x 6= x1〈kσ〉kx2, for any 〈k, 〉k ∈ Ωi, x1, x2 ∈ Ei(Σ)∗ and σ ∈ Σ, i.e. there is no

singleton parenthesization in x.

(5) x 6= x1〈k〉kx2, for any 〈k, 〉k ∈ Ωi and x1, x2 ∈ Ei(Σ)∗, i.e. there is no empty

parenthesization in x.

(6) Suppose that |x| = n and x = x1 . . . xn, where xj ∈ Σ, (1 ≤ j ≤ n). Then either

n = 1 and x ∈ Σ, or n > 2 and for all 1 ≤ j ≤ n we have

xj ∈ {•, ◦} ⇔ 2 ≤ j ≤ n− 1, xj−1 ∈ Σ ∪ Ωi,cl, and xj+1 ∈ Σ ∪ Ωi,op,

i.e. the operation symbols are placed in the correct positions.

(7) If we set OH = { j | 1 ≤ j ≤ |x|, xj = • }, OV = { j | 1 ≤ j ≤ |x|, xj = ◦ },

OE = { j | 1 ≤ j ≤ |x|, xj ∈ { •, ◦ } and dpx(j) is even },
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OO = { j | 1 ≤ j ≤ |x|, xj ∈ { •, ◦ }, and dpx(j) is odd },

then {OH , OV } = {OE , OO }, i.e. the operation symbols alternate according to the

depth of the parenthesization.

Proof sketch. The necessity of conditions (1)–(7) easily follows from the construction

of the elements of TMi(Σ) described earlier in Definition 2.15 and in the definition of

i-terms. However, the proof of sufficiency is rather long and technical. One can use

induction on the length of a word x and check how the conditions guarantee that x can

be cut into shorter subwords (by the “outer” operation symbols), in such a way that

each segment also satisfies all the conditions except (3). This task will be left to the

interested reader. Now Lemma 2.19 has the following corollary.

Lemma 2.20 For all x = x1 . . . xn ∈ Ei(Σ)+ we have x ∈ CTMi(Σ) iff x ∈ Σ; or

n > 2, x1 ∈ {•, ◦}, x2 . . . xn ∈ (Σ ∪ Ωi)
+ and x2 . . . xn satisfies conditions (1)–(5) of

Lemma 2.19.

One direct consequence of the above theorems is the following proposition, which will

be used later on.

Proposition 2.21 TMi(Σ) and CTMi(Σ) are deterministic context-free languages.

Proof. It is not hard to construct a deterministic pushdown automaton which accepts

the words that simultaneously satisfy conditions (1)–(3). Indeed, it a simple textbook

exercise to draw a deterministic pushdown automaton that accepts Dycki or a slight

modification of it, namely the language of the words that satisfy (1). As for (2), one

can modify the previous machine so that if two opening parentheses follow each other,

the automaton marks the second one when pushing it onto the stack, hence consecutive

closing partners of these parentheses can be forbidden. The next modification for (3) is

also straightforward: if the first letter is an opening parenthesis, push an extra symbol

to the bottom of the stack, which can then be popped by reading any letter or operation

symbol, but only after the first parenthesis has been closed.

Furthermore, conditions (4) to (7) can be described by regular languages, and it is

well-known that deterministic context-free languages are closed under intersection with

regular languages. In the case of CTMi(Σ), the proof is similar. �

2.6.8 Properties of the Representations

Naturally the question arises of why we study so many biword representations. In the

following we will briefly examine the advantages of using one rather than another.
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The two-dimensional word representation (see Section 1.2) is the most intuitive one.

It shows that biwords are really two-dimensional objects. It also accurately reflects the

hierarchical relations in a biword.

Perhaps the easiest way of giving a biword is via the term representation. Fur-

thermore, terms and operations between terms are very close to the various rational

operations on binoid languages. The reader might recall that Hashiguchi et al. used

the term representation to develop a theory of automata and grammars over binoid

languages [HIJ00, HWJ03, HSJ04].

As we mentioned above, condensed terms are the input structures of parenthesizing

automata, which will be introduced later. They directly confirm the sequential behavior

of our automata. Moreover, they reduce the decidability algorithm of the membership

problem of parenthesizing automata to an implementation level. Note that this is the

only representation where the generalization to higher dimensions is nontrivial.

Trees are also widely used in computer science. It is worth realizing here that the

biwords are, in fact, just ordered unranked trees whose leaves are labeled. This is quite

similar to the representation of XML-documents by ordered unranked trees, but there

the inner nodes are also labeled. Anyway, the tree representation might be a possible

way of finding applications for our theory.

Sp-posets are essential for logical definability, and they are useful for exploring

connections between biwords and “graph-like” structures, like 2-structures [ER90], texts

[ER93, HtP96], pictures [GR97] and posets [LW00, Kus03a].

Next, we should mention that i-term and i-cterm representations are needed to

relate our study to the results of Hashiguchi et al. Later in Section 3.11.3 we will also

see that biwords can also be represented by alternating texts [HtP96].

2.7 Graph-Theoretic Characterizations

Several important classes of graphs can be characterized with the aid of forbidden sub-

graphs. Perhaps the best known example of this is Kuratowski’s Theorem (see [Har94],

for instance) which characterizes planar graphs. Besides this, its generalization known

as the Robertson–Seymour Theorem [RS04, WikB], allows us to have characterizations

by finite sets of forbidden graphs in a general setting.

Similar characterizations are known for sp-posets, series-parallel graphs and for re-

ducible (m,n)-structures. Below we will briefly discuss each in turn. Moreover, as these

results are not ours, the proofs will not be reproduced here. For such proofs the inter-

ested reader should consult the relevant literature [Val78, Gra81, VTL82, Gis88, Ési00].
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Now let us consider the characterization of sp-posets. If we ignore the labeling

aspect, posets can be identified with transitive directed acyclic graphs. We will provide

the characterization in this setting. Directed acyclic graphs are usually abbreviated

as DAG-s, and, of course, transitivity means that if (u, v) and (v,w) are edges of a

transitive DAG, then (u,w) is an edge as well.

Definition 2.22 We call an “N”-digraph, or “N” for short, the directed graph on 4

vertices, {1, 2, 3, 4}, whose edges are (1, 2), (3, 2) and (3, 4). Similarly, we call a P4

graph the undirected graph which consists of a path on four vertices.

1

2

3

4

(a) (b)

Figure 2.4: The N -digraph (a) and the P4 graph (b).

These two graphs will play the role of forbidden structures in the characterizations.

They are depicted in Figure 2.4. As usual, a subgraph G′ of a graph G is called an

induced subraph (or a vertex induced subgraph), if G′ contains all edges of G that join

two vertices which are present in G′.

Theorem 2.23 (Grabowski [Gra81] and Valdes et al. [VTL82]) A poset is series-

parallel iff it (viewed as a transitive DAG) does not contain an induced subgraph iso-

morphic to “N”.

In the words of [VTL82] “The proof of this fact is rather long . . . The details can be

found in [Val78] . . . ” Later a shorter proof was given by Gischer [Gis88]. A proof can

also be found in [Kus03a].

Before giving the characterization of reducible (m,n)-structures we shall consider

series-parallel graphs. Undirected graphs can be identified with (0, 2)-structures. Then

the two associative and commutative operations correspond to the disjoint union and

the join operations on graphs. (The joint of two graphs is the discrete union together

with all the edges joining the vertices of the two graphs.) Those graphs that correspond
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to reducible (0, 2)-structures are called series-parallel graphs. Series-parallel graphs can

also be defined as comparability graphs of series-parallel posets. More precisely, if

P = (P,<) is a poset, then its comparability graph is an undirected graph, whose set

of vertices is P , and there is an edge between two vertices u and v iff u < v or v < u

in P . Now a graph is series-parallel iff it is a comparability graph of a poset, which is

series-parallel. Note that P4 is not a series-parallel graph because both of its transitive

orientations are isomorphic to the N -digraph. Series-parallel graphs are also called

complement-reducible graphs (or cographs for short), as they are precisely those graphs

which can be constructed from singleton graphs by the operations of complementation

and disjoint union [CLB81]. Several other equivalent definition of cographs are also

known (cf. [ISGCI, BLS99]). The forbidden structure characterization of the class is as

follows.

Theorem 2.24 (Cornel et al. [CLB81]) An (undirected) graph is a series-parallel

graph iff it does not contain a P4 as an induced subgraph.

Actually, a common generalization of the above two theorems for reducible (m,n)-

structures was given by Ésik.

We also say that a directed graph satisfies the N -condition if it has no induced

subgraph isomorphic to “N ”. Similarly, an undirected graph satisfies the P4-condition

if it has no induced subgraph isomorphic to P4. If P = (P,<1, . . . , <m,∼1, . . . ,∼n, λ)

is an (m,n)-structure then we can define

ρi :=

{
<i ∪ >i if 1 ≤ i ≤ m,

∼i−m if m+ 1 ≤ i ≤ m+ n.

Now the characterization of the reducible (m,n)-structures is the following.

Theorem 2.25 (Theorem 2.14 of [Ési00]) A nonempty (m,n)-structure P = (P,<1

, . . . , <m,∼1, . . . ,∼n) is reducible iff the following conditions hold:

1. For each i ∈ [m], the poset (P,<i) satisfies the N -condition.

2. For each j ∈ [n], the graph (P,∼j) satisfies the P4-condition.

3. There exist no distinct vertices x, y, z and distinct integers i, j, k ∈ [m + n] with

xρiy, yρjz and zρkx. (The triangle condition).

Since n-posets and biposets are special cases of (m,n)-structures, we also obtain the

following corollaries. Note that – by definition – (m,n)-structures are total (i.e. each
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pair of elements are related by exactly one of the relations), while n-posets and biposets

may not have this property. On the other hand totality is clearly required for being

constructible n-poset or series-parallel biposet.

Corollary 2.26 (Theorem 2.1 of [ÉN04]) An n-poset P = (P,<1, . . . , <n, λP ) is

constructible iff the following conditions hold:

1. P is total, i.e. for every x, y ∈ P with x 6= y there is exactly one i ∈ [n] such that

x <i y or y <i x holds.

2. Each poset (P,<i), i ∈ [n] satisfies the N -condition.

3. If x, y, z are different vertices of P , then x, y, z are related by at most 2 of the

partial orders <i. (The triangle condition).

Corollary 2.27 A biposet P = (P,<h, <v, λ) is series-parallel iff the following condi-

tions hold:

1. P is total, i.e. for all x, y ∈ P , with x 6= y the vertices x and y are related either

by <h or by <v.

2. Both posets (P,<h) and (P,<v) satisfy the N -condition.



Chapter 3

Parenthesizing Automata

In this chapter, an accepting device called parenthesizing automaton will be introduced

to define the class of regular binoid languages. Since in general for models more complex

than words the existence of an appropriate concept of automaton is far from being

obvious, presenting a suitable concept of automaton for biwords is one of the main

contributions of the thesis. The suitability of our model will be verified by the fact that

the language class accepted by our automata (Reg) coincides with both of the classes

of algebraically recognizable (Rec), and in monadic second-order logic definable (MSO)

classes of binoid languages. Note that the latter classes exist and are well established,

independently of the automaton concept chosen.

3.1 The Concept of Parenthesizing Automata

In this section we will introduce the concept of parenthesizing automata discussed in

[ÉN04, Ném04, Ném06]. (The definition first appeared in [ÉN02].) Parenthesizing

automata will be used to determine the class of regular binoid languages.

Recall that the term representation of a biword is an ordinary word over the extended

alphabet E(Σ) = Σ∪{ •, ◦, 〈, 〉 }. In addition, in the term representation the usual rules

of parenthesization are applied, but no superfluous parentheses are permitted.

At first sight it might be thought that a parenthesizing automaton reads term repre-

sentations of biwords from left to right. When the automaton encounters a parenthesis

symbol it performs a special, so-called parenthesizing transition. This transition is sim-

ilar to ordinary transitions of classical finite automata, as it takes the automaton into

another state, but parenthesizing transitions are labeled by parenthesis symbols instead

of letters from Σ. The automaton is allowed to have several different pairs of parenthe-

35
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sis symbols. But we require the following. In the term representation the opening and

closing parentheses symbols have a well-defined standard matching, and the runs of the

automaton must follow this matching. Namely, for each matching pair of parentheses in

the term representation, the automaton has to perform such parenthesizing transitions

whose labels also match, i.e. the first transition contains an opening parenthesis and

the second one has the corresponding closing parenthesis.

On the other hand, automata do not perform transitions on the operation symbols,

• and ◦. Instead the set of states S is divided into two disjoint subsets H and V . They

are called horizontal and vertical states, respectively. Informally, when the automaton

goes through a horizontal state, then it “applies” horizontal product, while crossing a

vertical state implies a vertical product of the labels processed before and after that

state.

From this also follows that each parenthesizing transition must lead from a horizontal

state to a vertical one, or from a vertical state to a horizontal one. Hence the effect

of parenthesizing transitions is to change the “actual” (horizontal/vertical) type of the

operation which is used to connect the letters that are processed.

Definition 3.1 ([ÉN04]) A (nondeterministic) parenthesizing automaton, PA for

short, is a 9-tuple A := (S,H, V,Σ,Ω, δ, γ, I, F ), where S is a nonempty, finite set

of states; H and V are the sets of horizontal and vertical states which give a disjoint

partition of S, Σ is the input alphabet and Ω is a finite set of parentheses. Furthermore,

• δ ⊆ (H × Σ×H) ∪ (V × Σ× V ) is the labeling transition relation,

• γ ⊆ (H × Ω× V ) ∪ (V × Ω×H) is the parenthesizing transition relation,and

• I, F ⊆ S are the sets of initial and final states, respectively.

In the following we will write Type(q) = • if q is a horizontal state, and Type(q) = ◦

if q is a vertical state of an automaton. Note that this definition has a parallel with the

notion of types of biwords.

Example 3.2 A simple illustration of a PA is given in Figure 3.1. The horizontal states are

those labeled by Hi and the vertical states are those labeled by Vj , for some i and j. There is

a single initial state H1, and a single final state H7. The labeling transitions are

δ = { (H1, a,H2), (V1, b, V2), (H3, c,H4), (H4, d,H5), (H6, e,H7) },

and the parenthesizing transitions are

γ = { (H2, 〈1, V1), (V2, 〈2, H3), (H5, 〉2, V3), (V3, 〉1, H6) }.
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Later when we define the notion of run formally, we will see that this automaton has a single

run from H1 to H7, hence the automaton just accepts the biword a • 〈b ◦ 〈c • d〉〉 • e. Of course,

if the automaton had cycles, the accepted binoid language would be more complicated than in

our example. Several other examples of PA will be given later in Section 3.3.

H H

H H

V VV

H

H H1 2

1 2 3

3 4 5

6 7

〈1

〈2

〉1

〉2

a

b

c d

e

Figure 3.1: A PA accepting { a • 〈b ◦ 〈c • d〉〉 • e }.

3.2 The Operation of Parenthesizing Automata

In this section, we will define the operation of parenthesizing automata formally, in three

different but equivalent ways. For this, let [p,w, q]A denote that fact that automaton

A can read the biword w from state p, and after processing w the automaton can be

in state q. (Note that automata are nondeterministic, so it is possible that several

[p,w, q]A hold for the same p and w, but for different q-s.) If [p,w, q]A holds, we also

say that A has a run on w from p to q. For this notion three definitions will be given

in turn, denoted by [p,w, q]1A, [p,w, q]2A and [p,w, q]3A, respectively. After that, in

Section 3.2.4 we will establish their equivalence. In Section 3.2.5 we will define the class

of regular binoid languages.

3.2.1 The First Approach

The very first definition for the operation of PA was presented in [ÉN02]. In this case

we do not define what a run is, only the phrase “an automaton has a run on a biword

w from state p to state q”. The definition is based on an induction on the construction

of w. It stresses the different functionality of the horizontal and vertical states and it

also highlights the role of the parentheses.
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Definition 3.3 (cf. Definition 3.3 of [ÉN04]) Suppose that w ∈ Σ∗(•, ◦) and p, q ∈

S. We say that A = (S,H, V,Σ,Ω, δ, γ, I, F ) has a run on w from p to q, denoted by

[p,w, q]1A if one of the following conditions holds:

(E) w = ε and p = q.

(S) w = a ∈ Σ and (p, a, q) ∈ δ.

(HH) p, q ∈ H and w has a maximal horizontal decomposition w = w1 • . . . • wn, where

n ≥ 2, and there exist r1, . . . , rn−1 ∈ S, r0 = p, rn = q such that [ri−1, wi, ri]
1
A,

for all i ∈ [n].

(VV) p, q ∈ V and w has a maximal vertical decomposition w = w1 ◦ . . . ◦ wn, where

n ≥ 2, and there exist r1, . . . , rn−1 ∈ S, r0 = p, rn = q such that [ri−1, wi, ri]
1
A

for all i ∈ [n].

(HV) p, q ∈ H and w has a maximal vertical decomposition w = w1 ◦ . . . ◦ wn, where

n ≥ 2, and there exist 〈k, 〉k ∈ Ω, p′, q′ ∈ V and (p, 〈k, p
′), (q′, 〉k, q) ∈ γ such that

[p′, w, q′]1A holds.

(VH) p, q ∈ V and w has a maximal horizontal decomposition w = w1 • . . . • wn, where

n ≥ 2, and there exist 〈k, 〉k ∈ Ω, p′, q′ ∈ H and (p, 〈k, p
′), (q′, 〉k, q) ∈ γ such that

[p′, w, q′]1A holds.

Definition 3.4 Based on the above cases we introduce the following terminology. We

say that, in case (E) A has an empty run, in case (S) A has a singleton run, in cases

(HH) and (VV) A has a direct run, while in cases (HV) and (VH) A has an indirect

run between p and q.

Remark 3.5 Note that runs are always between states of the same type. Thus [p, w, q]1A
implies p, q ∈ H or p, q ∈ V . So in (HH) we have r1, r2, . . . , rn−1 ∈ H , and similarly, in (VV)

we have r1, r2, . . . , rn−1 ∈ V . These observations will be frequently used in inductive proofs.

Example 3.6 The automaton of Example 3.2, depicted in Figure 3.1, accepts the singleton

language which just consists of the biword w = a • 〈b ◦ 〈c • d〉〉 • e. Indeed, there are

runs [H1, a,H2]A, [H2, b ◦ 〈c • d〉, H6]A and [H6, e,H7]A corresponding to the horizontal

decomposition of P . Moreover, the second run [H2, b ◦ 〈c • d〉, H6]A exists, since it can be

built from a parenthesizing transition (H2, 〈1, V1), a run [V1, b ◦ 〈c • d〉, V3]A and a transition

(V3, 〉1, H6) according to the case (HV). Finally, the existence of the run [V1, b ◦ 〈c • d〉, V3]A
can be derived from the existence of the runs [V1, b, V2]A and [V2, c • d, V3]A, and the existence

of the latter can be verified similarly using the case (VH).



3.2. THE OPERATION OF PARENTHESIZING AUTOMATA 39

3.2.2 The Second Approach

This second definition first appeared in [Ném05] and later in its journal version [Ném06].

Here we define the notion of run as certain finite sequences of transitions of an automa-

ton. Recall that Ω is a finite set of parentheses that is partitioned into Ωop of opening

and Ωcl of closing parentheses.

Let A = (S,H, V,Σ,Ω, δ, γ, I, F ) be a PA. If t = (p, x, q) is a labeling or parenthe-

sizing transition of A, i.e. t ∈ δ ∪ γ, then the starting and the ending state of t will

be denoted by start(t) := p and end(t) := q, respectively. Two transitions t1 and t2

are adjacent (in this order) if end(t1) = start(t2). A words from (δ ∪ γ)∗ will be called

transition sequences, but we will demand that in any transition sequence the consecu-

tive transitions be adjacent. If r = t1t2 . . . tn ∈ (δ ∪ γ)∗ is a transition sequence, then

let start(r) := start(t1) and end(r) := end(tn). Here we say that two parenthesizing

transitions t1 = (p, ω1, q) and t2 = (s, ω2, t) ∈ γ form a parenthesizing transition pair

if ω1 is an opening parenthesis and ω2 is its closing partner. The concatenation of two

transition sequences r1 and r2 will be denoted by r1r2, as usual.

Definition 3.7 ([Ném05]) Let A be a PA. The set of its runs, Runs(A), is the least

set of transition sequences that contains

(i) the singleton runs: (p, σ, q), for all (p, σ, q) ∈ δ;

(ii) the direct runs: r1r2, for every r1, r2 ∈ Runs(A) with end(r1) = start(r2);

(iii) the indirect runs: t1r t2, for every direct run r ∈ Runs(A), and parenthesizing

transition pair t1, t2 with end(t1) = start(r) and end(r) = start(t2).

Note that the empty sequence that would correspond to the empty run is not allowed.

The reason for this is that it would be difficult trying to define the starting and the

ending states of an empty run.

Suppose that A is a PA and r = t1 . . . tn ∈ Runs(A). A parenthesizing transition

pair ti, tj, (i < j) is said to be a matching parenthesizing transition pair in r if ti . . . tj

is an indirect run of A. Note that not every parenthesizing transition pair ti, tj , (i < j)

is a matching parenthesizing transition pair in r. For instance, consider the first and

the last transition in

(p1, 〈, p2) . . . (p3, 〉, p4) . . . (p5, 〈, p6) . . . (p7, 〉, p8),

where 〈 and 〉 do not appear in other transitions.
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It is obvious that every run of A is of the form

r = t1t2t3 . . . tn = (p0, ω1, p1)(p1, ω2, p2)(p2, ω3, p3) . . . (pn−1, ωn, pn),

where pi ∈ S and ωi ∈ Σ∪Ω for all i = 1, . . . , n. If r is an indirect run, then t1 and tn is a

matching parenthesizing transition pair, and t2 . . . tn−1 is a direct run of A. Moreover,

if r is a direct run, then it has a unique decomposition into subruns r = r1r2 . . . rk,

where each ri is either a singleton run or an indirect run for i = 1, . . . , k, and k ≥ 2.

Definition 3.8 Suppose that A is a PA and r ∈ Runs(A). The label of r is a biword

from Σ+(•, ◦) defined inductively as follows:

(i) If r = (p, σ, q), then Label(r) := σ.

(ii) If r is a direct run, and r = r1r2 for some r1, r2 ∈ Runs(A), then

- if end(r1) ∈ H, then Label(r) := Label(r1) • Label(r2);

- if end(r1) ∈ V , then Label(r) := Label(r1) ◦ Label(r2).

(iii) If r is an indirect run r = t1r
′ t2, then Label(r) := Label(r′).

Since • and ◦ are associative, the definition of Label(r) does not depend on the choice

of factorization in case (ii) above.

This approach has the advantage that we can describe those transition sequences

that are runs by a few simple rules.

Lemma 3.9 For every nonempty transition sequence r of an automaton A

r ∈ Runs(A) iff r obeys the four rules below.

Rule 1: In r the use of parentheses is syntactically correct, i.e. if we concatenate

the middle component of the transitions, we get a string in which all parentheses are

matched.

Rule 2: There is no double-parenthesization in r, i.e. there is no subsequence of the

form

. . . (pi, 〈k, pi+1)(pi+1, 〈l, pi+2) r
′ (pj, 〉l, pj+1)(pj+1, 〉k, pj+2) . . . ,

where in r′ the use of parentheses is balanced.

Rule 3: No singleton is parenthesized in r, i.e.

. . . (pi, 〈k, pi+1)(pi+1, σ, pi+2)(pi+2, 〉k, pi+3) . . .
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is forbidden.

Rule 4: There is no empty parenthesization in r, i.e.

. . . (pi, 〈k, pi+1)(pi+1, 〉k, pi+2) . . .

is forbidden.

Proof sketch. The necessity of the rules can be seen by induction on the structure of the

run r. In a similar way their sufficiently can be verified using induction on the length of

the transition sequence r. Both proofs apply the fact that a run of A is an indirect run

if and only if its first and last transition is a matching parenthesizing transition pair.

Now, it is straightforward to define [p, P, q]2A with the help of Runs(A).

Definition 3.10 Let A = (S,H, V,Σ,Ω, δ, γ, I, F ) be a PA, p, q ∈ S and w ∈ Σ∗(•, ◦).

Let us write [p,w, q]2A if w = ε and p = q; or if there is a run r ∈ Runs(A) with

start(r) = p, end(r) = q, and Label(r) = w.

3.2.3 The Third Approach

Obviously the formulation of the concept of automata can be based on any represen-

tation of biwords that were studied in the previous chapter. While the first and the

second approaches are closest to the term representation, our third approach is directly

based on the condensed term representation. Furthermore, this approach is more for-

mal. Given a condensed term as input the overall state of the computation at any given

moment is described by a configuration. As usual, we define a transition relation on the

set of configurations. This approach emphasizes the sequential nature and the algorith-

mic feature of the behavior of our automata, hence it is closest to the implementation

level. This approach has not yet appeared in publications.

Definition 3.11 The set of configurations of a PA A = (S,H, V,Σ,Ω, δ, γ, I, F ) is

Conf(A) = S ×Ω∗
op ×

(
Σ ∪ { 〈, 〉 }

)∗
.

Let wctm be a condensed term representation of a biword w ∈ Σ∗(•, ◦). Recall that

wctm− denotes wctm without its type-sign (the first letter).

During a computation of an automaton A on wctm− the first component of the

configuration is the actual state of the automaton. The second is the sequence of

parentheses that are opened but to yet closed. The third component is the sequence of

remaining letters of the input, i.e. a suffix of wctm−.
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Now the transition relation on the configurations can be described as follows. For

any q, q′ ∈ S, α,α′ ∈ Ω∗
op, σ ∈ Σ ∪ { 〈, 〉 } and a suffix w of a condensed term we have

(q, α, σw) ⊢ (q′, α′, w), iff





σ ∈ Σ, α′ = α, and (q, σ, q′) ∈ δ; or

σ = 〈, α′ = α〈i, and (q, 〈i, q
′) ∈ γ; or

σ = 〉, α′〈i= α, and (q, 〉i, q
′) ∈ γ.

As usual, let ⊢∗ denote the reflexive transitive closure of ⊢.

Recall that we write Type(p) = •, if p is a horizontal state, while Type(p) = ◦ means

that p is a vertical state. Similarly Type(w) = • and Type(w) = ◦ indicate that w is a

horizontal/vertical biword. Finally, we set

[p,w, q]3A ⇔

{
(p, ε, wctm−) ⊢∗ (q, ε, ε) if w ∈ {ε} ∪Σ or Type(p) = Type(w);

(p, ε, 〈wctm−〉) ⊢∗ (q, ε, ε) if w /∈ {ε} ∪Σ and Type(p) 6= Type(w).

From the definitions above it is obvious that the second component of a configuration

works as a stack storage.

3.2.4 Equivalence the Three Approaches

First of all, it is not hard to see that the phrase “automaton A has a direct (indirect,

singleton) run on biword w” of Definition 3.4 is in accordance with the term “r is a

direct (indirect, singleton, resp.) run” of Definition 3.7. Next, we will formulate some

basic properties of the second approach.

If r = (p0, ω1, p1)(p1, ω2, p2) . . . (pn−1, ωn, pn) is a run of A, we can define the word

of r as

Word(r) := ω′
1ω

′
2 . . . ω

′
n,

where

ω′
i :=





ωi if ωi ∈ Σ,

〈 if ωi ∈ Ω is an opening parenthesis, and

〉 if ωi ∈ Ω is a closing parenthesis.

Thus Word(r) is no other than the concatenation of the middle components of the

transitions in r, after the indices of the parentheses have been deleted.

The relationship between the label and the word of a run is given by the following

lemma.
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Lemma 3.12 Suppose that A is a PA, r ∈ Runs(A), and w = Label(r). Then the

following statements hold.

(i) r is a singleton run ⇔ w ∈ Σ ⇔ Word(r) = wctm.

(ii) r is a direct run ⇔ Type(start(r)) = Type(w) ⇔ Word(r) = wctm−.

(iii) r is indirect run ⇔ Type(start(r)) 6= Type(w) ⇔ Word(r) = 〈wctm−〉.

Proof sketch. These statements are straightforward consequences of the earlier defini-

tions. Simply use induction on the construction of r.

Now we are ready to prove the equivalence of our three approaches.

Lemma 3.13 If A is a PA, p, q ∈ S and w ∈ Σ∗(•, ◦), then

[p,w, q]1A ⇔ [p,w, q]2A ⇔ [p,w, q]3A.

Proof. The equivalence [p,w, q]2A ⇔ [p,w, q]3A can be proven by Lemma 3.12. One

should distinguish between the cases of singletons, Type(p) = Type(w) and Type(p) 6=

Type(w). Alternatively, we can prove both equivalences by induction on the construc-

tion of w. For this, we should verify that both in the second definition and in the third

definition the runs can be decomposed into subruns – according to the decomposition of

w – exactly as in the cases (E), (S), (HH), (HV) (VV), and (VH) of the first definition.

The cases (E) and (S) are trivial, all [p,w, q]1A, [p,w, q]2A and [p,w, q]3A are equivalent

to p = q (in case (E)) or to (p,w, q) ∈ δ (in case (S)).

Here we just prove the equivalence of [p,w, q]1A, [p,w, q]2A in the case (HH). Hence

suppose that p, q ∈ H and w ∈ Σ∗(•, ◦) is a horizontal biword, with maximal horizontal

decomposition w = w1 • . . . • wn, (n ≥ 2). We need to show that [p,w, q]2A iff there

exist p1, . . . , pn−1 ∈ S, p0 = p, pn = q such that [pi−1, wi, pi]
2
A, for all i ∈ [n].

By Definition 3.7 and Definition 3.10, the condition above is sufficient for [p,w, q]2A.

To prove that the converse applies, if [p,w, q]2A, then there exist an r ∈ Runs(A)

such that start(r) = p, end(r) = q, and Label(r) = w. Since Type(w) = Type(p),

by Lemma 3.12 r is a direct run. Now r can be uniquely written as r = r1 . . . rm,

where each ri is an indirect or singleton run, for all i ∈ [m]. Furthermore, we have

w = Label(r1) • . . . • Label(rm). But the maximal horizontal decomposition of w is

unique, hence n = m and Label(ri) = wi, for all i ∈ [n]. Finally, setting p0 = p, and

pi = end(ri) for all i ∈ [n], we have [pi−1, wi, pi]
2
A, for all i ∈ [n], as required.

It can be proved in a similar way that [p,w, q]2A behaves exactly as [p,w, q]1A in the

remaining cases (HV), (VV), and (VH) as well. The same holds for [p,w, q]3A too. �
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3.2.5 Acceptance and Regular Languages

As the equivalence of [p,w, q]1A, [p,w, q]2A and [p,w, q]3A has now been established in

Lemma 3.13, we will use the notation [p,w, q]A without superscript for any of them.

A run from an initial state to a final state will be called an accepting run, and the

binoid language accepted by a PA is defined as the set of labels of the accepting runs.

Definition 3.14 The binoid language L(A) accepted by the parenthesizing automaton

A = (S,H, V,Σ,Ω, δ, γ, I, F ) is defined as

L(A) := {w ∈ Σ∗(•, ◦) | [i, w, f ]A for some i ∈ I and f ∈ F }.

Definition 3.15 A binoid language L ⊆ Σ∗(•, ◦) is called regular if there exists a PA A

that accepts it, i.e. L = L(A). Let Reg(Σ) denote the class of regular binoid languages

over Σ. Moreover, let Reg stand for the union of the classes Reg(Σ) for all Σ. Two

automata are said to be equivalent if they accept the same language.

Overall, we can summarize acceptance by direct and indirect runs. The acceptance

of a nonempty and nonsingleton biword w can occur directly when the type of w is the

same as the type of the initial and final state; or indirectly when the aforementioned

types are different. The following fact summarizes these modes of acceptance.

Fact 3.16 If A = (S,H, V,Σ,Ω, δ, γ, I, F ) is a PA, and w is a horizontal biword, then

w ∈ L(A)⇔ either i) [i, w, f ]A for some i ∈ I ∩H and f ∈ F ∩H;

or ii) (i, 〈, r), (s, 〉, f) ∈ γ, and [r, w, s]A, where r, s ∈ H,

for some i ∈ I ∩ V, f ∈ F ∩ V and 〈, 〉 ∈ Ω.

An analogous statement holds for a vertical biword w:

w ∈ L(A)⇔ either i) [i, w, f ]A for some i ∈ I ∩ V, and f ∈ F ∩ V ;

or ii) (i, 〈, r), (s, 〉, f) ∈ γ and [r, w, s]A, where r, s ∈ V,

for some i ∈ I ∩H, f ∈ F ∩H and 〈, 〉 ∈ Ω.

Finally, for a singleton biword σ ∈ Σ the type of the initial and final states can be both

horizontal or vertical, thus

σ ∈ L(A)⇔ [i, σ, f ]A, where i ∈ I and f ∈ F.
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3.3 Examples

In order to give a more intuitive picture about PA and regular binoid languages, here

we will provide some examples.

Example 3.17 The language of all biwords over Σ, namely Σ∗(•, ◦), is regular. Indeed, the

automaton with two states – depicted in Figure 3.2 – accepts it.

〈, 〉〈, 〉

σ ∈ Σ

σ ∈ Σ

H

V

Figure 3.2: An automaton accepting all biwords of Σ∗(•, ◦).

Let us introduce for all n ≥ 0 the following notation for exponentiations:

w•n := w • w • . . . • w︸ ︷︷ ︸
n times

and w◦n := w ◦ w ◦ . . . ◦ w.︸ ︷︷ ︸
n times

Of course, we let w•0 := w◦0 = ε, the empty biword.

Example 3.18 Consider the following language

L = { a • 〈c◦n〉 • a | n ≥ 2 } ∪ { b • 〈c◦n〉 • b | n ≥ 2 }.

Now, L is accepted by both automata shown in Figure 3.3. A1 has 8 states, while A2 has just

7. The difference comes from the fact that A2 has two pairs of parentheses, while A1 has only

one. Hence A2 can store information about the first letter with the help of the index of the first

parenthesis. Later in Section 3.8 we will see that this is an important feature of PA. If we were

to restrict the number of parenthesis symbols that could be used in PA, the accepting capacity

would also be restricted.

Example 3.19 The automaton shown in Figure 3.4 accepts the infinite language

L̂ = { c, a • 〈b ◦ c〉, a • 〈b ◦ 〈a • 〈b ◦ c〉〉〉, . . . }.

This language is the least solution of the fixed point equation

X = {a} • ({b} ◦ X) + {c}.
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H1

H2

H3

H4

H5

H6

V1

V2

a a

bb
c

c

〈1〈1

〈1 〉1

(a)

H1

H2

H3

H4

H5

H6V1

a a

bb

c〈1

〈2

〉1

〉2

(b)

Figure 3.3: Automata A1 (a) and A2 (b) which recognize the binoid language described in

Example 3.18.

(The biword operations • and ◦ extend to languages in a natural way. See Section 3.10 for

details.) This example is interesting because it shows a regular language that has unbounded

depth. This property means that we cannot give an upper bound for the number of nested

parentheses used in the elements of L̂, (see Section 3.10 for the precise definition). Later we

will find that the existence of such a language makes it hard to characterize the class Reg as

languages obtained from the singletons by a few simple operations.

3.4 The Problem of Double-Parenthesization

By double-parenthesization in a transition sequence we mean two opening parenthesizing

transitions right next to each other whose closing partners are also right next to each
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V
b

H
a

H

VV1 2

21 H3

3

c

〈1〈2 〉1〉2

Figure 3.4: An automaton accepting L̂ = {c, a • 〈b ◦ c〉, a • 〈b ◦ 〈a • 〈b ◦ c〉〉〉, . . .}.

other. For instance, the sequence of transitions

(p, 〈1, q)(q, 〈2, r)(r, a, s)(s, b, t)(t, 〉2 , u)(u, 〉1, v)

contains double-parenthesization. We usually abbreviate this sequences by the diagram

p
〈1
−→q

〈2
−→r

w
99Kt

〉2
−→u

〉1
−→v,

where w = a • b or w = a ◦ b, depending on the types of the states. Note that, according

to Rule 2 of Lemma 3.9, such sequences are not valid runs.

If we allowed such double-parenthesization then one might use cycles of superfluous

parentheses to count. Thus nonrecognizable languages like {a•n • b • c•n | n ≥ 0} could

be accepted. See Figure 3.5.

H1 H2 H3 H4

cba

V1 V2

〈1
〈2 〉1

〉2

Figure 3.5: This automaton accepts a recognizable language – namely {b} – only if double-

parenthesization is forbidden.

After seeing the necessity of forbidding double-parenthesization, the next example

makes it clear that this also makes it difficult to prove the closure of regular languages

under substitution. Suppose that in an automaton A1 we want to substitute a transition

(p, ξ, q) with all accepting paths of an automaton A2. Next, assume that p and q are

horizontal states. If A2 has a vertical initial state iv and a vertical final state fv, then
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it seems necessary to draw new transitions (p, 〈∗, iv) and (fv, 〉∗, q), where 〈∗, 〉∗ is a new

pair of parentheses. But this is not enough in itself, as this construction does not ensure

the simulation of indirect runs like

iv
〈
−→s

w
99Kt

〉
−→fv

between p and q since

p
〈∗
−→iv

〈
−→s

w
99Kt

〉
−→fv

〉∗
−→q

is not allowed.

It is tempting to get around this problem by copying the transitions starting from

s, but using p as the origin instead of s, and also copying the transitions arriving at t,

but using q as the target instead of t.

But then it is possible that we have more runs than necessary. For instance, in A1

iv
〈
−→s

〈′
−→s′

w
−→t′

〉′
−→t

〉
−→fv

is not allowed, but the construction above cuts the two outer parentheses, so

p
〈′
−→s′

w
−→t′

〉′
−→q

becomes a valid run. On the other hand, we cannot simply neglect the transitions

(s, 〈′, s′) and (t′, 〉′, t) since they may be part of other valid runs too. The next three

sections will tell us how to overcome these difficulties.

3.5 The Substitution Product of Automata

The definition of substitution product of automata may look strange at the first sight,

but it will be an adequate tool for proving normal form theorems later.

In the following, we shall assume that no automaton has two opening or closing

parenthesizing transitions with the same label. This can easily be achieved by replacing

the multiple occurrences of the same parenthesizing transition pair with new transitions

using different symbols.

Definition 3.20 ([Ném06]) Suppose that A1 = (S1,H1, V1,Σ,Ω, δ1, γ1, I1, F1) and

A2 = (S2,H2, V2,Σ,Ω, δ2, γ2, I2, F2) are PA, and either p, q ∈ H1 and R,S ⊆ H2;

or p, q ∈ V1 and R,S ⊆ V2. Next, further assume that S1 and S2 are disjoint. We

define the substitution product of A1 and A2 with respect to p, q, R and S as

A1 ∗[p→R,S→q] A2 := (S3,H3, V3,Σ,Ω3, δ3, γ3, I1, F1),



3.5. THE SUBSTITUTION PRODUCT OF AUTOMATA 49

where

S3 := S1 ∪ S2, H3 := H1 ∪H2, V3 := V1 ∪ V2,

Ω3 := Ω ∪ { 〈first, 〉first, 〈last, 〉last | 〈, 〉 ∈ Ω },

δ3 := δ1 ∪ δ2

∪{ (p, a, x) | a ∈ Σ, x ∈ S2,∃r ∈ R : (r, a, x) ∈ δ2 }

∪{ (y, b, q) | y ∈ S2, b ∈ Σ,∃s ∈ S : (y, b, s) ∈ δ2 },

γ3 := γ1 ∪ γ2

∪{ (p, 〈first, x), (y, 〉first, z) | x, y, z ∈ S2,∃r ∈ R : (r, 〈, x), (y, 〉, z) ∈ γ2 }

∪{ (x, 〈last, y), (z, 〉last, q) | x, y, z ∈ S2,∃s ∈ S : (x, 〈, y), (z, 〉, s) ∈ γ2 }.

a

a

p q

r s
x y

b

bR S

(a)

p q

r s
x

x y y z

z

R S

〈
〈 〉

〉

〈first

〉first 〈last

〉last

(b)

Figure 3.6: The labeling (a) and the parenthesizing (b) transitions used in Definition 3.20.

The thin arrows represent the original transitions, and the thick arrows the new ones.

The construction is illustrated in Figure 3.6. If both R and S are singletons, say

R = {r} and S = {s}, then we can write A1∗[p→r,s→q]A2 instead of A1∗[p→{r},{s}→q]A2.

The next lemma formulates the key property of the substitution product. Namely,

A1 ∗[p→R,S→q] A2 from p to q has all the runs of A2 between two states from S and R

which runs have the same type as p and q.
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Lemma 3.21 ([Ném06]) Suppose that A1 and A2 are PA as before, p, q ∈ H1, R,S ⊆

H2 and A3 = A1 ∗[p→R,S→q] A2. Moreover, p 6= q, and no transition of A1 arrives at p

or starts from q. Then for every w ∈ Σ∗(•, ◦)

[p,w, q]A3
⇔ either i) [p,w, q]A1

,

or ii) ∃r ∈ R,∃s ∈ S : [r, w, s]A2
and w is horizontal.

Proof. [p,w, q]A3
implies that w = Label(r) for a run r = t1 . . . tm ∈ Runs(A3) with

start(t1) = p and end(tm) = q.

If end(t1) ∈ S1, then r ∈ Runs(A1) also holds. This follows from the definition of

A3 and from the fact that in A1 no transition arrives at p, hence r cannot leave the A1

component. Thus case (i) is true.

If end(t1) ∈ S2, then we will be able to modify r to obtain a run r′ := t′1 . . . t
′
m ∈

Runs(A2) with Label(r′) = w and start(t′1) ∈ R, and end(t′m) ∈ S. Indeed, if t1 is of the

form t1 = (p, a, x), a ∈ Σ, then there is an r ∈ R such that t′1 := (r, a, x) ∈ δ2. Similarly,

if tm = (y, b, q), b ∈ Σ, then there is an s ∈ S such that t′m := (y, b, s) ∈ δ2. On the

other hand, if t1 or tm involves a parenthesis, like t1 = (p, 〈first, x), then there is a closing

transition partner of t1, say ti = (y, 〉first, z), where i < m, and x, y, z ∈ S2. Moreover,

by definition, there is an r ∈ R such that t′1 := (r, 〈, x), t′i := (y, 〉, z) ∈ γ2. Similarly, if

tm = (z, 〉last, q), then there is an index j > 1 such that tj = (x, 〈last, y). So we can set

t′j := (x, 〈, y) and t′m := (z, 〉, s) ∈ γ2 for a suitable s ∈ S. So far we have defined t′k for

at most four k-s. Now let t′k := tk for all other k-s (note that tk ∈ δ2∪γ2 in such cases).

Now Label(r′) = w, start(t′1) = r ∈ R, and end(t′m) = s ∈ S implies [r, w, s]A2
. Since

〈first and 〉last do not match, t1 and tm cannot be a matching parenthesizing transition

pair. Hence r is a direct run, and so is r′. Consequently, by Lemma 3.12, r, s ∈ H

implies that w is horizontal. Thus (ii) holds.

To prove that the converse applies, it is obvious that [p,w, q]A1
implies [p,w, q]A3

.

Assume that ii) holds, so w = Label(r) for r = t1 . . . tm ∈ Runs(A2) with start(t1) =

r ∈ R and end(tm) = s ∈ S. By Lemma 3.12, as w is horizontal and r and s are in H,

r must be direct run. Hence t1 and tm is not a matching parenthesizing transition pair.

Thus it is possible to replace both 〈 and 〉 with 〈first and 〉last, in the first and in the

last transitions, if necessary. We can also substitute their closing and opening partners

by 〉first and 〈last, if needed. Therefore the construction of A3 ensures that [p,w, q]A3

holds. �

In the previous lemma we assumed that p and q were horizontal states, and R and

S were sets of horizontal states. Of course an analogous statement can be formulated

for vertical states and sets of vertical states as well.
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3.6 Normal Forms

In this section we shall prove that every PA is equivalent to one in normal form, i.e.

with a single initial and a single final state. If both of these states are horizontal then

we will say that the PA is in horizontal normal form. If they are vertical states, then

the normal form will be called vertical.

Definition 3.22 ([Ném06]) We say that a PA is in horizontal normal form if it has

a single initial state ih, and a single final state fh, and both ih and fh are horizontal

states; moreover there is no transition into ih or from fh. Automata in vertical normal

form can be defined in a similar way.

Lemma 3.23 ([Ném06]) For every PA A, there exists an equivalent PA Ah in hori-

zontal normal form and an equivalent PA Av in vertical normal form.

Proof. First we prove that for every PA A = (S,H, V,Σ,Ω, δ, γ, I, F ) there exists a PA

A∩H in horizontal normal form that accepts exactly the horizontal biwords accepted by

A, that is,

L(A∩H) = L(A) ∩H,

where H denotes the set of all horizontal biwords. For this let

T := { (s, t) | ∃i ∈ I ∩ V,∃f ∈ F ∩ V,∃〈, 〉 ∈ Ω : (i, 〈, s), (t, 〉, f) ∈ γ },

and assume that T = { (s1, t1), (s2, t2), . . . , (sn, tn) }. The elements of T can be called

pseudo initial-final pairs of horizontal states as they are possibly not real initial and

final states, but any run between them on a horizontal biword belongs to the accepted

language. Moreover, A has a direct run on all horizontal biwords of L(A), either between

a real initial and final states, or between a pseudo initial-final pair of horizontal states.

Now let A0 be the automaton without transitions which has just two states, namely

an initial horizontal state ih and a final horizontal state fh.

With the help of the substitution product, we define

A1 := A0 ∗[ih→I∩H,F∩H→fh] A,

Ak+1 := Ak ∗[ih→sk,tk→fh] A for k = 1, . . . , n,

A∩H := An+1.

Using Lemma 3.21 and Proposition 3.16, it is straightforward to verify that L(A∩H) =

L(A) ∩H, as claimed.
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Similarly, there is an automaton A∩V in vertical normal form which just accepts

the vertical biwords accepted by A. Let iv and fv denote the (single) initial and final

vertical states of A∩V .

Next, we can construct Ah by taking the disjoint union of A∩H and A∩V and adding

two new parenthesizing transitions, (ih, {, iv) and (fv, }, fh), where { and } is a new pair

of parentheses. Naturally we no longer regard iv and fv as initial and final states. In

order to accept the singleton biwords, we also define (ih, σ, fh) for each singleton biword

σ ∈ L(A). As A∩H accepts all horizontal, and A∩V all vertical biwords of L(A), the

resulting automaton is equivalent to A. Moreover, A has a single initial state ih and a

single finite state fh, as required. Again, Av can be defined symmetrically. �

3.7 The ξ-substitution and Closure Properties

In this section we will consider some basic operations on binoid languages, and we will

show that the class of regular languages is closed under them. First we will prove

closure under the operation of ξ-substitution as the other closure properties can be

easily derived from this.

Definition 3.24 Let L,L1, L2 ⊆ Σ∗(•, ◦). We define the following operations, called

horizontal (or series product), vertical (or parallel product), horizontal iteration (or

series iteration) and vertical iteration (or parallel iteration).

L1 • L2 := {w1 • w2 | w1 ∈ L1, w2 ∈ L2},

L1 ◦ L2 := {w1 ◦ w2 | w1 ∈ L1, w2 ∈ L2},

L∗• := {w1 • . . . • wn | wi ∈ L, i ∈ [n], n ≥ 0},

L∗◦ := {w1 ◦ . . . ◦ wn | wi ∈ L, i ∈ [n], n ≥ 0}.

Furthermore, we let L+• := L • L∗• and L+◦ := L • L∗◦ .

Now assume that L1 ⊆ (Σ∪{ ξ })∗(•, ◦) and L2 ⊆ Σ∗(•, ◦) the ξ-substitution of L2 into

L1 will be denoted by L1[L2/ξ]. It is obtained by substituting non-uniformly biwords

in L2 for ξ in the members of L1. Here non-uniformly means that different occurrences

of ξ in a biword from L1 may be replaced by different biwords from L2. The formal

definition is rather long and gives us no real insight, hence it will be omitted. It can be

obtained in the pattern of tree languages. Please see Definition 4.3. and Definition 4.5.

of [GS84] for details.
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Theorem 3.25 ([ÉN04]) The class Reg of regular binoid languages is (effectively)

closed under ξ-substitution, i.e. if L1 ⊆ (Σ ∪ { ξ })∗(•, ◦), L2 ⊆ Σ∗(•, ◦), then L1, L2 ∈

Reg implies L1[L2/ξ] ∈ Reg.

Proof. Suppose that automaton A1 = (S1,H1, V1,Σ∪{ ξ },Ω1, δ1, γ1, I1, F1) accepts L1.

For the sake of simplicity, assume that there is only one single ξ-transition (p, ξ, q) in

δ1. If there were more ξ-transitions, they could be handled in the same way. Moreover,

assume that p and q are horizontal states. The vertical case can be handled in a similar

way, of course.

Now consider an automaton A2 that accepts L2. Furthermore, assume that A2 is in

horizontal normal form, hence A2 can be written as A2 = (S2,H2, V2,Σ,Ω2, δ2, γ2, { ih },

{ fh }).

Recall that an accepting run is a run from an initial state to a final state. Our aim

is to build an automaton A3 that extends A1 and is also capable of realizing accepting

runs of A2 between p and q. At first sight it seems sufficient to add a disjoint copy

of A2 to A1, and duplicate the transitions starting from ih using p as the origin, and

duplicate the transitions arriving at fh using q as the target. In addition, the transitions

(ih, σ, if ) should also be copied as (p, σ, q), where σ ∈ Σ.

However this is not enough as in this construction we might have superfluous runs

whose label is not in L1[L2/ξ]. Indeed, if a run passes through the component A2 from

p to q more than once, it may happen that during the first time the automaton opens

some parentheses, then it returns to A1, and the parentheses are closed only in a later

visit of A2 from p to q. Such runs may have no subruns between p and q, so their labels

do not necessarily belong to L1[L2/ξ]. Hence, we must exclude the possibility of leaving

behind opened parentheses during subruns from p to q in A2.

We can achieve this, for example, by using two copies of A2. Let us denote them

by A′
2 and A′′

2. Transition (p, ξ, q) is replaced by A′
2 in a similar way as before. But

whenever the first parenthesis is opened (either from A′
2 or directly from p), we will

mark this parenthesis with a superscript “first”, and the automaton will enter into the

second component A′′
2. Furthermore, to return back from A′′

2 to A′
2 or q there is no

other way but to close the marked parenthesis. Since the first parenthesis has to be

closed, all other parentheses that were opened after leaving p have to be closed as well

before the run reaches q.

For a formal description, let introduce some abbreviations:

H ′
2 := {h′ | h ∈ H2 }, H ′′

2 := {h′′ | h ∈ H2 },

V ′
2 := { v′ | v ∈ V2 }, V ′′

2 := { v′′ | v ∈ V2 },
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S′
2 := H ′

2 ∪ V
′
2 , S′′

2 := H ′′
2 ∪ V

′′
2 ,

δ′2 := { (s′, σ, t′) | (s, σ, t) ∈ δ2 }, δ′′2 := { (s′′, σ, t′′) | (s, σ, t) ∈ δ2 },

γ′2 := { (s′, ω, t′) | (s, ω, t) ∈ γ2 }, γ′′2 := { (s′′, ω, t′′) | (s, ω, t) ∈ γ2 }.

Next, take

A3 := (S3,H3, V3,Σ,Ω3, δ3, γ3, I1, F1),

where

S3 := S1 ∪ S
′
2 ∪ S

′′
2 , H3 := H1 ∪H

′
2 ∪H

′′
2 , V3 := V1 ∪ V

′
2 ∪ V

′′
2 ,

Ω3 := Ω1 ∪ Ω2 ∪ { 〈
first, 〉first | 〈, 〉 ∈ Ω2 },

δ3 := δ1 \ { (p, ξ, q) } ∪ δ
′
2 ∪ δ

′′
2

∪{ (p, a, x′) | a ∈ Σ, x ∈ S2, (ih, a, x) ∈ δ2 }

∪{ (y′, b, q) | y ∈ S2, b ∈ Σ, (y, b, fh) ∈ δ2 }

∪{ (p, σ, q) | σ ∈ Σ, (ih, σ, fh) ∈ δ2 },

γ3 := γ1 ∪ γ
′′
2

∪{ (p, 〈first, w′′) | 〈 ∈ Ωop, w ∈ S2, (ih, 〈, w) ∈ γ2 }

∪{ (z′′, 〉first, q) | z ∈ S2, 〉 ∈ Ωcl, (z, 〉, fh) ∈ γ2 }

∪{ (r′, 〈first, s′′) | r ∈ S2, 〈 ∈ Ωop, s ∈ S2, (r, 〈, s) ∈ γ2 }

∪{ (t′′, 〉first, u′) | t ∈ S2, 〉 ∈ Ωcl, u ∈ S2, (t, 〉, u) ∈ γ2 }.

Our intention here is to prove the equation L(A3) = L1[L2/ξ]. The inclusion

L1[L2/ξ] ⊆ L(A3) directly follows from the construction: in all runs of A1 any ac-

cepting run of A2 can be substituted in the places of the transition (p, ξ, q) .

As for the converse inclusion, the construction ensures the following statement.

Assume that t is a sequence of transitions from p to q without any transition in A1,

moreover let t reach p and q only once (at the beginning and at the end). Then it

follows from the definition of A3 that in t every parenthesis that is opened will also be

closed, hence if t is a subsequence of a run of A3, then it is also a subrun of A3 from p to

q. Therefore there is a biword w′ such that Label(t) = w′. Again, by the construction

[ih, w
′, fh]A2

, so w′ ∈ L2 holds.

Now assume that w ∈ L(A3). This means that there is an accepting run r of A3

such that Label(r) = w. Let t1, t2, . . . , tn denote those subsequences of r that start

from p, end at q, are without transitions of A1 and contain p and q only once. By the

argument above, there are biwords w1, . . . , wn ∈ L2 such that Label(ti) = wi, for all

i ∈ [n]. Now if in r we replace each ti with a (p, ξ, q) transition, then we get a run
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r′ that contains transitions only from A1. Obviously, if we set w′ := Label(r′), then

w′ ∈ L1 holds. Moreover, if we substitute the occurrences of ξ in w′ with w1, . . . , wn in

turn, we will get w. Hence w ∈ L1[L2/ξ]. Therefore, L(A3) = L1[L2/ξ], thus L1[L2/ξ]

is regular, as claimed. �

Using Theorem 3.25, we can immediately derive some further closure properties of

Reg, like it was done in [LW00] for regular sp-poset languages.

Corollary 3.26 ([ÉN04]) The class Reg of regular binoid languages is (effectively)

closed under horizontal and vertical products, horizontal and vertical iterations, and

homomorphisms.

Proof. The statements immediately follow from Theorem 3.25. Indeed, if ξ1, ξ2 /∈ Σ

then since {ξ1 • ξ2} and ξ∗•1 are regular,

L1 • L2 = ({ξ1 • ξ2}[L1/ξ1]) [L2/ξ2], and

L
∗•
1 = ξ

∗•
1 [L1/ξ1]

are also regular. Evidently, the same holds for the vertical product and for the vertical

iteration operation.

As homomorphisms can be expressed by sequences of substitutions, closure under

homomorphisms also follows from closure under substitution. �

Later, after we prove the equality of the classes of regular and recognizable binoid

languages, we will easily derive additional closure properties from the definition of rec-

ognizability (cf. Corollary 3.39).

3.8 Hierarchy theorems

In this session we will show that it is essential that in the definition of PA an arbitrary

number of parentheses can be used. We will present two hierarchy results stated in

Theorems 3.32 and 3.33. Let Regm denote the regular binoid languages that can be

accepted by a PA with at most m ≥ 0 pairs of parentheses. We will show that Regm (

Regm+1 for all m ≥ 0. Hence the classes Regm form a strict hierarchy. Moreover, if

Regm(Σ) is the set of all regular binoid languages over any fixed alphabet Σ that can

be accepted by an automaton with at most m pairs of parentheses, then we also have

Regm(Σ) ( Regm+1(Σ), for all m ≥ 0.

Our first goal is to define a language L̃ that separates the classes Reg2 and Reg1,

i.e. L̃ is in Reg2\Reg1.
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Definition 3.27 ([Ném04]) Let Σ2 denote the two-letter alphabet Σ2 = {a, b}, and let

L̃ =
∞⋃

i=1

L̃2i,where

L̃2 = {σ • 〈σ′ ◦ σ′〉 • σ | σ, σ′ ∈ Σ2 },

L̃2i+2 = {σ • 〈σ′ ◦ w ◦ σ′〉 • σ | σ, σ′ ∈ Σ2 and w ∈ L̃2i }, for all i ≥ 1.

Definition 3.28 ([Ném04]) For any words u = σ1σ2 . . . σn and v = ρ1ρ2 . . . ρn of even

length over some alphabet Σ, let Puv−1 denote the biword whose term representation is

Puv−1 = σ1 • 〈σ2 ◦ 〈σ3 • 〈σ4 ◦ . . . 〈σn−1 • 〈σn ◦ ρn〉 • ρn−1〉 . . . ◦ ρ4〉 • ρ3〉 ◦ ρ2〉 • ρ1.

Note that L̃ ⊆ Σ+
2 (•, ◦) and L̃ = {Pww−1 | w ∈ Σ+

2 , w has even length }.

Lemma 3.29 ([Ném04]) L̃ can be accepted by a PA that has two pairs of parentheses,

i.e. L̃ ∈ Reg2(Σ2).

Proof. It is not hard to see that the automaton A2 in Figure 3.7 accepts L̃. �

H1

H2 H3

H4 H5

H6

V1

V2 V3

V4

V5

V6

V7 V8

a
aa

a

a

a b b

bb

b

b

〈1 〈1〈2 〈2

〉1

〉1

〉2

〉2

Figure 3.7: An automaton A2 accepting L̃.

Our next goal is to show that L̃ is not in Reg1(Σ2), but we need to make some

further definitions before we can begin the proof.

Definition 3.30 ([Ném04]) A generalized state of a PA A = (S,H, V,Σ,Ω, δ, γ, I, F )

is a pair (q, α), where q ∈ S and α ∈ Ω∗
op.
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Recall that the set of configuration of A introduced in Definition 3.11 is

Conf(A) = S × Ω∗
op ×

(
Σ ∪ { 〈, 〉 }

)∗
,

so a generalized state is just the first two components of a configuration.

Now it is convenient to say that an automaton A has a transition from a generalized

state (q1, α1) to a generalized state (q2, α2) with respect to the symbol x ∈ Σ ∪ {〈, 〉},

if (q1, α1, x) ⊢ (q2, α2, ε) hold for the configurations. The notation for this will be

(q1, α1)
x

⊢ (q2, α2).

An immediate consequence of this definition is that every run [p,w, q]A on a non-

empty and nonsingleton biword w corresponds to a sequence of transitions among the

generalized states

(q0, ε)
x1

⊢ (q1, α1)
x2

⊢ (q2, α2)
x3

⊢ . . .
xn

⊢ (qn, ε),

where q0 = p, qn = q and (qi, xi, qi+1) ∈ δ ∪ γ for i ∈ [n], and αi is the sequence of

opened but not yet closed parentheses after the first i steps of the run. Moreover, by

Lemma 3.12, x1 . . . xn = wctm− if the run is direct, and x1 . . . xn = 〈wctm−〉 if the run

is indirect.

Lemma 3.31 ([Ném04]) There is no PA with a single pair of parentheses which ac-

cepts L̃, i.e. L̃ /∈ Reg1(Σ2).

Proof. Assuming the contrary is true, suppose that there is a PA A = (S,H, V,

Σ2,Ω1, γ, δ, I, F ) which accepts L̃ with Ω1 = { 〈, 〉 }. Let n be an even integer greater

than |V |. The number of all biwords Pww−1 ∈ L̃, where w is of length n, is 2n. Each

P
wjw−1

j
is accepted either via a direct run between two horizontal states, or via an indi-

rect run between two vertical states. Thus, since n− 1 + n− 1 = 2n− 2 < 2n holds for

all n, either there are n biwords accepted between horizontal states, or else there are n

biwords accepted between vertical states. For simplicity we will assume it is the former

case. This is not a real restriction as in the other case our proof would be essentially

the same, only an opening and a closing parenthesizing transition needs to be added

before and after the runs.

Thus let us take n distinct words of n letters wj ∈ Σn
2 , j ∈ [n], and consider the

biwords

P
wjw−1

j
= σj

1
• 〈σj

2
◦ 〈σj

3
• 〈σj

4
◦ . . . 〈σj

n−1
• 〈σj

n
◦ σj

n〉 • σ
j
n−1〉 . . . ◦ σ

j
4〉 • σ

j
3〉 ◦ σ

j
2〉 • σ

j
1,

where σj
1σ

j
2 . . . σ

j
n = wj . Now, each P

wjw−1
j

is, by definition, in L̃ but as we shall see, A

must accept biwords that do not belong to L̃.
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Indeed, each accepting direct run of A on any P
wjw−1

j
must have the form

(q0, ε)
σ

j
1

⊢ (q1, ε)
〈

⊢ (q2, 〈)
σ

j
2

⊢ (q3, 〈)
〈

⊢ (q4, 〈〈)
σ

j
3

⊢ . . .
σ

j
n−1

⊢ (q2n−3, 〈
n−2)

〈

⊢ (q2n−2, 〈
n−1)

σ
j
n

⊢

(q2n−1, 〈
n−1)

σ
j
n

⊢ (q2n, 〈
n−1)

〉

⊢ (q2n+1, 〈
n−2)

σ
j
n−1

⊢ (q2n+2, 〈
n−2)

〉

⊢ . . .
σ

j
2

⊢ (q4n−4, 〈)
〉

⊢

(q4n−3, ε)
σ

j
1

⊢ (q4n−2, ε),where q0 ∈ I ∩H and q4n−2 ∈ F ∩H.

For our investigation the main point is that after processing the “first half” of

P
wjw−1

j
, (i.e. after the first 2n− 1 transitions) the automaton enters a generalized state

(q2n−1, 〈
n−1), where q2n−1 is a vertical state and after an additional 2n− 1 transitions,

the run ends in (q4n−2, ε).

Given Pwjw−1
j

, let ij, vj and fj denote the states q0, q2n−1, and q4n−2, respectively,

which appear in the above accepting run of A on the biword Pwjw−1
j

. Moreover, let us

abbreviate the transition sequences determined by the first 2n−1 and the second 2n−1

transitions by

(ij , ε)
Pwj∗

⊢ (vj , 〈
n−1) and (vj , 〈

n−1)

P
∗w

−1
j

⊢ (fj , ε),

respectively.

Now we have n vertical states v1, v2, . . . , vn, but we have chosen n > |V |, so there

must be two indices k 6= l such that vk = vl. Hence the transition sequence

(ik, ε)
Pwk∗

⊢ (vk, 〈
n−1) = (vl, 〈

n−1)

P
∗w

−1
l

⊢ (fl, ε)

corresponds to a valid run of A, showing that Pwkw−1
l

is accepted by A. But by definition

P
wkw−1

l
/∈ L̃, which is a contradiction. Thus no A with a single pair of parentheses can

accept L̃, so L̃ /∈ Reg1(Σ2). �

The previous theorem can be extended to any m ≥ 1 as follows.

Theorem 3.32 ([Ném04]) For all m ≥ 1 there exists a language L̃(Σm) that can be

accepted by an automaton with m but not with m − 1 pairs of parentheses. Thus the

classes Reg0 ( Reg1 ( Reg2 ( . . . form a strict hierarchy of regular (i.e. recognizable)

binoid languages.

Proof. This is trivial for the case m = 1, and Reg1 ( Reg2 was shown in Lemma 3.29

and Lemma 3.31. As for m ≥ 3, we will show how the proofs of these two lemmas can

be generalized. Let

L̃(Σm) = {Pww−1 | w ∈ Σ∗
m, w has even length}.
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Note that L̃ = L̃(Σ2). In Lemma 3.29, the automaton A2 accepting L̃ can easily

be generalized to an automaton Am accepting L̃(Σm) by using m different parentheses

corresponding to the m letters.

In order to see that L̃(Σm) /∈ Regm−1, suppose on the contrary that L̃(Σm) =

L(A) for some automaton A = (S,H, V,Σm,Ωm−1, γ, δ, I, F ), where we have Ωm−1 =

{ 〈1, 〉1, 〈2, 〉2, . . . , 〈m−1, 〉m−1 }. Now we choose pairwise different words w1, w2, . . . , wn

in Σn
m as before, but this time we give the value of n later.

We notice that after reading the first half of Pwjw−1
j

, where Pwjw−1
j

is defined as in

the proof of Lemma 3.31, A is necessarily in a generalized state of the form

(vj , 〈i1〈i2 . . . 〈in−1), (∗)

where vj ∈ V and 〈ik∈ Ωm−1 for all k ∈ [n− 1].

But the number of this type of generalized states, |V | · (m− 1)n−1 is asymptotically

smaller than mn, the number of words wj of length n, which is the number of all biwords

of the form Pwjw−1
j

. Thus, in the same way as above, n can always be chosen such that

A accepts at least one biword P
wjw−1

k
for some wj 6= wk. �

In the proof of Theorem 3.32 we used the m-letter alphabet Σm to show that

Regm−1(Σm) ( Regm(Σm). However this proper inclusion holds for every Σ.

Theorem 3.33 ([Ném04]) For each alphabet Σ the classes Reg0(Σ) ( Reg1(Σ) (

Reg2(Σ) . . . form a strict hierarchy in Reg(Σ).

Proof. It is sufficient to prove this claim for a one-letter alphabet. So assume that

Σ = Σ1 = {a} and Σm = { a1, a2, . . . , am }. Furthermore, suppose that m ≥ 1. Let h

denote the binoid homomorphism Σ∗
m(•, ◦)→ Σ∗

1(•, ◦) determined by the assignment

ai 7→ a • a • . . . • a︸ ︷︷ ︸
i times

, for all ai ∈ Σm.

Now we claim that the language h(L̃(Σm)) is in Regm(Σ1)\Regm−1(Σ1).

Indeed, it is not hard to modify the automaton Am in the proof of Theorem 3.32 to

accept h(L̃(Σm)) instead of L̃(Σm). On the other hand, after reading the “first half” of

a biword h(P
wjw−1

j
), any PA with m− 1 pairs of parentheses must be in a generalized

state of (∗) as before. Thus the same cardinality argument can be applied to show that

h(L̃(Σm)) is not in Regm−1(Σ1). �
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3.9 Recognizability

The concept of recognizability is of an unquestionable importance in theoretical com-

puter science [Wei04a]. It is so, because it leads to decision algorithms, the class of

recognizable languages has nice closure properties, and according to the variety theo-

rem of Eilenberg [Eil76, Pin86] (which has various generalizations beyond the classical

case of words) important language classes can be characterized by the algebraic struc-

tures of their recognizing finite algebras.

Furthermore, recall that in the case of binoid languages, while we have some freedom

in defining the concept of automata and regular languages, the concept of recognizable

languages is fixed: it is dictated by the fact that the we investigate objects where

two associative operations are present. Therefore the algebraic framework of binoid

languages is necessarily the theory of binoids. Soon in Theorem 3.35 we will prove

the equivalence of regularity and recognizability. This will justify the point that our

concept of PA captures the essential and robust class of recognizable binoid languages.

As was mentioned earlier, this result will lead us to some further closure properties of

Reg. Moreover, in Section 3.10.3 on the basis of this equivalence, we can derive some

decision procedures relating to various properties of regular binoid languages.

First we start with the concept of recognizable binoid languages. Recall that a binoid

is an algebra B = (B, •, ◦, 1) where • and ◦ are associative operations on the set B, and

1 is the identity for both operations. Homomorphisms and congruences of bisemigroups

are defined as usual. A congruence, or equivalence relation of a bisemigroup is of finite

index if the partition induced by the relation has a finite number of blocks.

Definition 3.34 A binoid language L ⊆ Σ∗(•, ◦) is recognizable if there is a finite

binoid B, a homomorphism h : Σ∗(•, ◦)→ B, and a set F ⊆ B with L = h−1(F ).

Theorem 3.35 ([ÉN04]) Rec = Reg, i.e. a binoid language L ⊆ Σ∗(•, ◦) is recogniz-

able iff L is regular.

Proof. In our proof we show how to construct a finite binoid and a homomorphism from

a parenthesizing automaton, and conversely, how to construct a PA from a finite binoid

and a homomorphism recognizing a given binoid language L.

Let L ⊆ Σ∗(•, ◦) be a binoid language, and let A = (S,H, V,Σ,Ω, δ, γ, I, F ) be a PA

accepting L. Define the relation ∼ on Σ∗(•, ◦) as follows:

x ∼ y ⇔ (∀ p, q ∈ S : [p, x, q]A ⇔ [p, y, q]A).
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It is clear that ∼ is an equivalence relation on Σ∗(•, ◦) and that it has index at most

2m2+n2
, where m and n denote the number of horizontal and vertical states of A,

respectively. We shall verify that ∼ is a congruence relation that saturates L. Thus

the finite binoid Σ∗(•, ◦)/∼ recognizes L. Next, suppose that x ∼ y, and let z be an

arbitrary element of Σ∗(•, ◦). We need to show that x • z ∼ y • z, z • x ∼ z • y,

x ◦ z ∼ y ◦ z and that z ◦ x ∼ z ◦ y. The argument is based on the following lemma,

which is a straightforward consequence of Definition 3.3.

Lemma 3.36 ([ÉN04]) The following hold for any biwords x and z in Σ∗(•, ◦).

(i) If p, q ∈ H, then [p, x • z, q]A ⇔ ∃r ∈ H : [p, x, r]A and [r, z, q]A.

(ii) If p, q ∈ V , then [p, x • z, q]A ⇔ ∃〈k, 〉k ∈ Ω, p′, r′, q′ ∈ H :

(p, 〈k, p
′) ∈ γ, [p′, x, r′]A, [r′, z, q′]A, and (q′, 〉k, q) ∈ γ.

Similar statements hold for the vertical product.

We will now show that x • z ∼ y • z. First, let p, q ∈ H, then by Lemma 3.36,

[p, x • z, q]A ⇔ ∃r : [p, x, r]A and [r, z, q]A

⇔ ∃r : [p, y, r]A and [r, z, q]A

⇔ [p, y • z, q]A .

In the other case p, q ∈ V , and

[p, x • z, q]A

⇔ ∃〈k, 〉k ∈ Ω, p′, r′, q′ ∈ H : (p, 〈k, p
′) ∈ γ, [p′, x, r′]A, [r

′, z, q′]A, (q
′, 〉k, q) ∈ γ

⇔ ∃〈k, 〉k ∈ Ω, p′, r′, q′ ∈ H : (p, 〈k, p
′) ∈ γ, [p′, y, r′]A, [r

′, z, q′]A, (q
′, 〉k, q) ∈ γ

⇔ [p, y • z, q]A .

So x ∼ y implies x • z ∼ y • z. One can verify in a similar way that x ∼ y also

implies z • x ∼ z • y, x ◦ z ∼ y ◦ z and z ◦ x ∼ z ◦ y. It is also obvious that

ε • x ∼ x • ε ∼ ε ◦ x ∼ x ◦ ε ∼ x for all x ∈ Σ∗(•, ◦). Thus ∼ is a congruence relation

on the binoid Σ∗(•, ◦).

Finally, ∼ saturates L, since x ∈ L and x ∼ y imply y ∈ L:

x ∈ L ⇒ ∃i ∈ I, ∃f ∈ F : [i, x, f ]A

⇒ ∃i ∈ I, ∃f ∈ F : [i, y, f ]A

⇒ y ∈ L.
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Hence Reg ⊆ Rec.

As for the inclusion Rec ⊆ Reg, let B = (B, •, ◦, 1) be a finite binoid, ϕ : Σ∗(•, ◦)→ B

a homomorphism, and F ⊆ B, and let L = ϕ−1(F ). In order to prove that L is regular

we shall construct a PA from B, ϕ and F :

A(B,ϕ, F ) := (S,H, V,Σ,Ω, δ, γ, I, F ), where

- S = H ∪ V , where H = {(s,H) | s ∈ B}, V = {(s, V ) | s ∈ B},

- Ω = {〈s, 〉s | s ∈ B},

- I = {(1,H)},

- F = {(f,H) | f ∈ F}.

Below we will use the sort notation sH and sV for (s,H) and (s, V ), respectively. We

define δ and γ by using the operations of B. For all s, t ∈ B and a ∈ Σ, let

(sH , a, tH) ∈ δ iff s • ϕ(a) = t, and (3.1)

(sV , a, tV ) ∈ δ iff s ◦ ϕ(a) = t. (3.2)

Moreover, let (sH , 〈s, 1
V ) ∈ γ, for all s ∈ B, and (uV , 〉s, t

H) ∈ γ, for all s, u, t ∈ B with

s • u = t. In much the same way for the vertical product, let (sV , 〈s, 1
H) ∈ γ, for all

s ∈ B, and (uH , 〉s, t
V ) ∈ γ, for all s, u, t ∈ S such that s ◦ u = t.

Example 3.37 As an exception, in this example biwords will be denoted by capital letters.

The construction of A(B,ϕ, F ) is illustrated in Figure 3.8. First suppose that s • u = t and

s • r = w in B, then we have the following parenthesizing transitions in A(B,ϕ, F ) :

(sH , 〈s, 1
V ), (uV , 〉s, t

H), (rV , 〉s, w
H) ∈ γ.

If P,Q1, Q2, R,Q
′ and R′ are biwords such that ϕ(P ) = s, ϕ(Q1) = v, v ◦ ϕ(Q2) = u and

t • ϕ(R) = f , then the existence of a run [1H , P • 〈Q1 ◦ Q2〉 • R, fH ] can be inferred from the

runs [1H , P, sH ], [1V , Q1, v
V ], [vV , Q2, u

V ], [tH , R, fH ]:

[1V , Q1, v
V ]A, [vV , Q2, u

V ]A, hence [1V , Q1 ◦ Q2, u
V ]A ;

(sH , 〈s, 1
V ) ∈ γ, [1V , Q1 ◦ Q2, u

V ]A, (uV , 〉s, t
H) ∈ γ, hence [sH , Q1 ◦ Q2, t

H ]A ;

[1H , P, sH ]A, [sH , Q1 ◦ Q2, t
H ]A, [tH , R, fH ]A, hence [1H , P • 〈Q1 ◦ Q2〉 • R, f

H ]A .

Similarly, if ϕ(Q′) = r and w • ϕ(R′) = z, and if [1H , P, sH ], [1V , Q′, rV ], and [wH , R′, zH ],

then we have [1H , P • Q′
• R′, zH ]A.

In order to prove Rec ⊆ Reg it is enough to show the following:
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1H

Q

Q

V

H

P

1V

V

Hs

Ht Hf

HzHw

Vv
u

rV
Q’

R

R’

1

2

〈s 〉s〉s

Figure 3.8: The construction of A(B,ϕ, F ).

Lemma 3.38 With the notations used above, for all w ∈ Σ∗(•, ◦) and s, t ∈ B,

[sH , w, tH ]A ⇔ s • ϕ(w) = t;

[sV , w, tV ]A ⇔ s ◦ ϕ(w) = t.

Proof of Lemma 3.38. We will apply induction on the construction of w. According to

Definition 3.3, there are six cases. These are:

(E) If w = ε, then s = t and ϕ(w) = 1, hence s • ϕ(w) = t and s ◦ ϕ(w) = t are obvious.

(S) If w = a ∈ Σ, then our statements hold by the definition of δ, i.e. by (3.1) and

(3.2).

(HH) If sH , tH ∈ H and w has a maximal horizontal decomposition w = w1 • w2 • . . . •

wn, n ≥ 2, then

[sH , w, tH ]A ⇔ ∃rH
1 , r

H
2 , . . . , r

H
n−1, r

H
0 = sH , rH

n = tH : [rH
i−1, wi, r

H
i ]A, i ∈ [n]

⇔ ∃r1, r2, . . . , rn−1, r0 = s, rn = t : ri = ri−1 • ϕ(wi), i ∈ [n]

⇔ s • ϕ(w1) • ϕ(w2) • . . . • ϕ(wn) = t

⇔ s • ϕ(w) = t.

The second equivalence above follows from the induction hypothesis.

(VV) If sV , tV ∈ V and w has a maximal vertical decomposition w = w1 ◦ w2 ◦ . . . ◦ wn,

n ≥ 2, then the proof is analogous to (HH).
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(HV) If sH , tH ∈ H and w has a maximal vertical decomposition w = w1 ◦ w2 ◦ . . . ◦ wn,

n ≥ 2, then

[sH , w, tH ]A ⇔ ∃uV ∈ V : (sH , 〈s, 1
V ) ∈ γ, [1V , w, uV ]A, (uV , 〉s, t

H) ∈ γ

⇔ ∃u ∈ B : s • u = t and 1 ◦ ϕ(w) = u

⇔ s • ϕ(w) = t.

The second equivalence above follows from the definition of γ and from case (VV).

(VH) If sV , tV ∈ V and w has a maximal horizontal decomposition w = w1 • w2 • . . . •

wn, n ≥ 2, then the proof is analogous to (HV). This concludes the proof of Lemma 3.38.

�

Proof of Theorem 3.35, completed. For all w ∈ Σ∗(•, ◦)

ϕ(w) ∈ F ⇔ 1 • ϕ(w) = f ∈ F

⇔ [1H , w, fH ]A for some f ∈ F

⇔ A(B,ϕ, F ) accepts w.

Thus ϕ−1(F ) = L(A(B,ϕ, F )). �

It follows from standard arguments that the class Rec of recognizable binoid lan-

guages is (effectively) closed under the Boolean operations and inverse homomorphisms,

so that if h is a homomorphism Σ∗(•, ◦) → ∆∗(•, ◦), where ∆ is another alphabet, and

L ⊆ ∆∗(•, ◦) is recognizable, then h−1(L) will be recognizable as well.

Corollary 3.39 The class Reg of regular (i.e. recognizable) binoid languages is (effec-

tively) closed under the Boolean operations and inverse homomorphism.

Remark 3.40 It is clear that L ⊆ Σ∗(•, ◦) is recognizable iff there is a finite index congruence

θ of Σ∗(•, ◦) which saturates L, i.e. L is the union of some blocks of the partition induced by θ.

Each language L ⊆ Σ∗(•, ◦) can be recognized by a smallest binoid called the syntactic binoid

of L. This binoid BL, unique up to isomorphisms, corresponds to the syntactic monoid [Pin86]

of a word language, and to the syntactic algebra of a tree language (cf. [Ste98]). For present

purposes it is sufficient to define BL as the quotient of Σ∗(•, ◦) with respect to the largest

congruence ∼L which saturates L. We obviously have that L is recognizable iff BL is finite.

The natural homomorphism ϕL : Σ∗(•, ◦)→ BL is called the syntactic homomorphism of L.

3.10 Rationality

There are several meaningful definitions of rational sets of binoids. Here we will only

consider the simplest of them, namely the horizontal rational, vertical rational, bira-

tional and generalized birational sets.
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3.10.1 Birational and Generalized Birational Languages

Here we will define the classes of birational and generalized birational languages. It

will become apparent from the definitions that every birational language is generalized

birational, but we will see that the converse inclusion fail.

Recall the closure properties of the recognizable (i.e. regular) class of binoid lan-

guages established in Theorem 3.25 and Corollaries 3.26 and 3.39.

Fact 3.41 The class Rec = Reg is (effectively) closed under the following operations

• Boolean operations (union, intersection, complementation),

• horizontal and vertical product,

• horizontal and vertical iteration,

• homomorphism and inverse homomorphism,

• ξ-substitution.

As usual, a binoid language is called finite if it contains a finite number of biwords.

Similarly, a binoid language L ⊆ Σ∗(•, ◦) is cofinite if its complementer with respect to

Σ∗(•, ◦) is finite. Now we will denote the class of finite languages by Fin and the class

of cofinite languages by CoFin. Next, we will proceed with the definition of birational

and generalized birational languages.

Definition 3.42 ([ÉN04]) The class of birational languages is the least class BRat of

binoid languages containing the finite binoid languages in Σ∗(•, ◦), for all Σ, and closed

under union, horizontal and vertical product and horizontal and vertical iteration. The

class of generalized birational languages is the least class GRat of binoid languages which

contains the finite languages and is closed under union, horizontal and vertical products,

horizontal and vertical iterations and complementation.

Clearly, BRat ⊆ GRat. We have already seen in Fact 3.41 that the class Rec of

recognizable (i.e. regular) binoid languages is closed under all operations involved in

the definition of GRat. Therefore, since every finite language is recognizable, we have

that GRat ⊆ Rec.

In contrast to the case of recognizable tree languages, the recognizable sets of free

binoids are not closed under ξ-iteration as the following classical example shows:

L = {a • ξ • b} , L∗ξ = {a•n • ξ • b
•n | n ≥ 0} /∈ Rec.

Here the ξ-iteration of a binoid language is defined as it is for tree languages (cf. [GS84]),

i.e. L∗ξ = ∪i≥0L
ξ
i , where Lξ

0 = {ξ}, and Lξ
i+1 = Lξ

i [L/ξ] ∪ L
ξ
i .
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Earlier we introduced the concept of bounded depth languages in an informal way.

Now we shall state a formal definition for it.

Definition 3.43 ([ÉN04]) The alternation depth ad(w) of a biword w ∈ Σ∗(•, ◦) is

defined inductively as follows:

(i) If w is an empty or singleton biword, then ad(w) = 0.

(ii) If w = w1 • . . . • wn, then ad(w) = max{ad(w1), . . . , ad(wn)}+ 1.

(iii) If w = w1 ◦ . . . ◦ wn, then ad(w) = max{ad(w1), . . . ad(wn)}+ 1,

In cases (ii) and (iii) the decompositions are maximal and n ≥ 2. The alternation

depth of a binoid language L is defined as the supremum of the alternation depths of

its elements:

ad(L) := sup{ ad(w) | w ∈ L }.

Example 3.44 If w1 = a • 〈b ◦ c〉 • d and w2 = 〈a ◦ b〉 • 〈b ◦ 〈c • d〉〉, then ad(w1) = 2,

ad(w2) = 3, ad(w1 • w2) = 3 and ad(w1 ◦ w2) = 4. Note that ad(L) may be infinite. A

recognizable language which has unbounded alternation depth was given in Example 3.19.

We let BD≤n stand for the class of binoid languages L with ad(L) ≤ n, and let BD

stand for the class of bounded alternation depth (or just bounded depth) binoid languages

BD :=
⋃

n<∞

BD≤n.

The next theorem shows that birational languages are just those regular languages that

have bounded depth.

Theorem 3.45 ([ÉN04]) BRat = Reg ∩ BD.

Proof. We have already seen that BRat ⊆ GRat and GRat ⊆ Reg, hence BRat ⊆ Reg. It

is easy to prove that BD is closed under union and the product and iteration operations,

hence BRat ⊆ BD. Thus BRat ⊆ Reg ∩ BD.

As for the inclusion Reg ∩ BD ⊆ BRat, we will show by induction on n that for any

regular binoid language L we have L[≤n] ∈ BRat, for all n ≥ 0, where L[≤n] ⊆ L is the

set of all biwords in L of alternation depth ≤ n. Thus if L ∈ Reg∩BD, then there exists

an n ≥ 0 such that L ∈ BD≤n, so L = L[≤n] ∈ BRat.

Next, assume that L = L(A) for some PA A = (S,H, V,Σ,Ω, δ, γ, I, F ). For any

given states q1, q2 ∈ H or q1, q2 ∈ V and n ≥ 0, let L[≤n]
q1,q2 denote the language consisting

of all biwords of alternation depth at most n on which A has a run from q1 to q2. As

L[≤n] =
⋃

i∈I,f∈F

L
[≤n]
i,f ,
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we conclude our proof by verifying the following lemma.

Lemma 3.46 ([ÉN04]) For any given states q1, q2 ∈ H or q1, q2 ∈ V and n ≥ 0, we

have L
[≤n]
q1,q2 ∈ BRat.

Proof. In the case n = 0,

L[≤0]
q1,q2

=




{a | (q1, a, q2) ∈ δ}, if q1 6= q2,

{a | (q1, a, q2) ∈ δ} ∪ { ε }, if q1 = q2.

Hence L[≤0]
q1,q2 ∈ BRat.

Note that the case n = 1 follows from the classical Kleene theorem for finite words,

since only labeling transitions are involved.

Now assume that L[≤n]
s1,s2 ∈ BRat, for any s1 and s2 horizontal or vertical states of

A = (S,H, V,Σ,Ω, δ, γ, I, F ). In order to get a birational expression for L[≤n+1]
q1,q2 we

need to introduce some new notations. We will only consider the case when q1 and q2

are horizontal.

By induction, there exists a birational expression E
[≤n]
s1,s2 for each language L[≤n]

s1,s2 .

For any two horizontal states s1, s2, let HLs1,s2 denote the ordinary regular language

of words accepted by the ordinary automaton with state set H, initial state s1 and

final state s2, whose set of input letters is the set H2 with transitions p1
(p1,p2)
−→ p2, for

all (p1, p2) ∈ H2. Next, let HEs1,s2 denote an ordinary rational expression for HLs1,s2 ,

which exists by the classical Kleene theorem.

When s1, s2 are vertical states, define V Ls1,s2 in the same way, and let V Es1,s2 de-

note a rational expression for V Ls1,s2 . Let V E++
s1,s2

be rational expressions representing

the words of V Ls1,s2 having length at least 2. Now L
[≤n+1]
q1,q2 is given by the expression

E[≤n+1]
q1,q2

= HEq1,q2[E
[≤n]
s1,s2

/(s1, s2)] ∪
⋃

p1,p2 : ∃〈〉∈Ω

(q1,〈,p1),(p2,〉,q2)∈γ

V E++
p1,p2

[E[≤n]
s1,s2

/(s1, s2)].

Here it is understood that when substituting in HEq1,q2 , all product operations

in HEq1,q2 are replaced by horizontal product, and all stars by horizontal iteration.

Similarly, each product and star in V E++
p1,p2

is replaced by the vertical version of the

operation. �

We can even prove that BRat ⊆ Reg1. The proof relies on the fact that every

birational language has bounded alternation depth. Thus if a PA A accepts a birational

language, then the accepting runs of A must have a bounded number of opened but

not yet closed parentheses at a given moment of the computation process. So we can
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construct an equivalent automaton A′ with a single pair of parentheses by storing the

information about all such opened parentheses in the (inner) states. This fact together

with the previous theorem leads to the following corollary.

Corollary 3.47 ([Ném04]) BRat = Reg1 ∩ BD.

This result will be important later in the next section and in Section 3.12.

3.10.2 Horizontal Rational and Vertical Rational Languages

Two subclasses of BRat are also of interest, namely the class of horizontal rational lan-

guages and the class of vertical rational languages. Later we will also define horizontally

bounded and vertically bounded binoid languages and we will study the relationships

between the new classes. Horizonal rational and horizontally bounded languages are

called series rational and series bounded in [ÉN02, ÉN04, Ném04]. In much the same

way vertical rational and vertically bounded languages are called parallel rational and

parallel bounded.

Definition 3.48 ([ÉN04]) The class HRat of horizontal rational languages (or series

rational languages) is the least class containing the finite languages closed under union,

horizontal and vertical products and horizontal iteration. Vertical rational languages (or

parallel rational languages), denoted by VRat, are defined symmetrically using vertical

iteration instead of horizontal iteration.

Next, we will define horizontally and vertically bounded languages, but for this we

need the notion of the horizontal and vertical height of a biword.

Definition 3.49 The horizontal height of a biword w, denoted by HHeight(w), can be

computed by induction on the structure of w, in the following way:

(i) If w = ε, then HHeight(w) := 0.

(ii) If w = σ ∈ Σ, a singleton biword, then HHeight(w) := 1.

(iii) If w = w1 • w2, a horizontal biword, then

HHeight(w) := HHeight(w1) + HHeight(w2).

(iv) If w = w1 ◦ w2, a vertical biword, then

HHeight(w) := max{HHeight(w1),HHeight(w2) }.

The vertical height of w, denoted by VHeight(w), is defined symmetrically.
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Remark 3.50 Note that the notion of horizontal and vertical height is in accordance with

the notion of height for posets. Indeed, if the sp-biposet representation of biwords w is wbp =

(P,<h, <v, λ) then HHeight(w) is the height of the poset (P,<h), i.e. the length of a maximal

<h-chain in (P,<h). Similarly, VHeight(w) is the height of the poset (P,<v).

Definition 3.51 Call a language L ⊆ Σ∗(•, ◦) horizontally bounded if there is a con-

stant K such that HHeight(w) ≤ K for all w ∈ L, and let HB denote the class of hor-

izontally bounded binoid languages. The class of vertically bounded binoid languages,

denoted by VB, is defined symmetrically.

It should be noted here that horizontal rational languages are vertically bounded

as VB is closed under the operations used in the definition of HRat. Similarly, vertical

rational languages are horizontally bounded. Moreover, if L is birational language which

is also vertically bounded, then vertical iteration cannot be used in the construction of

L, so L must be horizontal rational. Therefore

HRat = BRat ∩ VB and VRat = BRat ∩ HB.

Proposition 3.52 ([ÉN04]) HRat = Reg ∩ VB and VRat = Reg ∩ HB.

Proof. By Theorem 3.45 BRat = Reg ∩ BD, and it is not hard to see that VB ⊆ BD.

Indeed, if VHeight(w) = K, then ad(w) ≤ 2K − 1. Thus

HRat = BRat ∩ VB = Reg ∩ BD ∩ VB = Reg ∩ VB. �

By Corollary 3.47 we also know that BRat = Reg1 ∩ BD, and using this in the proof

above we get the following corollary.

Corollary 3.53 HRat = Reg1 ∩ VB and VRat = Reg1 ∩ HB.

Now we can compare the expressive power of the rational classes introduced in this

section.

Theorem 3.54 ([ÉN04])

HRat ∪ VRat ( BRat ( GRat ( Reg.

Furthermore, HRat and VRat are incomparable with respect to set inclusion.

Proof sketch. All the inclusions except the last one are straightforward. Indeed, {a}∗• ∪

{a}∗◦ ∈ BRat\(HRat∪VRat), and the language of all biwords, Σ∗(•, ◦), is in GRat\BRat,

for any alphabet Σ. On the other hand the proof of GRat ( Reg is rather complicated.

The proof rely on a generalization of Schützemberger’s theorem, that states that if a

word language is star-free then its syntactic monoid if aperiodic [Sch65]. See [ÉN04] for

the details about this.
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3.10.3 Some Decidability Results

Our next aim is to show that it can be decided whether a regular binoid language is

finite, cofinite, birational, horizontal rational or vertical rational. At present we do

not know the answer for generalized birational languages, however. In this section

we will follow [ÉN04] and work with binoid languages that do not contain the empty

biword ε. Then we can use syntactic bisemigroups instead of syntactic binoids. This

is not a real restriction, as L is birational, horizontal or vertical rational if and only if

L \ {ε} has this property. But excluding the empty biword guarantees, for example,

that HHeight(w1 • w2) > HHeight(w1) for all w1, w2 ∈ Σ+(•, ◦). Again we need to do

some preparatory work before we can prove the above results.

Definition 3.55 ([ÉN04]) Let (B, •, ◦) be an arbitrary bisemigroup and suppose that

p, q ∈ B. We will denote the fact that q is a horizontal (vertical) factor of p by

p ≻h q ⇔ ∃ r, s ∈ B : p = r • q • s or p = r • q or p = q • s;

p ≻v q ⇔ ∃ r, s ∈ B : p = r ◦ q ◦ s or p = r ◦ q or p = q ◦ s;

Since the operations • and ◦ are associative, the relations ≻h and ≻v are transitive.

Next, the following facts are clear:

Lemma 3.56 ([ÉN04])

(i) If ϕ : B1 → B2 is a homomorphism of bisemigroups and p, q ∈ B1, then p ≻h q ⇒

ϕ(p) ≻h ϕ(q);

(ii) If ϕ : B1 → B2 is a surjective homomorphism of bisemigroups and p′, q′ ∈ B2,

then p′ ≻h q
′ ⇒ ∀q ∈ ϕ−1(q′) ∃p ∈ ϕ−1(p′) : p ≻h q.

Similar statements hold for ≻v.

Definition 3.57 ([ÉN04]) Suppose that x1, x2, . . . is a finite or infinite sequence of

elements of a bisemigroup. For all i ≥ 1, let ≻i be the relation ≻h or the relation ≻v.

When xi ≻i xi+1 holds for each i ≥ 1, we call the sequence x1 ≻1 x2 ≻2 x3 ≻3 . . .

a composition chain. Moreover, if ≻i=≻h for an infinite number of indices i, then

we call the chain horizontally infinite. Vertically infinite composition chains are defined

symmetrically. Finally, a chain is an alternating composition chain if for all n, ≻n=≻h

and ≻n+1=≻v, or ≻n=≻v and ≻n+1=≻h. (E.g. x1 ≻h x2 ≻v x3 ≻h x4 ≻v x5 is an

alternating composition chain.)
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Proposition 3.58 ([ÉN04]) For any L ∈ Σ+(•, ◦), let BL denote the syntactic bisemi-

group of L and let ϕL : Σ+(•, ◦) → BL denote the corresponding syntactic homomor-

phism. (See Remark 3.40.) Then,

L ∈ Fin⇔ BL is finite and there is no infinite composition chain

in BL starting from some element of ϕL(L);

L ∈ CoFin⇔ BL is finite and there is no infinite composition chain

in BL starting from some element of BL \ ϕL(L);

L ∈ HRat⇔ BL is finite and there is no vertically infinite composition chain

in BL starting from some element of ϕL(L);

L ∈ VRat⇔ BL is finite and there is no horizontally infinite composition chain

in BL starting from some element of ϕL(L);

L ∈ BRat⇔ BL is finite and there is no infinite alternating composition chain

in BL starting from some element of ϕL(L).

Proof. All statements are quite self-evident. For example, for the first two claims, one

observes that, for every finite bisemigroup B and b ∈ B, there is no infinite composition

chain starting from b if and only if there is a constant K such that all composition

chains are of length at most K. For the last three claims one also uses Theorem 3.45

and Proposition 3.52. �

Theorem 3.59 ([ÉN04]) It is decidable whether a regular binoid language is finite,

cofinite, birational, horizontal rational or vertical rational.

Proof. For any regular (hence recognizable) binoid language L one can compute the

syntactic bisemigroup of L\{ε}. Since the syntactic bisemigroup is finite it is decidable

whether p ≻h q or p ≻v q holds for any two elements of it. Hence the existence of the

infinite composition chains in Proposition 3.58 is also decidable. �

3.11 Logical Definability

In this section we will relate monadic second-order definable (MSO-definable) binoid

languages to recognizable languages. It is an important and actively investigated general

question of theoretical computer science whether, for certain classes of structures, MSO-

definability and recognizability are equivalent. Known equivalences includes languages

of finite and infinite words [Büc60, Elg61], finite trees [Don70, TW68], traces [Tho90],
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sp-posets [Kus03a], texts of bounded primitivity [HtP97] and graphs under various

finiteness conditions [Lap98, Cou03, Weil04b], see also [Wei04a].

In this section, by relying on the main result of Hoogeboom and ten Pas [HtP97]

on text languages, we will prove that the equivalence of recognizability and MSO-

definability holds for binoid languages as well.

3.11.1 MSO-definable Binoid Languages

We will start with some basic definitions of logical definability. For extending logical de-

finability to binoid languages the easiest way is to regard biwords as relational structures

where the horizontal and vertical order relations are explicitly present. So here we will

consider any biword w ∈ Σ∗(•, ◦) in its sp-biposet representation wbp = (P,<h, <v, λ)

(cf. Section 2.6.2).

Now suppose that Σ is an alphabet. An atomic formula is of the form Qa(x), X(x),

x <h y or x <v y, where a is any letter in Σ, x, y are first-order variables ranging

over vertices in an sp-biposet, while X is a monadic second-order variable ranging over

subsets of the vertex set of an sp-biposet. Here Qa(x) means that vertex x is labeled by

a and X(x) means that x belongs to X. The atomic formulas x <h y and x <v y have

their expected meanings. (We assume a fixed countable set of first-order, and a fixed

countable set of second-order variables.) Formulas are composed from atomic formulas

by the Boolean connectives ∨ and ¬ and first- and second-order existential quantifiers

∃x and ∃X. We define in the usual way when a closed formula (sentence) ϕ holds in,

or is satisfied by an sp-biposet w, denoted w |= ϕ. The language Lϕ defined by ϕ is

Lϕ := {w ∈ Σ∗(•, ◦) | w |= ϕ }.

Definition 3.60 ([ÉN04]) We say that a language L ⊆ Σ∗(•, ◦) is MSO-definable if

there is a sentence ϕ with L = Lϕ. We let MSO denote the class of MSO-definable

languages in Σ∗(•, ◦), for all alphabets Σ.

Remark 3.61 For relational structures in general, besides the MSO logic it is usual to consider

the so-called counting monadic second-order logic. This means that we enrich the MSO logic

with first order modulo quantifiers, which are of the form ∃xmod q, where q > 1 is an integer. The

interpretation of such a quantifier is that the number of positions x that satisfy the subformula

that has been quantified, is divisible by q. For graphs and graph-like structures the counting

second order monadic definable class of structures (denoted by CMSO) can be larger than MSO,

and it seems that CMSO is a more natural counterpart of the concept of algebraic recognizability

[Cou91, Cou03, CW05, Weil04b]. On the other hand if one can define a linear order on the

domains of the structure by an MSO-formula – and obviously this can be done in the case of

biwords –, then CMSO is equal to MSO.
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It is not hard to show that MSO ⊆ Rec. We can argue by formula induction. In

order to do this, we first associate a language Lϕ ⊆ SPB(Σ × V × P(W)) with any

formula ϕ whose free variables are contained in the finite sets V of first-order and W

of second-order variables, where P(W) denotes the powerset of W. Our definition

parallels that given in [Str94], and makes use of the closure properties of recognizable

languages given in Fact 3.41. (An alternative way of proving MSO ⊆ Rec would be via

a compositionality property of the monadic theories of sp-biposets. See Kuske [Kus03a]

for a general outline of this method.)

3.11.2 Texts and Text Languages

In order to prove that even MSO = Rec holds for binoid languages, we should realize

that binoids are special cases of texts introduced by Ehrenfeucht and Rozenberg [ER93].

Texts themselves are special cases of 2-structures [ER90, ER92, EHPR96]. Recognizable

and MSO-definable text languages were first studied by Hoogeboom and ten Pas in

[HtP96, HtP97]. Here we will just present those concepts about texts which are needed

to relate them with sp-biposets. For more details the reader should see [ER93, EPR93,

HtP96, HtP97]. In addition, here we will use sightly different notations from those used

in these articles to make them similar to our notations for biposets.

Definition 3.62 A text (over the alphabet Σ) is a 4-tuple (P, ρ1, ρ2, λ), where P is a

set, ρ1 and ρ2 are two strict linear order relations on P , and λ : P → Σ is a labeling

function.

As in the case of biposets, we will not distinguish between isomorphic texts, hence

we may assume that P = {1, 2, . . . , n}, for some n ≥ 0, and ρ1 is the standard order

1 < 2 < . . . < n. This form will be called the standard form of a text, as in [ER93,

HtP96, HtP97]. If a text τ = (P, ρ1, ρ2, λ) is in standard form and P = [n], then τ can

also be written as τ = (λ(1)λ(2) . . . λ(n), ρ2).

Example 3.63 Assume that Σ = { a, b }, P := [6], ρ1 = (1, 2, 3, 4, 5, 6), ρ2 = (3, 1, 4, 2, 6, 5)

and λ : P → Σ with λ(1) = λ(3) = λ(5) = a and λ(2) = λ(4) = λ(6) = b. Here linear

orders are represented as usual, so (i1, i2, . . . , in) means the linear order i1 < i2 < . . . <

in. Now τ = (P, ρ1, ρ2, λ) is a text. As τ is in normal form it can also be written as τ =

(ababab, (3, 1, 4, 2, 6, 5)).

If we forget about the labeling of a text we get the notion of a bi-order. Thus a

bi-order is a pair of two strict linear orders over a common domain. It will be denoted
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by (P, ρ1, ρ2), or just by ρ2, if it is in standard form i.e. when P = [n], and ρ1 =

(1, 2, . . . , n).

Suppose that ρ is a bi-order in standard form on an n element set, and τ1 . . . τn

are texts over a common alphabet Σ. Then it is natural to define the substitution of

τ1,τ2, . . . , τn into ρ. The result of the substitution is a text [ρ ← (τ1, . . . , τn)] which

is a disjoint union of the texts τi-s that also inherits the orders determined by ρ. See

[HtP97] for more details and examples. The substitution of bi-orders into a bi-orders

can be defined in the same way.

We say that a text (resp. bi-order) is decomposable if it can be obtained as a

substitution of some proper subtexts (resp. bi-orders) into a bi-order. Texts and bi-

orders which are not decomposable are called primitive. Obviously, on the two-element

set {1, 2} both bi-orders are primitive. They are denoted (in standard form) by σf =

(1, 2) and σb = (2, 1), and called forward sequential and backward sequential bi-orders,

respectively. But it turned out that there exist arbitrary large primitive bi-orders and

texts [ER90, ER93].

Example 3.64 In our example above τ = [σf ← (τ1, τ2)], where τ1 = (abab, (3, 1, 4, 2)) is a

primitive text, but τ2 can be further decomposed into τ2 = [σb ← (a,b)]. Here, of course, a

and b stand for the singleton texts a = (a, (1)) and b = (b, (1)).

The class of MSO-definable text languages is defined in just the same way as the

MSO-definable binoid languages but we have to use the atomic formulas x ⊏1 y and

x ⊏2 y instead of x <h y and x <v y. Needless to say, they will be interpreted as the

two linear order relations of a text.

On the other hand defining a suitable algebraic framework for texts in general is

not so obvious (see [HtP96]). If ρ is a primitive bi-order on n elements, then we can

naturally associate with it an n-ary operation πρ on texts like so:

πρ(τ1, . . . , τn) := [ρ← (τ1, . . . , τn)].

A problem arises from the fact that there are infinitely many primitive bi-orders. Hence,

unless we wish to work with algebras of infinitely many operations, we need to restrict

the bi-orders that can be used to construct texts from the singleton texts. Thus we

arrive at the notion of bounded primitivity. Now suppose that ∆ is an alphabet and Π

is a finite set of primitive bi-orders. Let TXTΠ(∆) denote the set of those texts over ∆

which can be constructed from the singleton text (corresponding to the letters of ∆) by

the πρ operations with ρ ∈ Π. We say that a text language L is of bounded primitivity

if it is a subset of TXTΠ(∆) for some finite Π and ∆. Now TXTΠ(∆) is an algebra
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under the operation of πρ-s (ρ ∈ Π), and recognizability can be defined in the usual way.

One of the main results of [HtP97] is that for text languages of bounded primitivity

recognizability is equivalent to MSO-decidability.

But we only need this result in a special case of uniformly nonprimitive (also called

alternating) texts [ER93]. The set of alternating texts is defined as ATXT(∆) :=

TXT{σf ,σb}(∆). For simplicity let denote the two operations of alternating texts by

τ1⊕τ2 := [σf ← (τ1, τ2)] and

τ1⊗τ2 := [σb ← (τ1, τ2)].

Of course we can extend these operations to text languages in a natural way. Note that

both ⊕ and ⊗ are associative, hence (ATXT(∆),⊕,⊗) is a bisemigroup, or a binoid,

if we also include the empty text. As was mentioned previously, we need the following

result from [HtP97], namely:

Theorem 3.65 (Hoogeboom and ten Pas) For all L ⊆ ATXT(∆), L is recognizable

if and only if L is MSO-definable.

3.11.3 Sp-biposets and Alternating Texts

We now turn to establish a connection between biposets and texts. First recall that

P = (P,<h, <v, λP ) is a biposet, if <h and <v are partial order relations on a set P ,

and λ is a labeling function λ : P → Σ. Recall that a biposet P is total if any two

elements of P are related by exactly one of the two partial orders. We will show that

there is a bijective correspondence between labeled total biposets and texts, and also

that this bijection respects the operations, hence it defines an isomorphism.

Definition 3.66 Let P = (P,<h, <v, λP ) be a total biposet, and let its text represen-

tation P txt, be defined by P txt := (P,⊏1,⊏2, λP ), where

⊏1:=<h ∪ <v, ⊏2:=<h ∪ <
−1
v (3.3)

and <−1
v is the reverse of the relation <v. Let txt denote the function txt : P 7→ P txt.

Lemma 3.67 P txt is a text for each total biposet P . Moreover, txt is a bijective func-

tion between total biposets and texts.

Proof. To see that P txt is a text, we need to show that both ⊏1 and ⊏2 are linear orders

on P .
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The irreflexivity of ⊏1 and ⊏1 is naturally follows from the irreflexivity of <h and

<v. As for the transitivity, suppose that x ⊏1 y and y ⊏1 z for some x, y and z in P .

From the totality of P it follows that in the biposet x and z are related by one of the

relations <h, <v, <
−1
h or <−1

v . But it can be readily verified that x <−1
h z or x <−1

v z

would contradict the transitivity of <h and <v. Hence x <h z or x <v z, so x ⊏1 z.

The transitivity of ⊏2 can be obtained in a similar way, replacing <h by <−1
h , which is

also transitive.

Furthermore, the relations <h and <v can be recovered from ⊏1 and ⊏2 in the

following way:

<h=⊏1 ∩ ⊏2, <v=⊏1 ∩ ⊏
−1
2 . (3.4)

Hence the correspondence P 7→ P txt is injective.

Next, it is straightforward to see that for any two linear orders ⊏1 and ⊏2, equations

(3.4) define two partial orders on P , such that any two elements of P are related by

exactly one of them. Therefore the correspondence P 7→ P txt is also surjective, hence

it is a bijection between total biposets and texts. �

Remark 3.68 Besides totality sp-biposets must also satisfy the N -free condition of Corol-

lary 2.27 for both partial order relations. This translates to the “primitive quartet-freeness”

property of texts [ER92, EPR93].

As a direct consequence of the definitions of •, ◦, σf , σb and txt, we get

(P1 • P2)
txt = P txt

1 ⊕ P txt
2 and (P1 ◦ P2)

txt = P txt
1 ⊗ P txt

2 .

Since sp-biposets are defined as those biposets that can be built from the singleton

biposets using the horizontal and vertical product operations, they correspond to the

alternating texts, hence we have:

Lemma 3.69 For any alphabet Σ the mapping txt is an isomorphism between the free

binoid Σ∗(•, ◦) and alternating texts (ATXT(Σ),⊗,⊕). Moreover, the extension of txt

to languages is an isomorphism between binoid languages and alternating text languages.

Since equations (3.3) and (3.4) can be expressed by first-order formulas, a binoid

language L is second-order definable iff the corresponding alternating text language

txt(L) is second-order definable. Also, from Lemma 3.69 the notion of recognizability

is the same for binoid and alternating text languages. Thus from Theorem 3.65 we

immediately have:

Theorem 3.70 ([ÉN04]) Any binoid language is recognizable, if and only if it is MSO-

definable, i.e. Rec = MSO.
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In Chapter 4 we shall supply another proof of Theorem 3.70, which will form the basis

of the generalization to the infinite case.

From Theorem 3.35, Theorem 3.45 and Theorem 3.70 we can derive the following

corollary.

Corollary 3.71 ([ÉN04]) The following conditions are equivalent for a language L ⊆

Σ∗(•, ◦) of bounded depth:

1. L is recognizable.

2. L is regular.

3. L is birational.

4. L is generalized birational.

5. L is MSO-definable.

When L is vertically bounded, the above conditions are further equivalent to the condition

that L is horizontal rational.

3.12 Comparison with the Monoid Approach of Hashiguchi

et al.

An independent study on automata and regularity of binoid languages was carried out

by Hashiguchi et al. in a series of papers [HIJ00, HWJ03, HSJ04]. They used ordinary

finite automata (which we shall call monoid automata from now on) operating on the

term representations of biwords. Actually they defined two classes of regular binoid

languages. The aim of this section is to relate this approach to our PA and the classes

Regi. We will find that their notion of regularity is less general than ours. Moreover, we

will show how their monoid approach can be extended to our broader class of regular

binoid languages (Reg).

3.12.1 The Monoid Approach of Hashiguchi et al.

In [HIJ00] Hashiguchi et al. introduced two modes of operations of monoid automata

for defining regular binoid languages. Recall that E(Σ) := Σ ∪ { • , ◦ , 〈 , 〉 }.

Definition 3.72 ([HIJ00]) Given a monoid automaton A over the alphabet E(Σ) and

a binoid language L ⊆ Σ∗(•, ◦), we say that

i) A accepts L in the free monoid mode if, for any word x ∈ E(Σ)∗, A accepts x iff x

is the term representation of a biword in L;



78 CHAPTER 3. PARENTHESIZING AUTOMATA

ii) A accepts L in the free binoid mode if, for any term representation w ∈ TM(Σ), A

accepts w iff w is the term representation of a biword in L.

Let RegFM and RegFB denote the classes of binoid languages that can be accepted in

the free monoid mode and in the free binoid mode, respectively.

The concept of relativized regularity below will be useful for giving brief formulations

of various acceptance modes.

Definition 3.73 ([Ném07]) Let Σ be an alphabet and U ⊆ Σ∗ be an arbitrary lan-

guage. Now consider a language L ⊆ U . We say that L is regular relative to U (or L

is U -regular for short), if there exists a regular language L̂ ⊆ Σ∗ such that L = L̂ ∩ U .

For example L = {〈n〉n | n ≥ 0} is a Dyck-regular language, since L = L̂ ∩D1 with

a regular language L̂ = 〈∗〉∗, where D1 denotes the Dyck language over a single pair of

parentheses (cf. [Har78]). We can now reexpress Definition 3.72 in the following way.

Fact 3.74 (i) L ∈ RegFM ⇔ Ltm is a regular word language.

(ii) L ∈ RegFB ⇔ Ltm is TM(Σ)-regular word language.

It is not hard to see that RegFM ⊆ BD and Σ∗(•, ◦) ∈ RegFB \ BD. Hence we have

RegFM ( RegFB ( cf. [HIJ00]). The main result of [HWJ03, HSJ04] can be summarized

as follows.

Theorem 3.75 (Hashiguchi et al. [HWJ03, HSJ04]) RegFM = BRat.

The result above gives a nice operational characterization of RegFM, but this class

is not closed under complementation, because BRat 6= GRat by Theorem 3.54.

We can build another acceptance mode of monoid automata by using the cterm

representation instead of terms. We say that a monoid automaton A accepts a binoid

language L in the C1-mode if, for any cterm representation w ∈ CTM(Σ), A accepts w

iff w is the cterm representation of a biword in L. From now on the free binoid mode

will also be called the T1-mode. Moreover, we will extend the T1 and C1 modes using

i-terms and i-cterms.

Definition 3.76 ([Ném07]) Given an integer i ≥ 0, a monoid automaton A over the

alphabet Ei(Σ) and a binoid language L ⊆ Σ∗(•, ◦), we say that A accepts L in the

Ti-mode (resp. in the Ci-mode) if, for any biword w ∈ Σ∗(•, ◦), w ∈ L iff A accepts at

least one i-term (resp. i-cterm) representation of w.
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Let RegT
i

and RegC
i

denote the classes of languages that can be accepted by a monoid

automaton over Ei(Σ) in the Ti-mode and the Ci-mode, respectively. Furthermore, let

RegT
∞ := ∪∞i=0RegT

i
and RegC

∞ := ∪∞i=0RegC
i
.

Fact 3.77

(i) L ∈ RegT
i ⇔ there exists a TMi(Σ)-regular i-term representation of L.

(ii) L ∈ RegC
i
⇔ there exists a CTMi(Σ)-regular i-cterm representation of L.

3.12.2 A Comparison

In this section we present the main result of the section, namely the equivalence of PA

that have i pairs of parentheses with monoid automata in both the Ti-mode and Ci-

mode. For this we need to slightly modify the acceptance conditions of PA. Namely, we

will not allow indirect runs as accepting runs. If A = (S,H, V,Σ,Ω, δ, γ, I, F ) is a PA,

let L′(A) := {Label(r) | r ∈ Runs(A), start(r) ∈ I, end(r) ∈ F and r is not an indirect

run} and additionally, if I ∩ F 6= ∅ then L′(A) also contains ε, the empty biword.

Moreover, let Reg′i denote the class of those binoid languages that can be written as

L′(A) with a PA that has at most i pairs of parentheses.

At first sight it seems that the classes Reg′i are smaller than the original classes

Regi. But this is not so; on the contrary, while indirect acceptance can be simulated in

the new “no indirect acceptance” mode, the converse simulation is not possible. If we

have a PA A whose initial and final states are all horizontal, then we are certain that

L′(A) just contains horizontal biwords. On the other hand, this property cannot be

guaranteed in the old acceptance mode. Thus one can verify (with considerable effort)

the following correspondence between the new and the old acceptance modes of PA.

Theorem 3.78 ([Ném07]) We have Reg0 = Reg′0, and Regi ( Reg′i ( Regi+1, for all

i ≥ 1.

Proof. The equality Reg0 = Reg′0 is trivial. We will show in turn that Regi ⊆ Reg′i,

Reg′i ⊆ Regi+1, Regi 6= Reg′i and Reg′i 6= Regi+1.

The first two inclusions can be seen by direct modifications of PA. For Regi ⊆ Reg′i

the indirect accepting runs of an automaton A can be simulated in the new mode by

adding disjoint copies of A to itself for each pseudo initial-final pair of states (cf. the

proof of Lemma 3.23), and marking these states as initial and final states.

To verify that Reg′i ⊆ Regi+1, consider a PA A that has i pairs of parentheses

and works in the new “no indirect acceptance” mode. One can define an equivalent
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automaton to A with an additional i+ 1th pair of parentheses working in the original

mode. For this add new states ih∗ , f
h
∗ , i

v
∗ and f v

∗ to A, and apply the new i+ 1th pair of

parentheses to connect them to all the original initial and final states of A. Of course, let

{ih∗ , i
v
∗}, and {fh

∗ , f
v
∗ } to be the sets of initial and final states, resp. This will ensure that

the modified automaton will have indirect accepting runs only, but the “inner parts” of

these runs are simply the direct accepting runs of A. On the other hand, the labels of

the indirect (hence nonaccepting) runs of A from an initial to a final state will not be

in the language of A′ as double-parenthesization is forbidden.

Next, we will show that Reg1 6= Reg′1. A language which separates these two classes

is, for instance, Hor(Σ) – the set of all horizontal biwords over Σ. Indeed, Hor(Σ) is

in Reg′1, since the automaton depicted in Figure 3.2 in “no indirect acceptance” mode

accepts precisely Hor(Σ). On the other hand, we will prove that Hor(Σ) /∈ Reg1.

Suppose that, on the contrary, there is a PA A with a single pair of parentheses that

accepts Hor(Σ) in the original mode.

Now assume that a is in Σ and consider biwords whose cterm representation is of

the form

• [〈a]k[a〉]k[〈a]k[a〉]k, where k ≥ 1.

Since A has a finite number of states it is possible to find integers k1 > k2 such that A

accepts both • [〈a]k1 [a〉]k1 [〈a]k1 [a〉]k1 and • [〈a]k2 [a〉]k2 [〈a]k2 [a〉]k2 ; moreover during the

processing of these two biwords A is in the same states at the beginning, at the end,

and also among the four basic blocks : [〈a]i, [a〉]i, [〈a]i and [a〉]i, for i = k1, k2. Let

q1, q2, . . . , q5 denote these states in turn. Now asA has a single pair of parentheses it also

has a run from q1 to q5 whose label is [〈a]k1 [a〉]k2 [〈a]k2 [a〉]k1 . But now k1 > k2 implies

that this is an indirect run of A (starting and ending with a matching parenthesizing

transition pair), hence at least one vertical biword is also accepted by A, contradicting

our assumption which states that L(A) = Hor(Σ). In much the same way one can show

that Regi 6= Reg′i.

Finally Reg′i 6= Regi+1 comes from the observation that the language L̃(Σi+1) –

given in the proof of Theorem 3.32 and separating Regi and Regi+1 – also belongs to

Reg′i. �

Earlier results, namely Theorem 3.45 and Theorem 3.75, lead to the following char-

acterization of the free monoid mode in terms of PA.

Theorem 3.79 ([Ném07]) RegFM = Reg1 ∩ BD = Reg′1 ∩ BD.

Now we will establish a connection between the free binoid mode and PA.
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•/λ

◦/λ

σ/σ

σ/σ σ/•σ

σ/◦σ

〈/〈 〉/〉

〈/• 〈

〈/◦ 〈

Figure 3.9: A finite transducer which transforms 1-cterms into 1-terms over a one-letter

alphabet Σ = {σ}.

Lemma 3.80 ([Ném07]) For any i ≥ 0, there exists a finite transduction τi : Ei(Σ)∗ →

Ei(Σ)∗ which transforms every i-cterm to the equivalent i-term.

Proof sketch. Observe that τi can be induced by a finite transducer like the one depicted

in Figure 3.9.

Corollary 3.81 ([Ném07]) Suppose that L ⊆ CTMi(Σ) is a word language for some

i ≥ 0. Then L is CTMi(Σ)-regular iff τi(L) is TMi(Σ)-regular.

This result can be interpreted as follows. In the description of a binoid language by

words we can use the cterm (resp. i-cterm) representation instead of the term (resp.

i-term) representation, i.e. we can neglect the operation symbols without affecting the

regularity of the language. This simplification may be useful in syntactic proofs using

representations of biwords via words as in [HWJ03] and [HSJ04], and it is also crucial

in the proof of our main theorem presented below.

Theorem 3.82 ([Ném07]) For any integer i ≥ 0, we have Reg′i = RegC
i

= RegT
i
.

Proof sketch. The second equality can easily be derived from Corollary 3.81. On the

other hand, the proof of Reg′i = RegC
i

is rather technical. We need to transform a PA into

an equivalent monoid automaton over Ei(Σ) and vice versa. We will use the following

notation for a (nondeterministic) monoid automaton: A = (S,Σ, δ, I, F ), where S is

the set of states, Σ is the input alphabet, δ : S×Σ→ 2S is the transition function, and

I and F are the sets of initial and final states, respectively.
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Let A = (S,H, V,Σ,Ωi, δ, γ, I, F ) be a PA. If we do not distinguish between the

horizontal and vertical states, and if we do not distinguish between labeling and paren-

thesizing transitions, then we obtain a monoid automaton (S,Σ ∪ Ωi, δ ∪ γ, I, F ). Let

us take two new states i∗, f∗ /∈ S. Now replace I with {i∗}, and add the following

transitions to δ

δ′ = {(i∗, •, i) | i ∈ I ∩H} ∪ {(i∗, ◦, i) | i ∈ I ∩ V } ∪ {(i∗, σ, f∗) | σ ∈ L
′(A)}.

We will regard i∗ as a final state, iff ε ∈ L′(A). Thus we get a monoid automaton

AM := (S,Ei(Σ), δ ∪ γ ∪ δ′, {i∗}, F
′), where F ′ = F ∪ {i∗, f∗}, if ε ∈ L′(A), and

F ′ = F ∪ {f∗} otherwise. It can be proved with the help of Lemma 3.83 given below

that AM in the Ci-mode accepts L′(A). Hence Reg′i ⊆ RegC
i
.

RegC
i
⊆ Reg′i can be proved like so. Let A = (S,Ei(Σ), δ, I, F ) be a monoid automa-

ton which, in the Ci-mode, accepts a binoid language L. A parenthesizing automaton

A′ such that L′(A′) = L can be defined in the following way:

A′ = (H ′ ∪ V ′,H ′, V ′, δ′, γ′, I ′, F ′), where

H ′ = {sH | s ∈ S} ∪ {i∗, f∗}, V ′ = {sV | s ∈ S}, i∗, f∗ /∈ S,

δ′ = {(pH , σ, qH), (pV , σ, qV ) | σ ∈ Σ, (p, σ, q) ∈ δ} ∪ {(i∗, σ, f∗) | σ ∈ L},

γ′ = {(pH , ω, qV ), (pV , ω, qH) | ω ∈ Ωi, (p, ω, q) ∈ δ},

I ′ = {pH | ∃i ∈ I : (i, •, p) ∈ δ} ∪ {pV | ∃i ∈ I : (i, ◦, p) ∈ δ} ∪ {i∗},

F ′ =




{fH , fV | f ∈ F} if ε /∈ L,

{fH , fV | f ∈ F} ∪ {i∗} if ε ∈ L.

One can make use of the lemma below to verify the correctness of the above construction.

Lemma 3.83 ([Ném07]) Suppose that A is a PA with i pairs of parentheses, p and q

are two states of A, and w ∈ Σ∗(•, ◦). Then there is a direct run r of A from p to q with

Label(r) = w iff there is a transition sequence of A from p to q such that the middle

components of the transitions give an i-cterm representation of w without the type sign.

Now let us state some corollaries of Theorem 3.82.

Corollary 3.84 ([Ném07]) RegFB = Reg′1, so Reg′1 is closed under complementation.

The next result shows that the more general class of recognizable binoid languages can

also be captured by monoid mode acceptance.

Corollary 3.85 ([Ném07]) Reg = RegC
∞ = RegT

∞.
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Proposition 2.21 and the concept of relativized regularity lead to the following result,

whose proof is straightforward.

Corollary 3.86 ([Ném07]) For all i ≥ 0, any binoid language in Reg′i has a determin-

istic context-free i-term (and i-cterm) representation. In particular, for any L ∈ Reg′1

the word languages Ltm and Lctm are deterministic context-free.

3.12.3 Conclusions

Now let us summarize certain key points of this section. The first is that Theorem 3.82

is effective in the sense that, for a PA, an equivalent monoid automaton (for the Ti-mode

or Ci-mode) can be constructed and vice versa. Furthermore, the transition algorithm

increases the number of states of the automaton by just a constant factor.

It seems that there are two ways of defining a recognizable binoid language L when

using the monoid approach. The first is by taking an appropriate i-term or i-cterm

representation of L, and defining it by a finite automaton or regular monoid expression.

The second is by supplying Ltm or Lctm directly via some visibly pushdown automaton

[AM04] or deterministic pushdown automaton.

From a regularity point of view three classes of binoid languages might be of interest

to us, namely RegFM, Reg′1 and Reg = Rec, where the inclusion relations for them are

RegFM ( Reg′1 ( Reg. Note that, unlike the two other classes, RegFM is not closed

under complementation. Moreover, Theorems 3.32 and 3.82 tell us that in order to

attain the general concept of recognizability (Rec) we need to handle several pairs of

parenthesis symbols and unambiguous representations. However, this unambiguity can

be avoided since from the proof of Rec ⊆ Reg (Theorem 3.35) we obtain a PA that can

be regarded as deterministic. This is not surprising at all, as recognizability is clearly

a deterministic notion.

Another key point of our above results is that, by generalizing the idea of Hashi-

guchi et al., we managed to reduce the investigation of recognizable binoid languages

to the classical theory of word languages. But the well-developed theory of monoid

automata and word languages cannot be applied directly since the reduction has been

done via the concept of relativized regularity. Hence it would be desirable to provide

a detailed exposition of relativized regularity and find out how the methods of monoid

automata (determinization, minimization and so on) can be transformed into automata

over biwords, and, more generally, learn what effect the theory of word languages has

on the theory of binoid languages. Finally, a deeper understanding of automata models,

and especially the phenomenon of two-dimensional iterations, may also lead us to an

operational characterization of the class of recognizable binoid languages.
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Chapter 4

Parenthesizing Büchi-Automata

In this chapter we will now turn out thoughts to the issue of infinite biwords. Naturally

our treatment will be based both on the concept of the finite case (Chapters 2 and 3) and

on ideas found in the theory of infinite words (more precisely ω-words) [PP93, PP04,

Wil94]. First, we will define ω-biwords and ω-binoid languages in analogy with ω-words

and ω-languages. For this our starting point will be the infinite biposet representation

of ω-biwords. (We will discuss representation by infinite terms later on.) The main goal

of the chapter is to extend the validity of Theorems 3.35 and 3.70. Namely we would

like to prove that – with an appropriate generalization of the concept of parenthesizing

automata – the equivalence of recognizability, regularity and MSO-definability holds for

ω-binoid languages as well.

4.1 ω-biwords and ω-bisemigroups

In order to introduce the concept of infinite biwords we first need operations with which

they can be constructed from the finite biwords. Similarly to the classical case of ω-

words this can be done in two ways: by an ω-product operation [PP04] or by an ω-power

operation [Wil94]. In fact we need two ω-products or two ω-powers, both of which exist

in a horizontal and a vertical form.

An ω-product operation constructs an infinite biword from an infinite countable

number of finite biwords by writing them horizontally or vertically one after the other.

In contrast to this, an ω-power operation takes a single finite biword and repeats it

(horizontally or vertically) an infinite number of time. Therefore ω-products are of type

finite×finite× . . .→ infinite, while the ω-powers are of type finite→ infinite. Apart form

these operations we permit the formation of the horizontal/vertical product of a finite

85
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biword with an infinite one. Obviously these operation are of type finite × infinite →

infinite.

All the above operations can be defined in a straightforward way by using biposet

representations of finite and infinite biwords. Hence in this subsection we will briefly

summarize the main results of [ÉN05] on infinite biposets. First, we will introduce the

operations that allows to construct infinite biposets from finite ones: the horizontal and

vertical ω-products and the horizontal and vertical ω-powers.

Now suppose that P1, P2, . . . are pairwise disjoint finite biposets. Then their hori-

zontal ω-product is defined as

ω•(P1, P2, . . .) := (P1 ∪ P2 ∪ . . . , <h, <v, λ),

where

<h:=

∞⋃

i=1

<Pi

h ∪
⋃

i<j

(Pi × Pj), <v:=

∞⋃

i=1

<Pi
v

and

λ := λP1 ∪ λP2 ∪ . . .

The vertical ω-product ω◦(P1, P2, . . .) is defined symmetrically. We will also write hori-

zontal and vertical ω-products as P1 • P2 • . . . and P1 ◦ P2 ◦ . . ., respectively. Moreover,

the two ω-product operations naturally induce a horizontal and a vertical power oper-

ation, that is

Pω• := P • P • P • . . . , and Pω◦ := P ◦ P ◦ P ◦ . . .

Note that the definition of the product operations applies to both finite and infinite

operands. However, in order to avoid constructing biposets which have chains not

contained in ω, we will restrict the product operations P • Q and P ◦ Q just to a finite

biposet P . Of course, the biposet Q may be finite or infinite, while the ω-product and

ω-power operations are applied only to finite biposets. These restrictions seem to be

necessary for the proofs presented later on.

All the restrictions we have just described imply that we should use two-sorted

algebras as our algebraic framework to distinguish between finite and infinite elements.

Using multi-sorted algebras is quite common for establishing an appropriate algebraic

framework for various structures in computer science [Cou96]. Their application seems

unavoidable also in the case of infinite word languages [PP04, Wil94]. Of course this

will introduce a certain amount of technical complexity. But, fortunately, for biwords

this can be carried out in complete analogy with the case of finite and infinite words

(cf. [PP04]). But, as a minor difference from [PP04], we will assume the binary product
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operations to be appropriately polymorphic, i.e. we will use the same notation for the

product of two finite biword/biposets and for the product of a finite and an infinite

biword/biposet.

Thus we will call an algebra B = (BF , BI , •, ◦, ω•, ω◦) an ω-bisemigroup if it satisfies

the following identities

x ∗ (y ∗ u) = (x ∗ y) ∗ u, (4.1)

x ∗ ω∗(x1, x2, . . .) = ω∗(x, x1, x2, . . .), (4.2)

ω∗(x1 ∗ . . . ∗ xk1−1, xk1 ∗ . . . ∗ xk2−1, . . .) = ω∗(x1, . . . , xk1−1, xk1 , (4.3)

xk1+1, . . . , xk2−1, . . .),

for all x, y, x1, x2, . . . ∈ BF , u ∈ BF ∪BI , ∗ ∈ { •, ◦ }, and for all increasing sequences of

positive integers k1 < k2 < . . .

A homomorphism of ω-bisemigroups (CF , CI , •, ◦, ω•, ω◦) → (DF ,DI , •
′, ◦′, ω′

•, ω
′
◦)

is a pair of functions h = (hF : CF → DF , hI : CI → DI) that jointly preserve the

operations. Congruences of ω-bisemigroups are defined in the usual way – they are such

pairs of equivalence relations that are jointly respect the operations.

Remark 4.1 In this chapter we interested in languages which consist solely of infinite biwords.

Hence for technical reasons it is preferable to work without the empty biword and without the

empty biposet. This does not place any restriction on our theory, as the regular, recognizable

and MSO-definable classes of ω-binoid languages (defined later) would be the same if we included

the empty biword. Although one could define the notion of ω-binoids, (which would include

an identity ε) as a three-sorted algebra. Besides the sorts of finite and infinite elements this

algebra would also have a distinct sort for the identity and some additional equations

ε ∗ α = α ∗ ε = α and (4.4)

εω∗ = ε (4.5)

for all elements α and ∗ ∈ { • , ◦ }.

Now let Σ∞(•, ◦) denote the ω-bisemigroup generated freely by Σ in the variety of all

ω-bisemigroups. Needless to say the set of its finite elements is isomorphic to Σ+(•, ◦),

i.e. the free bisemigroup (generated by Σ). If we let Σω(•, ◦) denote the infinite elements

of Σ∞(•, ◦), we have that

Σ∞(•, ◦) := (Σ+(•, ◦),Σω(•, ◦), •, ◦, ω•, ω◦)

is an ω-bisemigroup.
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The elements of Σω(•, ◦) will be called ω-biwords, while subsets of Σω(•, ◦) will be

referred to as ω-binoid languages. In what follows we will study them.

We call a Σ-labeled biposet constructible if it can be generated from the singleton

Σ-labeled biposets by the (restricted) binary product operations • and ◦, and by the

ω-ary product operations ω• and ω◦.

Recall from Section 2.6.2 that SPB(Σ) denotes the collection of biposets which can

be generated from the singletons corresponding to the letters in Σ by the two product

operations • and ◦. Hence SPB(Σ) does not contain the empty biposet ε. Also the

biposets in SPB(Σ) are called series-parallel biposets or just sp-biposets. Note that

SPB(Σ) is simply the set of those constructible biposets which are finite. Next, let

ISPB(Σ) denote the set of infinite constructible biposets, and let

ωSPB(Σ) := (SPB(Σ), ISPB(Σ), •, ◦, ω•, ω◦)

stand for the two-sorted algebra of all constructible biposets over Σ.

It is clear that ωSPB(Σ) satisfies (4.1)–(4.3), hence it is an ω-bisemigroup. Now

it can be seen that the set of all finite and countably infinite biposets also form an

ω-bisemigroup, and ωSPB(Σ) is the smallest subalgebra of this ω-bisemigroup that

contains Σ. The infinite counterpart of the free algebra theorem for sp-biposets (Theo-

rem 2.14) is the following.

Theorem 4.2 ([ÉN05]) The algebra ωSPB(Σ) is freely generated by Σ in the variety

of ω-bisemigroups, i.e. ωSPB(Σ) is isomorphic to Σ∞(•, ◦).

Since the proofs required for this and others below are long and their details are

not really necessary to understand the concepts and results for parenthesizing Büchi-

automata and regular ω-binoid languages, we will omit them here. The interested reader

can find all the relevant details in [ÉN05].

A graph-theoretic characterization of infinite constructible biposets is also given in

[ÉN05]. This, of course, is a suitable generalization of the “generalized N-free” condition

of the finite case (Corollary 2.27).

Theorem 4.3 ([ÉN05]) An infinite biposet (P,<h, <v, λ) is in ISPB(Σ) if and only

if P is complete, and both posets (P,<h) and (P,<v)

(i) are N -free,

(ii) are free of “upward combs”,

(iii) are free of “downward combs”, and
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(c) (d)

Figure 4.1: An upward comb (a) and a downward comb (b).

(iv) all of their principal ideals1 are finite.

where “upward comb” and “downward comb” are infinite posets. These are depicted in

Figure 4.12.

In order to simplify the notations, in the following we will use ∗ to indicate any of

the • and ◦ operations. Sometimes we also give subscripts to the ∗-s, but in any formula

all ∗ symbols, without subscript or with the same subscript, will always denote the same

operation.

A decomposition of an ω-biword w into an ω-product of infinitely many finite biwords

w = w1 ∗ w2 ∗ . . . is said to be maximal if every wi is ∗-irreducible. If w is an ω-

biword, we say that w is primitive if it can be written as w1 ∗ w2 ∗ . . . for some finite

biwords w1, w2, . . . Now each ω-biword can be generated from the primitive biwords by

multiplication with finite biwords from the left. We will define the rank of an ω-biword

w as the least number of left multiplications with finite biwords needed to construct w

from the primitive ω-biwords. The rank of w will be denoted by Rank(w).

It is not hard to prove that if an ω-biword w is not primitive, then it can be uniquely

written as w = w′ ∗ w′′, where w′′ is ∗-irreducible and Rank(w′′) < Rank(w). A direct

consequence of this fact is that every ω-biword can be written in the form

w1 ∗1 (w2 ∗2 (w3 ∗3 . . . wk ∗k (u1 ∗k+1 u2 ∗k+1 u3 ∗k+1 . . .))), (4.6)

where all wi and ui are finite biwords in Σ+(•, ◦), and ∗1, ∗2, ∗3 . . . is an alternating

sequence of the • and ◦ operations. Moreover, this form is unique provided that every

1A principle ideal is a collection of all elements which are less than or equal to a given element.
2See [ÉN05] for precise definitions.



90 CHAPTER 4. PARENTHESIZING BÜCHI-AUTOMATA

ui is ∗k+1-irreducible. In this case we call it the normal form of w. Note that if (4.6)

is the normal form of w, then Type(w) = ∗1 and Rank(w) = k.

4.2 Tree and Term Representations of ω-biwords

Here we will outline the changes (from the finite case) that should be made if one intends

to represent ω-biwords by infinite terms and trees. Let w be an ω-biword. As in the

finite case, we will denote the biposet, tree and term representations of w, by wbp, wtr

and wtm, respectively.

The only thing we really need to describe is how to handle ω-products as w = w1 •

w2 • . . . The definition of wtr is straightforward if we allow ω-branching in trees. The

tree wtr has a root labeled by •, and this root has ω branches which connects the tree

representations of all the horizontally irreducible components of the wi-s (i ≥ 1).

Also, only slight changes need to be made in the term representation. First of all

we require an additional symbol of parenthesis: ‘[’. Now the term representations of an

ω-biword in Σω(•, ◦) is an ω-word over the extended alphabet

E′(Σ) := Σ ∪ { 〈 , 〉, [ , • , ◦ }.

The definitions of the horizontal and vertical forms can also be extended in an appro-

priate way. In the representation of a product of a finite biword with an infinite one, we

use the [ symbol if the type of the product differs from the type of the infinite factor.

Thus we should modify Definition 2.15, as follows.

Definition 4.4 If w ∈ Σω(•, ◦), let wtm, the term representation of w, be an ω-word

over E′(Σ), defined by induction on Rank(w) as follows.

(i) If Rank(w) = 0 and w = w1 • w2 • . . . is a primitive horizontal ω-biword with

w1, w2, . . . ∈ Σ+(•, ◦), then wtm := Hform(w1) • Hform(w2) • . . .

(ii) If Rank(w) = 0 and w = w1 ◦ w2 ◦ . . . is a primitive vertical ω-biword with

w1, w2, . . . ∈ Σ+(•, ◦), then wtm := Vform(w1) ◦ Vform(w2) ◦ . . .

(iii) If Rank(w) > 0 and w = w1 • w2 is a horizontal ω-biword with w1 ∈ Σ+(•, ◦),

w2 ∈ Σω(•, ◦) and Rank(w2) < Rank(w), then wtm := Hform(w1) • Hform′(w2).

(iv) If Rank(w) > 0 and w = w1 ◦ w2 is a vertical ω-biword with w1 ∈ Σ+(•, ◦),

w2 ∈ Σω(•, ◦) and Rank(w2) < Rank(w), then wtm := Vform(w1) ◦ Vform′(w2).
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In (iii), Hform′(w) denotes the horizontal form of the ω-biword w, defined as follows:

Hform′(w) :=

{
wtm if w is a horizontal ω-biposet,

[ wtm if w is a vertical ω-biposet.

In (iv), Vform′(w), the vertical form of the ω-biword w, is defined symmetrically.

An example of an ω-binoid language and the term representation of its elements are

given in the section below.

4.3 Recognizability of ω-binoid Languages

Recall that a language consisting of finite nonempty biwords is said to be recognizable

if it is recognized by a homomorphism into a finite bisemigroup, i.e. L ⊆ Σ+(•, ◦)

is recognizable if and only if L = ϕ−1(F ), for some bisemigroup homomorphism ϕ :

Σ+(•, ◦)→ B, where B is a finite bisemigroup, and F ⊆ B.

Similarly, for a language that contains both finite biwords and ω-biwords, L =

(LF , LI) ⊆ Σ∞(•, ◦), is recognizable if and only if there is a finite ω-bisemigroup B =

(BF , BI), a subset of it, T = (TF , TI) ⊆ (BF , FI), and a homomorphism ϕ = (ϕF , ϕI) :

Σ∞(•, ◦) → B such that L = ϕ−1(T ). Here (TF , TI) ⊆ (BF , FI) means TF ⊆ BF and

TI ⊆ FI ; moreover, L = ϕ−1(T ) stands for LF = ϕ−1
F (TF ) and LI = ϕ−1

I (TI).

Example 4.5 Let Σ = {a, b, c}, and consider the following language L ⊆ Σ∞(•, ◦) of ω-biwords

L = { cω• , a • (b ◦ (cω•)), a • (b ◦ (a • (b ◦ (cω•)))), . . . }.

I.e. L is the least solution of the fixed point equation a • (b ◦ X) + cω• = X . It is not hard

to show that L is recognizable. Indeed, consider the finite bisemigroup B = (BF , BI), where

BF = { da, db, dc, 0 }, and BI = { t1, t2, t3, 0 }. The binary product operations are given by

dc • dc = dc, and all other binary products of two finite elements are equal to 0; moreover,

dc • t1 = t1, db ◦ t1 = t2, da • t2 = t3, db ◦ t3 = t2, and all other products of a finite element

with an infinite one are equal to 0. Next, the ω-product operations are given by d
ω•

c = t1, and

all other ω-products are equal to 0. Now if we take the homomorphism ϕ : ωSPB(Σ)→ B that

is induced by the mapping a 7→ da, b 7→ db, c 7→ dc, then L = ϕ−1

I ({ t1, t3 }). This shows that

L is recognizable.

4.4 Logical Definability of ω-binoid Languages

In this section we will extend the concept of MSO-definable binoid languages (introduced

in Section 3.11) to ω-binoid languages.
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The syntax of MSO-formulas will remain the same as for finite biwords. Thus the

construction of the formulas can be described as follows:

ϕ :=Qa(x) | x <h y | x <v y | X(x) | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | ϕ ≡ ϕ |

∃xϕ | ∀xϕ | ∃Xϕ | ∀Xϕ,

where a ∈ Σ, x is a first-order variable and X is a second-order variable.

The interpretation of the formulas also remain the same, of course we use the biposet

representation of biwords as in the finite case. But now we will also interpret our

formulas over infinite constructible biposets. Hence the value of a second order variable

X can be both a finite and an infinite set of positions. The following simple proposition

can be proved easily by induction on the construction of P .

Proposition 4.6 If P = (P,<h, <v, λ) is a (finite or infinite) constructible biposet,

then <h ∪ <v is a linear order on P .

With Proposition 4.6 we can express the finiteness of a biposet as follows:

ϕfin := ∃x∀y[ (y <h x) ∨ (y <v x) ∨ (x = y) ]. (4.7)

Here, of course, x = y can be defined as ¬(x <h y)∧¬(x <v y)∧¬(y <h x)∧¬(y <v x).

Now we can assign an ω-binoid language to any MSO-formula:

Lω,ϕ := {w ∈ Σω(•, ◦) | wbp |= ϕ }.

Notice that because of (4.7)

Lω,ϕ = {w ∈ Σ∞(•, ◦) | wbp |= ϕ ∧ ¬ϕfin }.

Definition 4.7 We say that an ω-binoid language L ⊆ Σω(•, ◦) is MSO-definable if

there is a sentence ϕ with L = Lω,ϕ. Next, let MSOω denote the class of all MSO-

definable ω-binoid languages.

4.5 Regularity of ω-binoid Languages

Our next task is to define parenthesizing Büchi-automata so that a language is recog-

nizable if and only if it can be accepted by this kind of automaton. A straightforward

approach would be (as in the case of infinite words) to use the same accepting device

and just extend the notion of run appropriately for the acceptance of ω-biwords, but

as we shall see (in Remark 4.13) this cannot be accomplished. Therefore our definition

will be the following.
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Definition 4.8 ([Ném06]) A parenthesizing Büchi-automaton is a tuple A := (S,H,

V,Σ,Ω, [, δ, β, γ, I, F ), where A′ := (S,H, V,Σ,Ω, δ, γ, I, F ) is a parenthesizing automa-

ton, called the underlying parenthesizing automaton of A. And the new components are

the following:

- [ /∈ (Σ ∪ Ω) is the separating parenthesis, and

- β ⊆ (H × { [ } × V ) ∪ (V × { [ } ×H) is the separating transition relation.

For the sake of simplicity we shall write [p,w, q]A instead of [p,w, q]A′ if w is a

finite biword, and A′ is the underlying parenthesizing automaton of the parenthesizing

Büchi-automaton A.

Remark 4.9 As we have seen in Theorem 3.32, if we wish to accept all regular binoid lan-

guages, we cannot give a universal upper bound for the number of parentheses used in paren-

thesizing automata. On the other hand, as we need not close parentheses of the separating

transitions, a single symbol by itself is enough to change the type of the state at the borders of

a “finite− infinite” product.

Next, we will define when a parenthesizing automaton A accepts an ω-biword w

from a given state p. For this, we choose Büchi’s approach: for acceptance a run must

contain a final state r (in certain “outer” positions) infinitely many times. Let [p,w, r]∞A
denote this fact. Its definition distinguishes two cases and uses induction on the rank

of w. Recall that we write Type(p) = • when p is a horizontal state, and Type(p) = ◦

when p is a vertical state of A. Similarly, Type(w) = • (Type(w) = ◦) indicates that w

is a horizontal (vertical, resp.) biword.

Definition 4.10 ([Ném06]) Suppose that A = (S,H, V,Σ,Ω, [, δ, γ, β, I, F ) is a paren-

thesizing Büchi-automaton, p and r are in S, and w is an ω-biword in Σω(•, ◦). We write

[p,w, r]∞A in the following cases.

i) Type(p) = Type(w), and either

α) w can be written as w = w0 ∗ w1 ∗ w2 ∗ . . ., where each wi is a finite (not

necessarily ∗-irreducible) biword such that [p,w0, r]A and [r, wi, r]A for i > 0;

or

β) w = w′ ∗ w′′, where w′ ∈ Σ+(•, ◦), w′′ ∈ Σω(•, ◦), Rank(w′′) < Rank(w), and

there is a state q ∈ S such that [p,w′, q]A and [q, w′′, r]∞A, the latter being

defined inductively.
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Figure 4.2: A parenthesizing Büchi-automaton.

ii) Type(p) 6= Type(w), and there exists a state p′ ∈ S such that A has a separating

transition (p, [, p′) ∈ β, and [p′, w, r]∞A holds according to case i) above.

Definition 4.11 A parenthesizing Büchi-automaton A accepts the following ω-binoid

language

Lω(A) := {w ∈ Σω(•, ◦) | [i, w, f ]∞A for some i ∈ I and f ∈ F }.

As before, a language L ⊆ Σω(•, ◦) is regular if there is a parenthesizing Büchi-automaton

A such that L = Lω(A). Next, let Regω denote the class of regular ω-binoid languages.

Similarly to Definition 3.7, one could also define infinite runs in a formal way. In

this case, runs are ω-words over the union of the sets of labeling, parenthesizing and

separating transitions. Later we will employ the same notations as in the finite case:

Runs(A), Biposet(r) and so on.

Example 4.12 Figure 4.2 shows a parenthesizing Büchi-automaton. The horizontal states are

those labeled by Hi while the vertical states are those labeled by Vj for some i and j. There is

a single initial state H1 and a single final state H5. The angle brackets indicate parenthesizing

transitions, while the square brackets represent separating transitions. It is easy to verify that

this automaton only accepts ω-biwords of the form

(a ◦ b) • c • (a ◦ b) • c • . . . • (a ◦ b) • c • (d ◦ (e • (d ◦ (e • . . . (d ◦ (e • f • f • f . . .)) . . .))))

Notice that the term representation of the ω-biword above is

〈a ◦ b〉 • c • 〈a ◦ b〉 • c • . . . • 〈a ◦ b〉 • c • [d ◦ [e • [d ◦ [e • . . . [d ◦ [e • f • f • f . . .

Remark 4.13 As we mentioned earlier, we cannot use the original model of parenthesizing

automata for the acceptance of ω-biwords. First, there is no meaningful definition of closing a

parenthesis after processing an infinite subbiword. E.g. suppose that w = u • v is an ω-biword,

where u is a finite biword (either horizontal or vertical), and v is a vertical ω-biword. Now, if
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there is a finite run [p, u, q]A for some horizontal states p and q, we must open a parenthesis by

some transition (q, 〈, r) in order to arrive at a vertical state r, from where the acceptance of the

vertical ω-biword v can be started. However, as v is infinite, there is no possibility of closing this

parenthesis. Second, it can be demonstrated that we must distinguish between the normal and

these “non-closable” parenthesizing transitions, otherwise there would be recognizable ω-binoid

languages that could not be accepted by Büchi-automata. To see this, consider the language

L := {a • (b ◦ c) • dω• , a • (b ◦ (a • (b ◦ c))) • dω• , a • (b ◦ (a • (b ◦ (a • (b ◦ c))))) • dω• , . . .}. To

accept L any automaton must remember to close all the parentheses that it opens.

4.6 From Regularity to Recognizability

As in the finite case (Theorem 3.35), the fact that regularity implies recognizability

easily follows from the finite-state property of automata.

Theorem 4.14 ([Ném06]) Every regular ω-binoid language is recognizable. Thus

Regω ⊆ Recω.

Proof. Let L ⊆ Σω(•, ◦) denote a regular ω-binoid language. We show how to transform

a parenthesizing Büchi-automaton A = (S,H, V,Σ,Ω, [, δ, γ, β, I, F ) accepting L into a

finite ω-bisemigroup that recognizes L. The proof is analogous to the proof for ω-words

[PP04].

Recall that [p,w, q]A means that the underlying parenthesizing automaton of the

parenthesizing Büchi-automaton A has a run on the finite biword w from state p to state

q. Now, suppose that Type(p) = Type(q) = ∗, and consider a finite biword w. If w is

∗-irreducible, then take w1 = w and m = 1, otherwise let the maximal ∗-decomposition

of w be w = w1 ∗ w2 ∗ . . . ∗ wm for some m ≥ 2.

Now, according to Definition 3.3, there are states p0 = p, p1, . . . , pm = q of type ∗

such that [p0, w1, p1]A, [p1, w2, p2]A, . . . , [pm−1, wm, pm]A hold. Let us write [p,w, q]A+

to indicate the existence of such states for which {p0, . . . , pm}∩F 6= ∅. Thus [p,w, q]A+

if and only if there is at least one final state among the “outer” states of a possible run

between p and q on w.

Next, we will define for any w, u ∈ Σ+(•, ◦) and w′, u′ ∈ Σω(•, ◦)

w ∼F u iff ∀ p, q ∈ S :
(
[p,w, q]A ⇔ [p, u, q]A and [p,w, q]A+ ⇔ [p, u, q]A+

)
,

w′ ∼I u
′ iff ∀ p ∈ S :

(
∃ r ∈ F : [p,w′, r]∞A ⇔ ∃ r

′ ∈ F : [p, u′, r′]∞A
)
.

Here one can verify that ∼F and ∼I are equivalence relations with finitely many equiv-

alence classes. Furthermore, they satisfy the following equalities. If wi, ui ∈ Σ+(•, ◦),
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for i = 1, 2, . . ., and w′, u′ ∈ Σω(•, ◦), ∗ ∈ { •, ◦ }, then

w1 ∼F u1, w2 ∼F u2 ⇒ w1 ∗ w2 ∼F u1 ∗ u2,

wi ∼F ui for i > 0 ⇒ w1 ∗ w2 ∗ . . . ∼I u1 ∗ u2 ∗ . . . , and

w1 ∼F u1, w
′ ∼I u

′ ⇒ w1 ∗ w
′ ∼I u1 ∗ u

′.

Hence the pair (∼F ,∼I) is in fact a congruence of ω-bisemigroups. Thus the quotient of

Σ∞(•, ◦) / (∼F ,∼I) can be equipped with the structure of an ω-bisemigroup. Moreover,

the canonical epimorphism of Σ∞(•, ◦) onto Σ∞(•, ◦) / (∼F ,∼I) recognizes L(A). �

4.7 From Recognizability to Regularity

Below we intend to prove the converse of Theorem 4.14, namely that every recognizable

ω-binoid is regular, i.e. each can be accepted by a parenthesizing Büchi-automaton.

Theorem 4.15 ([Ném06]) Every recognizable ω-binoid language is regular. Thus

Recω ⊆ Regω.

Proof. Suppose that an ω-binoid language L ⊆ Σω(•, ◦) is recognized by a homomor-

phism ϕ : Σ∞(•, ◦)→ B, where B = (BF , BI) is a finite ω-bisemigroup, and L = ϕ−1(F )

for some F ⊆ BI .

Let us call an element e ∈ BF horizontally idempotent if it is idempotent with

respect to the horizontal product, i.e. e • e = e. Similarly, e is said to be vertically

idempotent if e ◦ e = e. This notion is important because every primitive ω-biword

w0 ∗w1 ∗ . . . can be written in the form w′
0 ∗w

′
1 ∗ . . ., where ϕ(w′

0) = b and ϕ(w′
i) = e for

all i > 0, where e is a ∗-idempotent element of BF . This follows from an application of

the Ramsey-theorem (cf. [PP04]). We can even assume that b = b ∗ e, but we need not

do this now.

Thus if we omit w′
0 from the above ω-biword, then the remaining primitive ω-biword

is w′
1 ∗w

′
2 ∗ . . ., where ϕ(w′

i) = e for all i > 0. Let us call ω-biwords that can be written

in such a form e-∗-primitive.

For a given e and ∗, the set of all e-∗-primitive ω-biwords can be easily accepted

by a parenthesizing Büchi-automaton Ae,∗ constructed as follows. Since ϕ−1(e) is a

recognizable set of finite biwords, then, by Theorem 3.35, it is also regular. So there is a

parenthesizing (finite) automaton A which accepts ϕ−1(e). Moreover, by Lemma 3.23,

it can be assumed that A is in ∗-normal form (i.e. in horizontal normal form if ∗ = •, or

in vertical normal form if ∗ = ◦). Hence A has a single initial state i and a single finite
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state f , both of which are of type ∗. We can transform A into Ae,∗ just by merging i

and f . We will refer to this fused state as the basic state of Ae,∗. Now it is obvious that

if we regard Ae,∗ as a Büchi-automaton with its basic state as a single initial and final

state, it will accept exactly the e-∗-primitive ω-biwords.

Recall that the normal form of an ω-biword is

w1 ∗1 (w2 ∗2 . . . (wk ∗k (u1 ∗k+1 u2 ∗k+1 . . .))),

where w1, . . . , wk, u1, u2, . . . are in Σ+(•, ◦). We can assume that except for a finite

factor u′, the ω-biword u1 ∗k+1 u2 ∗k+1 . . . is e-∗k+1-primitive for some ∗k+1-idempotent

e. Thus we only need to build our automaton in such a way that it can also process the

finite “introductory slice” w1 ∗1 (w2 ∗2 (. . . wk ∗k (u′∗k+1 before the e-∗k+1-primitive tail.

Now assume that BI = {t1, t2, . . . , tm}. We start to construct a Büchi-automaton A

from the horizontal states H0, vertical states V0, with separating transitions β, where

H0 := { t•1, t
•
2, . . . , t

•
m },

V0 := { t◦1, t
◦
2, . . . , t

◦
m }, and

β := { (t•i , [, t
◦
i ), (t

◦
i , [, t

•
i ) | i = 1, . . . ,m }.

For all b ∈ BF , there is a parenthesizing (finite) automaton Ab recognizing ϕ−1(b).

We will incorporate these finite automata into A.

More precisely, if p and q are states of A of the same type, say ∗, then one can take

a copy of Ab in ∗-normal form and merge its initial state i and final state f with the

states p and q of A, respectively. In the following, we shall refer to this construction as

an extension of A (between p and q) by ϕ−1(b). Let us denote it by

p
ϕ−1(b)
=⇒ q.

We need to add the following extensions to A:

t∗i
ϕ−1(b)
=⇒ t∗j for all ti = b ∗ tj, b ∈ BF , ti, tj ∈ BI , ∗ ∈ { •, ◦ }.

Now we obviously have

[ t∗i , w, t
∗
j ]A ⇔ ti = ϕ(w) ∗ tj for any w ∈ Σ+(•, ◦).

Furthermore,

[ t∗i , w1 ∗1 (w2 ∗2 (. . . wk−1 ∗ (wk∗k, t
∗
j ]A ⇔ ti = ϕ(w1) ∗1 (ϕ(w2) ∗2 (. . . ϕ(wk) ∗k tj)),
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Figure 4.3: A Büchi-automaton accepting the recognizable language of Example 4.5.

where the left hand side is an abbreviation for the first part of an infinite run of A (as

a Büchi-automaton) on any ω-biword beginning with w1 ∗1 (w2 ∗2 . . . (wk∗k.

Next, add an instance of Ae,∗ for each ∗-idempotent element e in BF to A, and

ensure the reachability of the new components by adding some new transitions. In

more detail, for Ae,∗, consider t := eω∗ and duplicate each transition arriving at t∗

using the same source and label, but with the target of the basic state of Ae,∗ instead

of t∗.

Our last task is to determine the initial and the final states. Let the initial states

be the states t• and t◦ for each t ∈ F , and set the basic states of the components Ae,∗-s

as final states.

Next, it can be argued by induction on the rank of the ω-biwords that this automaton

in fact accepts L = ϕ−1(F ). We will omit the formal proof of this. �

Example 4.16 Figure 4.3 shows a parenthesizing Büchi-automaton that was constructed ac-

cording to the proof of Theorem 4.15 from the homomorphism ϕ, the ω-bisemigroup B, and

the set F ⊆ B of Example 4.5. We omitted the two shrink states 0•, 0◦ that correspond to the

infinite zero element, and also the transitions pointing to them. We should mention, however,

that this example represents a somewhat special case, since, for every x ∈ BF the extension by

ϕ−1(x) is a single transition, and there is only one idempotent in BF . Of course, in the general

case the automaton we construct can have a more complex structure.

4.8 From Regularity to MSO-definability

In this section we will prove the equivalence of regularity and MSO-definability. First

of all, it is not hard to demonstrate that MSO-definability implies recognizability, and

hence regularity. This can be proved via formula induction using the closure properties

of the recognizable sets – more precisely, the closure under Boolean operations and



4.8. FROM REGULARITY TO MSO-DEFINABILITY 99

direct letter-to-letter homomorphisms. See Chapter III.1 of Straubing [Str94] for a

similar argument. Thus we have the following theorem.

Theorem 4.17 ([Ném06]) Every MSO-definable ω-binoid language is regular. Thus

MSOω ⊆ Regω.

In the rest of this chapter we will attempt to prove the converse of this which can

also be stated as follows:

Theorem 4.18 ([Ném06]) Every regular ω-binoid language is MSO-definable. Thus

Regω ⊆ MSOω.

Since the proof involves the construction of an MSO-formula for a given regular

ω-binoid language, here we will represent biwords (resp. ω-biwords) by sp-biposets

(resp. constructible infinite biposets). But before the proof, let us introduce a couple

of definitions and lemmas.

Recall that if w is a biword or an ω-biword, then wbp denotes its biposet represen-

tation, wtr denotes its tree representation and wtm stands for its term representation.

Similarly, if P is a constructible biposet, then there is a unique biword or ω-biword w

such that P = wbp. In this case let P tr := wtr and P tm = wtm. It is obvious that for

any leaf node in P tr there is a corresponding vertex in P . Hence, we may and shall

identify the leaves of P tr with the corresponding vertices of P . This allows us to speak

about elements and subsets of P as those of P tr. Similarly, we can identify vertices of

P with the corresponding letters in the term representation P tm.

The notion of clans is a useful idea whose definition comes from the theory of

2-structures [ER90] and texts [ER93, HtP97]. If (P,<h, <v, λ) is a finite or infinite

constructible sp-biposet, a subset X of P is said to be a clan of P if for all x, y ∈ X,

z ∈ P \X and for each relation ρ ∈ {<h, <v, <
−1
h , <−1

v }

xρz ⇔ yρz.

Two clans X and Y overlap if X ∩ Y 6= ∅, X \ Y 6= ∅ and Y \ X 6= ∅. A clan is

called a prime clan if it does not overlap with any other clan. A clan of P is called a

proper clan if it is neither a singleton nor equal to P .

Example 4.19 In the sp-biposet of Example 2.18, the clans of P are the following: the sin-

gletons, P , { 1, 2, 3, 4 }, { 2, 3, 4 }, { 3, 4 }, { 2, 3, 4, 5, 6 } and { 5, 6 }. Since only { 1, 2, 3, 4 } and

{ 2, 3, 4, 5, 6 } overlap, the other clans are prime clans as well. Thus the proper prime clans are

{ 2, 3, 4 }, { 3, 4 } and { 5, 6 }. As we will see later in Lemma 4.22, these are the sets which are

surrounded by parentheses in the term representation of P .
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The proof of the following lemma is trivial and is left to the reader.

Lemma 4.20 ([Ném06]) The property of being a clan, a prime clan or a proper prime

clan can be expressed in MSO logic.

Recall that by Proposition 4.6 <h ∪ <v is a linear order on any finite or infinite

constructible biposet (P,<h, <v, λ). In the following let < denote the <h ∪ <v relation,

and we will interpret the functions + and − according to this linear order as well.

By definition, clans form sections (or intervals) with respect to <. That is, if X is

a clan then x ∈ X, y ∈ X and x < z < y imply z ∈ X. Hence, we can talk about prefix

and suffix relations among the clans of P . Formally,

Prefix(X,Y ) := X ( Y ∧ ∀x∀y
(
y < x ∧X(x) ∧ Y (y)→ X(y)

)
;

Suffix(X,Y ) := X ( Y ∧ ∀x∀y
(
y > x ∧X(x) ∧ Y (y)→ X(y)

)
,

where X ( Y means that X is a proper subset of Y . Thus under prefix and suffix

relations we always mean proper prefix and suffix.

Two (or more) subtrees of a tree are said to be sibling subtrees if their roots have

the same parent.

Lemma 4.21 ([Ném06]) Suppose that P is a (finite or infinite) constructible biposet

and X is a subset of P , then

(i) X is a clan of P if and only if there are consecutive sibling subtrees in P tr such

that X is exactly the union of the sets of leaves of these subtrees;

(ii) X is a prime clan of P if and only if X is the set of leaves of a single subtree of

P tr.

Proof. We will begin with a proof of case (i). The necessity of the condition is based

on the following observation. Suppose that x and y are vertices of P . As we mentioned

earlier, we can regard them as two leaves in the tree representation P tr. The (horizontal

or vertical) type of the order relation between x and y is solely determined by the label

of their lowest common ancestor node. For this reason, let u denote the lowest common

ancestor of x and y. If the label of u in P tr is •, then x <h y or y <h x; if the label

is ◦, then x and y are ordered vertically. We can also easily decide whether x is less or

greater than y. Consider ux and uy, the children of u that are ancestors of x and y,

respectively. Now x is less than y if and only if ux is less than uy according to the order

of the children nodes at u. It follows that if a subset X of P satisfies the condition
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of (i), then it also fulfills the requirements of being a clan. Indeed, the order relation

between a vertex x from X and a vertex y outside X is independent of the choice of x

from X.

For the converse direction, let us suppose, on the contrary, that X is a clan, but

the condition does not hold. First let v denote the lowest common ancestor node of the

vertices of X. Now consider those children of v that have leaves in X, and then take

the subtrees generated by them. The condition can be violated in two ways. Either

these subtrees are not consecutive or there is a subtree that has leaves both from X

and P \X. In the first case, it is straightforward to show that X is not a clan. In the

second case, consider a child u of v that has a leaf x in X and has a leaf z in P \ X

as well. We can even assume that x and z are descendants of different children of u, so

their lowest common ancestor is u. Moreover, there must also be a vertex y in X whose

lowest common ancestor with x is v, otherwise the lowest common ancestor of the set

X could not be v. But x and z are related by an order of type determined by the label

of u, while y and z are related by an order of type determined by the label of v. As

u is a child of v, their labels in P tr are different. Consequently, the types of the order

relations between x and z and between y and z are also different. This contradicts our

assumption that X is a clan.

Now case (ii) easily follows from case (i), since if X consists of the leaves of several

(but not all) subtrees of a given node, then overlapping clans can be constructed by (i),

showing that X is not prime. �

The following lemma is important for a later proof. It relates the biposet, tree and

term representations of finite biwords with the use of parentheses of a PA in a run.

Recall that E′(Σ) = Σ ∪ { • , ◦ , 〈 , 〉 }.

Lemma 4.22 ([Ném06]) For any P ∈ SPB(Σ), X ⊆ P , parenthesizing automaton A,

and r ∈ Runs(A) with P = Label(r)bp, the following statements are equivalent:

(i) X is a proper prime clan of P .

(ii) X is the set of leaves of a proper subtree of P tr.

(iii) P tm can be written as P tm = u〈Xtm〉v, where u, v ∈ E′(Σ)∗, and the subword

Xtm above corresponds to those vertices of P that are in X. 3

(iv) r is of the form r = r1t1rxt2r2, where r1r2 6= ε, t1 and t2 form a matching

parenthesizing transition pair in r, and rx denotes the direct subrun of r on the

vertices of X.

3Note that the subword Xtm can also appear at other places in the word P tm.
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Proof. The equivalence of (i) and (ii) follows from Lemma 4.21. The equivalence of (ii)

and (iii) is obvious as it expresses a typical correspondence between the term and the

tree representations. Finally, the equivalence of (iii) and (iv) is simply a consequence

of Lemma 3.12. �

Now we are ready to begin the proof of the main theorem here.

Proof of Theorem 4.18. As we saw in Section 3.11, for binoid languages the equiv-

alence of MSO-definability and recognizability (and hence regularity) directly follows

from an analogous equivalence result on text languages shown by Hoogeboom and ten

Pas [HtP97]. Even though, here we will outline an alternative proof of this fact, since it

will serve as the basis for the proof of the infinite case. Our argument does not rely on

the equivalence of recognizability and MSO-definability of finite binary trees, but shows

how the operations of parenthesizing automata can be described by logical formulas.

Thus we start with the finite case, i.e. with sp-biposets and finite biwords, and explain

the necessary changes for the infinite case later on.

First, let A = (S,H, V,Σ,Ω, δ, γ, I, F ) be a parenthesizing automaton accepting a

binoid language L. Our aim is to construct an MSO-formula ϕ for which Lϕ = L.

The proof of Lemma 3.23 implies that we may assume that A accepts biwords via

direct and singleton runs only. Therefore, it is sufficient to construct a formula ϕi,f

which expresses the fact that A has a direct run from an initial state i to a final state

f .

We use second order variables to store information about the states of the runs. To

be more precise, two types of monadic second order variables will be used. First, let

Xs be a variable for each state s in S, and let Z〈j〉j denote a variable for each pair of

parentheses in Ω. Formally,

SOVarA := {Xs | s ∈ S } ∪ {Z〈j 〉j | 〈j , 〉j ∈ Ω }.

The general form of ϕi,f is the following

ϕi,f := ∃Xs1∃Xs2 . . . ∃Xsm∃Z〈1〉1∃Z〈2〉2 . . . ∃Z〈n〉nψi,f ,

where ψi,f expresses the fact that the values of our variables actually encode a direct

run of A from i to f .

We need to check three conditions. First, the run must start from i. Second, it must

end in f . Third, we need to be sure that A has correct transitions everywhere between

the states indicated by the variables. We will handle the labeling and the parenthesizing

transitions of the run separately.
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For labeling transitions, the usual technique (cf. [Str94]) can be applied, that is,

the intended meaning of Xs(x), i.e. x ∈ Xs, is that A reads position x in state s. The

storage of parenthesizing transitions is more involved. Fortunately, by Lemma 4.22 the

use of parentheses is always around proper prime clans. But we also need to arrange

a unique position in the biposet for each matching parenthesizing transition pair used

during the run.

For this purpose, the following rule can be applied. If a proper prime clan is a

prefix of another proper prime clan, then let the designated position be its last position;

otherwise let the designated position be its first position. Thus the statement that z is

the designated position of a proper prime clan X can be expressed as:

Dp(z,X) :=
[
¬∃Y

(
PPC(Y ) ∧ Prefix(X,Y )

)
∧ First(z,X)

]

∨
[
∃Y

(
PPC(Y ) ∧ Prefix(X,Y )

)
∧ Last(z,X)

]
,

where PPC(Y ) states that Y is a proper prime clan, and First(z,X) (Last(z,X)) is

true if and only is z is the first (last, resp.) position of the clan X.

Now it can be verified that the prime property implies that the designated positions

of any two proper prime clans never coincide.

Lemma 4.23 ([Ném06]) Different proper prime clans have different designated posi-

tions.

Proof. We will start by assuming this is not so, and show that it leads to a contradiction.

So first assume that X and Y are different proper prime clans, but z is their common

designated position. If z is the first position of both X and Y , then either X is a prefix

of Y , or Y is a prefix of X, which contradicts the definition of a designated position. If

z is the first position of one clan and the last position of the other clan, then X and Y

overlap, which again leads to a contradiction. Finally, assume that z is the last position

of both X and Y , and X ⊆ Y . By definition, there is a proper prime clan X ′ such

that X is a prefix of X ′. Therefore, in this case, Y and X ′ overlap – which is again a

contradiction. �

Proof of Theorem 4.18, continued. In the following, we shall assume that no automa-

ton has two opening or closing parenthesizing transitions with the same label. This can

easily be achieved by replacing the multiple occurrences of the same parenthesizing

transition pair with new transitions using different symbols.

If x is a position, then the intended meaning of Z〈j ,〉j (x) is that A uses parentheses

〈j , 〉j (more precisely, the unique pair of transitions labeled 〈j and 〉j) before and after

processing the proper prime clan whose designated position is x.
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As usual, we require that every position belongs to exactly one Xs:

ψ1 := ∀x
[ ∨

s∈S

Xs(x) ∧
∧

q1,q2∈S,
q1 6=q2

(
¬Xq1(x) ∨ ¬Xq2(x)

) ]
.

Moreover, the designated positions of proper prime clans must also belong to a

unique set Z〈i〉i :

ψ2 := ∀x

[
∃X

(
PPC(X) ∧Dp(x,X)

)

→
∨

〈j ,〉j∈Ω

Z〈j〉j (x) ∧
∧

〈j ,〉j∈Ω,

〈k,〉k∈Ω,
j 6=k

(
¬Z〈j〉j (x) ∨ ¬Z〈k〉k(x)

)]
.

We know that for all positions x, the state of A before processing this position is

indicated by a unique state p such that x ∈ Xp. And q, the state after reading position

x, can be computed as follows. First we observe whether P has a proper prime clan

that ends at x. If so, then we determine the smallest such clan, and q is the starting

state of the closing parenthesizing transition of that clan. Of course, this state can be

determined by observing the designated position of the clan. If there is no proper prime

clan that ends at x, then q is indicated at the position x + 1 or at the greatest prime

clan that starts at x+ 1. In addition, if x is the last position, then q must be the final

state of the run. Finally, we can check whether A in fact has a labeling transition with

the label of x between p and q. We should do this for every position x. The precise

algorithm of this computation and the way of converting it to an MSO-formula are given

in the Appendix.

We can also check the correctness of the parenthesizing transitions by a similar

procedure. For all proper prime clans, we compute four states of the encoded run: the

states before and after the opening, and before and after the closing parenthesizing

transitions around the clan. In the pseudocode presented in the Appendix, these states

are denoted by ob, oe, cb and ce. Then, it is straightforward to check whether A

has a parenthesizing transition pair between the computed states, and whether the

labels of these transitions are indicated at the designated position of the clan. It is

also a nontrivial computation, since we must take into consideration various inclusion

relations of the clans. For more details, see the Appendix once again.

Finally, note that our verification algorithm can be transformed into an MSO-

formula ψ3. Hence we can write ψi,f as ψi,f := ψ1 ∧ ψ2 ∧ ψ3. This completes the

proof for finite constructible biposets.
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We will now turn to a brief discussion of the infinite case. Here we will only describe

the slight modifications needed compared to the finite case. First, the adaptation of

Lemma 4.22 to infinite constructible biposets can be done in the following way. Note

that we must distinguish between finite and infinite clans, but this distinction is in

parallel with the use of the parenthesizing and separating parentheses.

Lemma 4.24 ([Ném06]) For any P ∈ ISPB(Σ), X ⊆ P , parenthesizing Büchi-

automaton A, infinite run r ∈ Runs(A) with Label(r)bp = P , the following statements

are equivalent:

(i) X is a finite proper prime clan of P .

(ii) X is the set of leaves of a finite proper subtree of P tr.

(iii) P tm can be written as P tm = u〈Xtm〉v, where u, v ∈ E′(Σ)∗, and the subword

Xtm above corresponds to those vertices of P that are in X.

(iv) r is of the form r = r1t1rxt2r2, where t1 and t2 is a matching parenthesizing

transition pair, and rx denotes the direct subrun of r on the vertices of X.

Moreover, the following statements are also equivalent.

(i’) X is an infinite proper prime clan of P .

(ii’) X is the set of leaves of an infinite proper subtree of P tr.

(iii’) P tm can be written as P tm = u[Xtm, where u ∈ E′(Σ)∗, and the subword Xtm

above corresponds to those vertices of P that are in X.

(iv’) r is of the form r = r1trx, where r1 6= ε, t is a separating transition of A, and rx

denotes the direct subrun of r on the vertices of X.

Now we return to the final part of the proof of the main theorem here.

Proof of Theorem 4.18, completed. It is trivial that we can express the finiteness of

clans, as

Finite(X) := ¬∃z Last(z,X).

Hence we can easily locate the separating transitions and check their correctness as

well. Furthermore, we have no trouble in formulating the acceptance condition: a finite

state has to appear infinitely often as an outer state of the encoded run. We will leave

the reader to verify the correctness of the formulas below.
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ψacc :=
∨

f∈F

∀z ∃X

[
MaxFiniteClan(X) ∧OuterStatef (X)

∧ ∀x
(
Last(x,X)→ (z < x)

) ]
;

MaxFiniteClan(X) := Finite(X) ∧ Clan(X)

∧ ¬∃Y
(
Finite(Y ) ∧ Clan(Y ) ∧X ( Y

)
;

OuterStatef (X) :=
[
Singleton(X) ∧ ∃x

(
X(x) ∧Xf (x)

) ]

∨
[
PPC(X) ∧

∨

(f,〈k ,p)∈γ
〈k∈Ω,p∈S

∃z
(
Dp(z,X) ∧ Z〈k〉k(z)

) ]
.

Of course, the formulas Finite(X), Clan(X) and Singleton(X) have their expected

meanings here. �

Finally, we can summarize the main results of this chapter in a concise way.

Theorem 4.25 ([Ném06]) Let L ⊆ Σω(•, ◦). Then L is recognizable if and only if L

is regular if and only if L is MSO-definable. Thus Recω = Regω = MSOω.



Chapter 5

Conclusions

Finally, I would like to present three things. First I would like to summarize the main

contributions in a series of points. Second I will draw some general conclusions. Then

I would like to outline some open problems and possible future directions of research.

5.1 Thesis Contributions

• In the thesis I investigated two-dimensional languages as a generalization of classical

word languages. The generalization is based on an algebraic approach namely I

considered elements of the free binoids – called biwords – instead of words, which

are elements of the free monoids.

• Biwords can be represented in a numbers of ways. Here I investigated sp-biposet,

two-dimensional word, term, condensed term, ordered unranked tree, i-term, i-cterm

(i ≥ 1), and alternating text representations.

• I introduced parenthesizing automata whose function is to accept binoid languages

and to define the class of regular binoid languages. Then I proved that the expres-

sive power of PA is the same as that of algebraic recognizability and second-order

monadic definability, i.e. Reg = Rec = MSO. After I elaborated on the operation

of a PA from different perspectives. Naturally, given a PA and a biword, we have

a nondeterministic linear time algorithm which decides whether the automaton ac-

cepts the biword. Furthermore, parenthesizing automata are suitable for exploring

combinatorial properties of recognizable binoid languages.

• With the help of the PA concept I also demonstrated that regular binoid languages
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are closed under ξ-substitution, which immediately implies some other closure prop-

erties – namely closure under the products, iterations and homomorphisms.

• Recall the Regi denote those binoid languages that can be accepted by a PA with

at most i pairs of parentheses symbols (i ≥ 0). I found that these languages classes

form a strict hierarchy, that is

Reg0 ( Reg1 ( Reg2 ( . . .

• I investigated various classes of rational binoid languages (HRat, VRat, BRat, GRat),

horizontally (HB) and vertically bounded (VB) languages, along with binoid lan-

guages of bounded depth (BD). I established the following relationships among

them.

BRat = Reg ∩ BD = Reg1 ∩ BD,

HRat = Reg ∩ VB, VRat = Reg ∩ HB and

HRat ∪ VRat ( BRat ( GRat ( Reg.

• I extended my investigations to ω-biwords. I presented a free algebra theorem and

a graph-theoretic (or order-theoretic) characterization for them.

• I defined parenthesizing Büchi-automata operating on ω-biwords and with the help

of them I demonstrated that the equivalence of regularity, recognizability and MSO-

definability holds for ω-binoid languages as well, i.e. Regω = Recω = MSOω.

• All the results can be generalized to higher dimensions, i.e. to free algebras where

three or more independent associative operations are present.

5.2 General Conclusions

Some specific conclusions were already drawn in Section 3.12.3. Now we will have a

brief discussion about the effectiveness of the characterization, about our new automata

model and about a way of generalizing our theory to higher dimensions.

First it should be mentioned that all of our characterizations of the classes Reg, Regω

and Reg ∩ BD are effective in the sense that, from any realization (by an automaton, a

recognizing (ω)-binoid, an MSO-formula or a rational expression) of a concrete language,

any equivalent other realization can be constructed via an algorithm. For instance, for a

PA an equivalent monoid automaton (for the Ti-mode or Ci-mode) can be constructed,
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and vice versa. Furthermore, this transition algorithm increases the number of states of

the automaton by just a constant factor. Of course, the conversion of a nondeterministic

PA to equivalent recognizing binoids requires exponential time, since this is already

unavoidable in the word case.

If we look at a PA as a model of computations an disadvantageous feature about it

arises. It is that a PA is not a finite state device, at least in the strict sense. Indeed, in

Section 3.2.3, where configurations and a transition relation among them were defined,

we saw that the second component of a configuration serves as a pushdown stack. It

stores the opened (but not yet closed) parentheses. In fact it stores the parentheses

together with their indices given by the parenthesizing transition that was used when

the parentheses was processed. Hence a PA obviously possesses some ‘internal memory’

with a pushdown behavior, whose size is not limited by the automaton. Of course,

during a concrete computation on a biword w, the size of the stack is equal to the depth

(see Definition 3.43) of w.

However it should be noticed that the nonregularity of the Dyck word languages (see

Section 2.6.7) implies that, if the acceptance is based on the term or cterm representation

of biwords, it cannot have the finite state property. Of course in theory it is possible

to build an accepting device on another representation of a biword, e.g. on sp-biposets.

But sp-biposets themselves are not linear objects, and if we wish to consider the linear

order determined by <h ∪ <v, we get back the same linear order given by the term

representation, i.e. the ordering of the letters when reading them from left to right.

Next, let us say a few words about the generalization of our theory to three or more

dimensions. Let n be any positive integer greater than two. In Sections 2.2 and 2.3 n-

semigroups and n-monoids were introduced as the kind of algebras where n associative

operations are defined. In addition, n-monoids have a common identity elements for all

their operations. Afterwards, for any alphabet Σ we can consider the free n-monoids

over Σ whose elements can be called n-words.

The free algebra theorem, i.e. the representation of n-words by constructible n-

posets was stated in Theorem 2.11. As for the other representations, it is straightforward

to extend the two-dimensional word, term and tree representations of biwords. Of

course, for the latter two, n operation symbols like ◦1,. . . ,◦n, are needed. But for the

generalization of the cterm representation, a single pair of parenthesis is insufficient,

since the indices of the operation symbols in an n-word (n ≥ 3) are not always alternates

among the parentheses as in the biword case. But one can still employ n pairs of

parentheses to reconstruct the type of the operations, and hence achieve a condensation.
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For instance the 3-word 〈a ◦3 〈b ◦1 c〉〉 ◦2 d can be reduced to ◦2 〈3a〈1bc〉1〉3d.

The generalization of recognizability and MSO definability for n-monoid languages

is trivial. As for regularity, we need to change the parenthesizing automata models just

sightly. Actually the states of automata need to be divided into n sets S1, S2, . . . , Sn,

not just two. Moreover, parenthesizing transitions now can take place between any

two states from any two distinct sets. In addition, during the operation of the n-

dimensional automata we require that if a run goes through a state from the set Si,

then the ◦i operation should be applied between the labels of the subruns appearing

before and after that state.

Although the generalization of texts with n linear orders is of course possible, it

seems that we cannot get a generalization of the isomorphism established between al-

ternating text and sp-biposets in Lemma 3.69. Nevertheless the method presented in

Section 4.8 can still be used to prove the equivalence between regularity and MSO-

definability for n-monoid languages.

Lastly, it is not hard to see that with these changes the generalized versions of

Theorem 3.35 and Theorem 3.70 can be proved.

5.3 Open Problems and Further Directions

I cannot deny that the results of this thesis are really just the first steps in the inves-

tigations of binoid languages. Not surprisingly several problems remain open. In the

following we will briefly outline some of them. This list can also be viewed as a form of

self-criticism stating what else should have been done and should be done in the future.

Actually, I learnt some of these points from the referee’s reports of my publications, for

which I am most thankful.

• We managed to generalize the equivalence of regularity, recognizability and MSO-

definability from word languages to binoid languages, but we only succeed in defin-

ing an equivalent concept of rationality in the bounded depth case. However our

investigation showed that GRat ( Reg, i.e. the two product operations and the

two iterations even with the complementation is insufficient to construct all regular

binoid languages from finite binoid languages. On the other hand, if we allowed

ξ-iteration, it would generate nonregular binoid languages, as the following classical

example shows:

{a • ξ • n}∗ξ = {a•n • ξ • b•n | n ≥ 0}.

Here the ξ-iteration of a binoid language is defined in the same way as for tree
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languages (cf. [GS84]), i.e. L∗ξ = ∪i≥0L
ξ
i , where Lξ

0 = {ξ}, and Lξ
i+1 = Lξ

i [L/ξ]∪L
ξ
i .

Now the question is whether the ξ-iteration has a kind of restriction which captures

regularity, or whether there is any other operation which (with the operation of BRat

or GRat) generates all regular languages from the finite binoid languages. Recall

that the classical Kleene theorem describes the behavior of finite automata by the

operations of union, concatenation and iteration. Therefore, put another way, we

would like to now what the operations on binoid languages are which capture the

behavior of parenthesizing automata.

• Another open problem that seems to be difficult to solve is the decidability status

of the question whether a given regular language appears at certain level of the

hierarchy of the classes Regi, i ≥ 0. It would also be interesting to know whether

the levels of this hierarchy can be characterized logically or algebraically.

• In the thesis we did not deal with first-order definable binoid languages. Their

decidability and algebraic characterization are open problems as well. Perhaps it is

also possible to do this in terms of parenthesizing automata. It should be mentioned

here too that there is a natural correspondence between the class of generalized

binoid languages (GRat) and the class of star-free word languages. Moreover, in

[ÉN04] the notion of aperiodic binoids was introduced. There it was shown that

every binoid language in GRat can be recognized in an aperiodic binoid. However as

for the converse statement – namely whether every binoid language recognized in an

aperiodic binoid is generalized birational – is currently an open question.

• Two fundamental algorithms of classical automata theory are the determinization

and minimization algorithm of automata. Can they be extended to parenthesizing

automata? It is not hard to define deterministic PA and show that every non-

deterministic PA is equivalent to a deterministic one. Indeed, from the proof of

Rec ⊆ Reg (Theorem 3.35) we get a PA that can be regarded as deterministic. This

is not surprising at all, as recognizability is clearly a deterministic notion. How-

ever this leads to just an indirect algorithm of determinization: first one needs to

transform a nondeterministic PA to an equivalent binoid, and then transform it back

to a deterministic PA. Notice that this procedures increase exponentially not just

the states of the original automaton (which is, of course, unavoidable) but also the

number of parenthesis symbols. Is there any direct algorithm which is better in this

aspect?

• During the construction of infinite biword we applied some serious restrictions: we
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only allowed to form the (horizontal or vertical) product of two finite biwords, or a

finite biword with an infinite one. Also the ω-product operations were applied only

to finite biwords. This restriction seem to be necessary for our proofs. However

it has been shown that classical automata can be extended from words (i.e. from

labeled finite linear orders) not just to ω-words, but also to ordinal words and even

to any countable linear orders [BC07]. Is it possible to generalize parenthesizing

automata in this way too?

• Finally it would also be good to look for concrete applications of our theory. Since

the special features of biwords and their n-dimensional generalizations is that they

are naturally equipped with some nested structures, it seems obvious to look for

applications where some nestedness (of arbitrary depth) is present, e.g. in XML

databases and in modeling recursive function calls. Concrete applications of PA

theory would demonstrate the usefulness of it, help us to see its connections with

the real word, and provide insights into its detailed workings.



Summary

In this thesis we laid the foundations for a two-dimensional theory of automata and

languages. For the generalization from the one-dimensional case of words we adopted

an algebraic approach, namely we considered languages over free binoids. It is a gener-

alization of monoids where two independent associative operations are defined and they

share a common identity element. We managed to generalize the equivalence of regular-

ity, recognizability and MSO-definability from word languages to binoid languages and

to ω-binoid languages as well. We also introduced various concepts of rational binoid

languages and examined their relationships. All the results can be generalized to higher

dimensions, i.e. to free algebras where three or more independent associative operations

are present.

The first chapter gave an introduction to the general notion of regularity. We out-

lined preliminary studies relevant to our investigations, stated the main aims of the

thesis and cited related literature. In addition, we enumerated our key results and we

briefly outlined the structure of the thesis.

In Chapter 2 we dealt with a two-dimensional algebraic generalization of words

called biwords. In Section 2.1 we recalled some basic notions frequently used in the

theory of formal languages and algebra, and we introduced some notations. In the

next two sections we investigated those free algebras whose elements we worked with –

namely free bisemigroups and binoids. Before discussing free binoids and their elements,

we considered the more general framework of (m,n)-semigroups and (m,n)-structures

introduced by Ésik. This general setting allows one to consider any finite number of op-

erations that are associative, or associative and also commutative. First in Section 2.4

we presented the proof of a theorem in [Ési00] which states that the elements of the

free (m,n)-semigroups can be described by so-called reducible (m,n)-structures. As

a special case of this result we also obtained a description of the elements of the free

n-semigroups (resp. bisemigroups) by constructible n-posets (resp. by series-parallel

biposets). Section 2.6 was essential for the subsequent chapters, since the representa-
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tions of biwords – the elements of the free binoids – were studied there. Namely, we

introduced sp-biposet, term, condensed term, two-dimensional word, tree, i-term and

i-cterm representations of biwords. We gave a characterization of those words that are

i-terms or i-cterms (Lemma 2.19 and Lemma 2.20). Then we discussed the properties

and the suitability of the various representations. In Section 2.7, based on [Ési00], a

graph-theoretic (or order-theoretic) characterization of the elements of the free (m,n)-

semigroups, n-semigroups and bisemigroups was given (Theorem 2.25, Corollaries 2.26

and 2.27).

In Chapter 3 we studied languages of finite biwords and parenthesizing automata

which operate on them. In Section 3.1 the novel concept of parenthesizing automata

was introduced (Definition 3.1), which was then illustrated by a simple example. In

Section 3.2 the operation of parenthesizing automata was discussed. We considered

three approaches, and afterward we proved that they are in fact equivalent. Thus any

of them is suitable for defining the concrete binoid language accepted by an automaton,

and hence the class of regular binoid languages. Section 3.3 contains some examples for

parenthesizing automata and regular binoid languages. These aided our understanding

and appeared in later proofs as well. In Section 3.4 we demonstrated the necessity of

forbidding double parenthesization in automata and the technical difficulties it causes.

In Section 3.5 the notion of a substitution product (Definition 3.20) was introduced to

overcome these difficulties. Next, in Section 3.6 we studied normal forms of parenthe-

sizing automata, and proved that for each parenthesizing automaton A there exists an

equivalent automaton Ah (resp. Av) which has a single horizontal (resp. vertical) pair

of initial and final state. In Section 3.7 we showed that the class of regular binoid lan-

guages is effectively closed under the operation of ξ-substitution (Theorem 3.25). This

result implies some other closure properties, namely the closure under the horizontal

and vertical products and horizontal and vertical iterations as well as under homomor-

phisms. In Section 3.8 we gave a more refined classification of regular binoid languages

by showing that the classes Regm of languages accepted by a parenthesizing automaton

with at most m pairs of parentheses form a strict hierarchy (Theorem 3.32). In fact, this

hierarchy is proper for all alphabets (Theorem 3.33). Hence the number of parentheses

needed to accept a given binoid language provides a complexity measure on the class of

regular binoid languages. Sections 3.9 and 3.11 served to demonstrate that the notion of

parenthesizing automata was well chosen. There it was shown that the class of regular

binoid languages coincides both with the class of algebraically recognizable languages

(Theorem 3.35) and with the class of languages definable in second-order monadic logic
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(Theorem 3.70). For the logical characterization we applied a similar result of Hooge-

boom and ten Pas on text languages (Theorem 3.65). For this we introduced the notion

of texts in Section 3.11.2, and in Section 3.11.3 we proved an isomorphism between

sp-biposets and alternating texts. In Section 3.10 we considered several rational classes

of binoid languages and studied the inclusion relations among them, and also their

relations to the class of regular languages and to the classes of horizontally/vertically

bounded and bounded depth binoid languages. The chapter closed with Section 3.12,

where we established a detailed comparison between the concept of regularity of ours

and that of Hashiguchi et al. Their notion of regularity turned out to be less general than

ours. After we managed to extend their monoid approach to the broader class of our

regular binoid languages. This means that with appropriate definitions ordinary finite

automata are also capable of capturing the same concept of regularity. This provided a

fourth equivalent characterization of our class Reg of regular binoid languages.

In Chapter 4 languages of infinite biwords were investigated. First in Section 4.1

we defined ω-biwords and algebras needed for their algebraic characterizations, namely

ω-semigroups in the pattern of classical ω-words and ω-semigroups of Perrin and Pin

[PP04]. The free algebra theorem (Theorem 4.2) and the graph-theoretic character-

ization of the elements of the free ω-bisemigroups (Theorem 4.3) are found there as

well. Section 4.2 then studied the tree and term representations of ω-biwords. It was

followed by an extension of recognizability, MSO-definability and regularity to ω-binoid

languages in Sections 4.3, 4.4 and 4.5, respectively. To extend regularity we needed to

define the concept and the operation of parenthesizing Büchi-automata. The rest of the

chapter was devoted to the proof of the equivalence of the above three concepts. In more

detail, in Section 4.6 it was shown that regularity implies recognizability. Similarly in

Section 4.7 we proved that regularity follows from recognizability. Then in Section 4.8

the equivalence of regularity and MSO-definability was demonstrated. The technical de-

tails of a proof in Section 4.8, namely an algorithm which creates an equivalent logical

formula from a parenthesizing Büchi-automaton, can be found in the Appendix.

Finally, in Chapter 5 we gave a brief overview of and discussion about the main

contributions of the thesis and we also stated some open problems and suggested possible

future directions of research.
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Összefoglalás

(Summary in Hungarian)

Az értekezésben leraktuk a kétdimenziós szavak és automaták egy lehetséges elméle-

tének alapjait. A szavak egydimenziós esetének általánosításához egy algebrai megkö-

zelítés által jutottunk, nevezetesen szabad binoidok feletti nyelveket tekintettünk. A

szabad binoidok a szabad monoidok azon általánosításai, melyekben egy helyett két

független asszociatív művelet van értelmezve, továbbá ezeknek a műveleteknek közös

egységelemük van. Sikerült általánosítanunk a regularitás, a felismerhetőség és az MSO-

definiálhatóság ekvivalenciáját szavakról binoid nyelvekre és ω-binoid nyelvekre is. Kü-

lönböző racionális binoid nyelvosztályokat is definiáltunk és elemeztünk. Eredményeink

általánosíthatók tetszőleges magasabb dimenziószámra, azaz olyan szabadalgebrák rész-

halmazaira, mely algebrákban három vagy több független asszociatív művelet van.

Az első fejezet betekintést nyújtott a regularitás általános fogalmába. Majd vázoltuk

kutatásunk előzményeit, legfontosabb célkitűzéseit, valamint a kapcsolódó szakirodal-

mat. Ezen túl felsoroltuk legfontosabb eredményeinket, majd röviden ismertettük az

értekezés szerkezetét.

A második fejezetben a szavak kétdimenziós algebrai általánosításával, a biszavakkal

foglakoztunk. A 2.1. alfejezetben néhány, a formális nyelvek elméletében és az algebrá-

ban általánosan használt alapfogalom definícióját idéztük fel, illetve bevezettünk néhány

jelölést. A következő két alfejezet azokat az algebrai struktúrákat ismertette, melyek

szabadalgebráival dolgoztunk, nevezetesen a bifélcsoportokat és a bimonoidokat. De mi-

előtt a szabad binoidok elemeinek tárgyalására rátértünk volna, a 2.4. fejezetben az Ésik

által bevezetett (m,n)-félcsoportok és (m,n)-struktúrák általánosabb fogalmait vettük

át. (Az (m,n)-félcsoportok általános kerete lehetővé teszi, hogy tetszőleges véges számú

asszociatív, illetve asszociatív és egyszersmind kommutatív műveletet tartsunk szem

előtt.) A 2.5. alfejezetben először annak a bizonyítását mutattuk be ([Ési00] alapján),

hogy az ún. redúcibilis (m,n)-struktúrák alkotják a szabad (m,n)-félcsoportokat. Majd

ennek speciális eseteként kaptuk a szabad n-félcsoportok (illetve bifélcsoportok) eleme-
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inek leírását ún. konstruálható n-posetekkel (illetve sp-biposetekkel). A 2.6. alfejezet

elengedhetetlenül fontos a későbbi fejezetekhez, mivel itt tárgyaltuk a binoid nyelvek

elemeinek, a biszavaknak, a különböző reprezentációit. Nevezetesen ismertettük a bi-

szavak soros-párhuzamos biposet (sp-biposet), term, kétdimenziós szó (two-dimensional

word), tömörített term (condensed term), fa (tree), i-term és i-cterm reprezentációit.

Ezt követően jellemzést adtunk azokra a szavakra, melyek i-termek illetve i-ctermek

(2.19. és 2.20. Lemma). Végül kitértünk a különböző reprezentációk sajátosságaira és

alkalmazhatóságára. A 2.7. alfejezetben az sp-posetek és kográfok (cographs) tiltott

részgráfokkal (nevezetesen „N”-mentes, illetve P4-mentes gráfokként) történő jelemzése-

inek [Gra81, VTL82, CLB81] általánosításait ismertettük. Először a reducibilis (m,n)-

struktúrákét (2.25. Tétel, [Ési00] alapján), majd ennek következményeként a konstruál-

ható n-posetekét (2.26. Következmény) és végül a soros-párhuzamos biposetekét (2.27.

Következmény).

A 3. fejezet véges biszavakból álló nyelvekkel és az őket feldolgozó zárójelező auto-

matákkal foglalkozott. A 3.1. alfejezetben bevezettük a zárójelező automata fogalmát

(3.1. Definíció), melyet egy egyszerű példával illusztráltunk. A 3.2. alfejezetben a záró-

jelező automaták működését adtuk meg. Három különböző megközelítést tekintettünk,

majd igazoltuk, hogy ezek ugyanahhoz az elfogadás fogalomhoz vezetnek. Ezért bár-

melyikük alkalmas arra, hogy segítségével egy adott automata által elfogadott nyelvet,

valamint a reguláris binoid nyelvek osztályát definiáljuk. A 3.3. alfejezetben néhány

példa következett zárójelező automatákra és reguláris binoid nyelvekre. Ezek – azon

túl, hogy a fogalom megértését segítették – néhol későbbi bizonyításokban is szerepel-

tek. A 3.4. alfejezetben az ún. dupla zárójelezés tiltásának szükségességét mutattuk

meg, és az ebből adódó technikai nehézségeket vázoltuk. A 3.5. alfejezetben pedig ezen

nehézségek leküzdésére szolgált a helyettesítő szorzat (substitution product, 3.20. Defi-

níció) bevezetése. A 3.6. alfejezetben a zárójelező automaták normálformái következtek.

Nevezetesen megmutattuk, hogy minden zárójelező A automatához megadható olyan,

vele ekvivalens Ah (illetve Av) zárójelező automata, mely egyetlen horizontális (illetve

vertikális) kezdő és végállapot párral rendelkezik. A 3.7. alfejezetben bebizonyítottuk,

hogy a reguláris binoid nyelvek osztálya effektíven zárt a ξ-helyettesítés műveletére

(3.25. Tétel). Ebből az eredményből közvetlenül adódnak további zártsági tulajdonsá-

gok. Nevezetesen a reguláris binoid nyelvek zártak a horizontális és vertikális szorzás,

valamint a horizontális és vertikális iteráció műveletére, továbbá a homomorfizmusokra

nézve. A 3.8. alfejezetben a reguláris binoid nyelvek egy finomabb osztályozását adtuk

azáltal, hogy bebizonyítottuk, hogy a legfeljebb m ≥ 0 zárójel szimbólummal rendelkező

zárójelező automatákkal elfogadható binoid nyelvek Regm osztályai valódi hierarchiát
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alkotnak (3.32. Tétel). Mi több igazoltuk, hogy ez a hierarchia valódi minden rög-

zített ábécé esetén is (3.33. Tétel). Így a felismeréshez szükséges zárójelek száma a

binoid nyelvek leírásának egyfajta bonyolultsági mértékét adja. A 3.9. és a 3.11. al-

fejezet a bevezetett automata fogalom alkalmasságának igazolására szolgált. Bennük

megmutattuk, hogy a reguláris binoid nyelvek osztálya egybeesik mind az algebrailag

felismerhető (3.35. Tétel) mind a monadikus másodrendben definiálható (3.70. Tétel)

nyelvek osztályával. A logikai jellemzéshez felhasználtuk Hoogeboom és ten Pas text

nyelvekre vonatkozó hasonló eredményét (3.70. Tétel). Az ehhez szükséges text nyel-

vek fogalma a 3.11.2. alfejezetben, az sp-biposetek és text nyelvek kapcsolatát pedig

a 3.11.3. alfejezetben ismertettük. A 3.10. alfejezetben különböző racionális kifejezé-

sekkel megadható binoid nyelveket és ezek tartalmazási relációit vizsgáltuk, valamint

ezen osztályok viszonyát a horizontálisan/vertikálisan korlátos és a korlátos mélységű

nyelvekhez. A fejezetet a 3.12. alfejezet zárja, melyben az általunk definiált zárójelező

automatákat vetettük össze a Hashiguchi et al. által bevezetett véges automatákkal

történő felismeréssel. Az ő regularitás fogalmuk kevésbé általánosnak bizonyult, mint

a miénk. Ezután sikerült az ő, hagyományos automatákon alapuló módszerüket kiter-

jeszteni a mi reguláris nyelveink bővebb osztályára. Ez a megközelítés adja a reguláris

binoid nyelvek osztályának, Reg-nek a negyedik ekvivalens jellemzését.

A negyedik fejezetben végtelen biszavakból álló nyelvekkel foglalkoztunk. Először

az ω-biszavakat és a jellemzésükhöz szükséges algebrákat, az ω-bifélcsoportokat defini-

áltuk a klasszikus eset, vagyis a Perrin és Pin [PP04] munkájában használt ω-szavak és

ω-félcsoportok mintájára (4.1. alfejezet). A szabadalgebra tétel (4.2. Tétel) és a szabad

ω-bifélcsoportok elemeinek gráfelméleti jellemzése (4.3. Tétel) szintén itt találhatók. A

4.2. alfejezet tárgyalta az ω-biszavak fa és term reprezentációit. Ezután a felismerhetőség

(recognizablility), a monadikus másodrendű logikai definiálhatóság (MSO-definiability)

és a regularitás fogalmának kiterjesztése következett ω-binoid nyelvekre, rendre a 4.3, a

4.4. és 4.5. alfejezetben. A regularitás kiterjesztéséhez definiálnunk kellett a zárójelező

Büchi-automaták fogalmát és működésüket. A fejezet további részeiben a fenti három

fogalom ekvivalenciáját bizonyítottuk. A 4.6. alfejezetben azt igazoltuk, hogy a regula-

ritásból következik a felismerhetőség. A 4.7. fejezet arról szólt, hogy a felismerhetőség

maga után vonja a regularitást. A 4.8. alfejezetben pedig a regularitás és a monadikus

másodrendű logikai definiálhatóság ekvivalenciáját láttuk be. A 4.8. fejezetben sze-

replő egyik bizonyítás technikai részletei – nevezetesen a zárójelező Büchi-automatából

ekvivalens logikai formulát készítő algoritmus – a függelékbe kerültek.

Végezetül az 5. fejezetben egy rövid áttekintést adtunk az értekezés eredményeiről,

a megoldatlan problémákról és a további kutatási irányokról.
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Appendix

Here we will supply a detailed description of our verification algorithm used to check

the encoded runs in the proof of Theorem 4.18. In addition, we will also briefly describe

how to build the formula ψ3 which realizes the algorithm.

Now suppose that A = (S,H, V,Σ,Ω, δ, γ, I, F ) is a parenthesizing automaton, i ∈ I

and f ∈ F . Recall that SOVarA = {Xsi
| si ∈ S } ∪ {Z〈i〉i | 〈i, 〉i ∈ Ω }. Let

P = (P,<h, <v, λ) ∈ SPB(Σ) denote an sp-biposet, and assume that η is an evaluation

of the monadic second order variables, that is,

η : SOVarA → P(P ),

where P(P ) denotes the power-set of P . Moreover, assume that P with η satisfies

formulas ψ1 and ψ2 on page 104.

The following algorithm determines whether η encodes a direct run of A on P that

starts from i and ends in f . For the sake of simplicity, we shall write Xj instead of

η(Xj). Moreover, in the names of the procedure calls below, “Clan” always means a

proper prime clan of P .

Unfortunately, in the definition of function NextState a difficulty arises. As A is

nondeterministic, for a given position x and s ∈ S, there can be more than one t such

that (s, λ(x), t) ∈ δ holds. But when we convert our algorithm into an MSO-formula,

we need only test whether NextState(x) = t holds, which resolves the problem.

The pseudocode in Lines 1–10 checks that the run starts from i and ends in f . The

code in Lines 11–22 verifies the correctness of the labeling transitions, while Lines 23–

49 checks the parenthesizing transitions. The proof of correctness of this algorithm is

omitted, but Figures 5.1–5.4 should help the reader to establish it.

The computations which are not represented in the figures are either straightforward

or symmetrical to the depicted cases.
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b〈 〈 〈 〉〉〉

i′

GrClanStartsAt(b)

Figure 5.1: The computation of i′ in Line 3.

SmClanEndsAt(x)

pq

x〈〈〈 〉 〉〉

(a)

pq

〈 〈 〈 〉〉〉x x+ 1

GrClanStartsAt(x + 1)

(b)

Figure 5.2: The computation of q in Line 14 (a) and in Line 18 (b).

〈 〈 〈 〉〉〉

PrefixCover(X)

b

ob X

(a)

b− 1 〈〈〈〈 〉〉〉〉

X

b

GrClanEndsAt(b − 1)

ob

(b)

Figure 5.3: The computation of ob in Line 27 (a) and in Line 31 (b).

b〈 〈 〈 〉〉〉

X

oe GrPrefixClanOf(X)

Figure 5.4: The computation of oe in Line 34.
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Algorithm Correct-Run(A, i, f, P, η)

1 b← FirstOf(P )

2 if IsClanStartsAt(b)

3 then i′ ← StartOfOpPar(GrClanStartsAt(b))

4 else i′ ← State(b)

5 e← LastOf(P )

6 if IsClanEndsAt(e)

7 then f ′ ← EndOfClPar(GrClanEndsAt(e))

8 else f ′ ← NextState(e)

9 if i 6= i′ or f 6= f ′

10 then return ‘no’

11 for all x ∈ P

12 do p← State(x)

13 if IsClanEndsAt(x)

14 then q ← StartOfClPar(SmClanEndsAt(x))

15 else if IsLastPosition(x)

16 then q ← f

17 else if IsClanStartsAt(x+ 1)

18 then q ← StartOfOpPar(GrClanStartsAt(x+ 1))

19 else q ← State(x+ 1)

20 σ ← λ(x)

21 if not (p, σ, q) ∈ δ

22 then return ‘no’

23 for all proper prime clans X ⊆ P

24 do b← FirstOf(X)

25 e← LastOf(X)

26 if IsPrefixOfClan(X)

27 then ob← EndOfOpPar(PrefixCover(X))

28 else if IsFirstPosition(b)

29 then ob← i

30 else if IsClanEndsAt(b− 1)

31 then ob← EndOfClPar(GrClanEndsAt(b− 1))

32 else ob← NextState(b− 1)

33 if IsPrefixClanIn(X)

34 then oe← StartOfOpPar(GrPrefixClanOf(X))

35 else oe← State(b)

36 if IsSuffixClanIn(X)

37 then cb← EndOfClPar(GrSuffixClanOf(X))

38 else cb← NextState(e)

39 if IsSuffixOfClan(X)

40 then ce← StartOfClPar(SuffixCover(X))

41 else if IsLastPosition(e)

42 then ce← f

43 else if IsClanStartsAt(e+ 1)

44 then ce← StartOfOpPar(GrClanStartsAt(e+ 1))

45 else ce← State(e+ 1)

46 k ← IndexOfParUsedAround(X)

47 if not(ob, 〈k, oe), (cb, 〉k, ce) ∈ γ

48 then return ‘no’

49 return ‘yes’
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The input-output specifications of the predicates and functions used in the algorithm

are the following:

IsFirstPosition(x) / IsLastPosition(x)

input: a position x ∈ P ;

output: ‘yes’ if x is the first/last position of P ;

‘no’ otherwise.

IsClanStartsAt(x) / IsClanEndsAt(x)

input: a position x ∈ P ;

output: ‘yes’ if there is a proper prime clan X ⊆ P whose first/last position is x;

‘no’ otherwise.

IsPrefixOfClan(X) / IsSuffixOfClan(X)

input: a proper prime clan X ⊆ P ;

output: ‘yes’ if there is a proper prime clan Y such that X is a prefix/suffix of Y ;

‘no’ otherwise.

IsPrefixClanIn(X) / IsSuffixClanIn(X)

input: a proper prime clan X ⊆ P ;

output: ‘yes’ if there is a proper prime clan Z such that Z is a prefix/suffix of X;

‘no’ otherwise.

State(x)

input: a position x ∈ P ;

output: a state s ∈ S in which A reads position x, i.e. x ∈ Xs.

NextState(x)

input: a position x ∈ P ;

output: a state t ∈ S which A arrives at after reading the position x, i.e. x ∈ Xs and

(s, λ(x), t) ∈ δ.

FirstOf(X) / LastOf(X)

input: a proper prime clan X ⊆ P ;

output: the first/last position of X.

StartOfOpPar(X) / EndOfOpPar(X)

input: a proper prime clan X ⊆ P ;
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output: a state s ∈ S such that s is the source/target of an opening parenthesizing

transition (s, 〈j , t) / (r, 〈j , s) ∈ γ, and this transition was used immediately

before X, i.e. the designated position of X is in Z〈j〉j .

StartOfClPar(X) / EndOfClPar(X)

input: a proper prime clan X ⊆ P ;

output: a state s ∈ S such that s is the source/target of a closing parenthesizing

transition (s, 〉j , t) / (r, 〉j , s) ∈ γ, and this transition was used immediately

after X, i.e. the designated position of X is in Z〈j〉j .

SmClanEndsAt(x) / GrClanEndsAt(x)

input: a position x ∈ P ;

output: the smallest/greatest proper prime clan of P that ends at position x.

GrClanStartsAt(x)

input: a position x ∈ P ;

output: the greatest proper prime clan of P that starts at position x.

GrPrefixClanOf(X) / GrSuffixClanOf(X)

input: a proper prime clan X ⊆ P ;

output: the greatest proper prime clan Y ⊆ X that is a proper prefix/suffix of X.

PrefixCover(X) / SuffixCover(X)

input: a proper prime clan X ⊆ P ;

output: the smallest proper prime clan Y for which is X is a proper prefix/suffix of

Y .

IndexOfParUsedAround(X)

input: a proper prime clan X;

output: an index k for which the parentheses 〈k, 〉k were used before and after X in

the encoded run, i.e. the designated position of X is in Z〈k〉k .
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Finally, we will outline the transformation of the algorithm into the formula ψ3.

The following observations lead to this transformation.

1. All predicates of the algorithm can be expressed by MSO-formulas. For example,

IsPrefixOfClan(X) can be formulated as

∃Y
(
PPC(Y ) ∧ Prefix(X,Y )

)

2. For any function f(x1, . . . , xl) of the algorithm and for any element c in the range

of f , the fact f(x1, . . . , xl) = c can also be expressed by an MSO-formula. For

example, for any state s in S, StartOfOpPar(X) = s can be written as

∨

j∈J

∃ z
(
Dp(z,X) ∧ Z〈j〉j (z)

)
,

where J = { j | ∃ t ∈ S, (s, 〈j , t) ∈ γ } is a finite set.

3. The variables whose values are not positions or sets of positions of P all take their

values from a finite set. Namely, i, f , i′, f ′, p, q, ob, oe, cb, ce take values from

S, σ from Σ, and k is an index of a parenthesis in Ω.

4. The composition of functions can be handled with the aid of auxiliary variables.

For example, StartOfOpPar(GrClanStartsAt(b)) = s can be expressed as

∃Z
(
GrClanStartsAt(b) = Z ∧ StartOfOpPar(Z) = s

)

5. Assignments like y ← f(x1, . . . , xl) can be treated as follows. We can consider all

possible values c in the range of y in advance, and at the points of the assignments

we can test whether f(x1, . . . , xl) = c holds. If the range of y is P or the power-

set P(P ), i.e. y is a ‘standard’ first or second order variable, then existential

quantification can be used. On the other hand, if y is not ‘standard’, then it has

a finite range by point 3. Hence we can use a disjunction over this finite range.

For example, we can begin the formula realizing Lines 12–22 with

∨

p∈S

∨

q∈S

∨

σ∈Σ

. . .

6. The control flow of the algorithm can easily be formulated in our logic framework.

For the sequential executions conjunctions, for “for all” loops universal quantifi-

cations, and for the conditional statements implications and negations can be

used.


