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Abstract. A binoid is a set with two associative operations where the
operations share a common identity element, while subsets of free binoids
are called binoid languages. Two independent studies concerning the reg-
ularity of binoid languages were done by Hashiguchi et al. who used term
representations and monoid automata and by Ésik and Németh who em-
ployed parenthesizing automata for the acceptance of binoid languages.
The aim of this paper is to relate these two approaches, and to show
how the monoid approach of Hashiguchi et al. can be extended to the
algebraically recognizable class of binoid languages.

1 Introduction

A bisemigroup is an algebra equipped with two independent associative opera-
tions. The two operations will be called the horizontal product and the vertical
product, and will be denoted by • and ◦, respectively. Following Hashiguchi et
al. [11], if both operations have an identity then we get a bimonoid. Moreover,
if the identities are the same, the resulting structure is called a binoid.

For each alphabet Σ consider the free binoid over Σ, denoted by Σ∗(•, ◦). The
subsets of Σ∗(•, ◦) have various names like ‘binoid languages’ or ‘B-languages’
[11, 13, 14], ‘bi-languages’ [3, 4] and ‘sp-biposet languages’ [6, 20, 21]. Here we will
call them ‘binoid languages’, while the elements of binoid languages will be called
biwords as in [3].

In this paper we will concentrate on the general theory, but we believe that
the concept of binoid languages is sufficiently general to have some practical
applications as well. The reader can review the study of Hashiguchi et al. on
bicodes [12] and on a modified RSA cryptosystem based on bicodes [10].

In the future biwords may also be used in modeling systems like sp-posets,
which serve as models of modularly constructed concurrent systems. Sp-posets
represent the elements of free algebras where an associative operation and an
associative and commutative operation are defined. They have been studied ex-
tensively by Lodaya and Weil [17–19], and also by Kuske [16].

Binoid languages are also closely related to picture languages [8], texts [5, 15],
and visibly pushdown and nested word languages [1, 2]. In [3] Dolinka demon-
strated that picture languages and binoid languages satisfy the same identities



(for the operations of union, the two products, the two (Kleene) iterations of
the two products and some constants). See [4] as well for more details about the
axiomatization of the equational theory of binoid languages.

To date there are two independent studies of automata on biwords. The first
one was done by Hashiguchi et al. [11, 13, 14], which may also be called the
monoid approach. The second one on parenthesizing automata was done by Ésik
and Németh [6, 7, 20, 21].

Hashiguchi et al. regard biwords as their term representation1. They are
words over the extended alphabet E(Σ) = Σ ∪ {〈, 〉, •, ◦}, where 〈 and 〉 are
parenthesis symbols. Thus ordinary finite automata (from now on monoid au-
tomata) can be used to define regular binoid languages. More precisely, they
defined two kinds of acceptance by monoid automata: the free binoid mode and
the free monoid mode. In the case of free monoid mode acceptance, given any
word x ∈ E(Σ)∗ the automaton decides whether x is a valid term representation
of a biword in the accepted language. In the case of free binoid mode accept-
ance, the inputs of the automaton just come from the restricted set of valid term
representations, and the automaton only decides the question of whether the bi-
word represented by the input term belongs to the accepted language or not. Let
RegFM (resp. RegFB) denote the class of binoid languages that can be accepted in
the free monoid (resp. binoid) mode. Earlier it was shown that RegFM ( RegFB

[11]. The main result of [13] and [14] can also be expressed as RegFM = BRat,
where BRat stands for the class of birational languages. They are those binoid
languages that can be obtained from the finite binoid languages by applying
the operations of union, horizontal and vertical products, horizontal iteration
and vertical iteration. An obvious advantage of the monoid approach as against
parenthesizing automata is that one is not forced to use automata to describe
regular binoid languages. Rather, any equivalent characterization of regular word
languages (e.g. regular expressions or MSO-formulas) can be used instead.

As mentioned above, the other approach by Ésik and Németh is based on
parenthesizing automata (PA for short). These devices process biwords based
on their hierarchical structures by using indexed parentheses in the transitions.
Their expressive power is the same as algebraic recognizability (defined by ho-
momorphisms and finite binoids) and monadic second order definability (based
on the sp-biposet representation). For more details see [6] and the survey [22] by
Weil on the general concept of recognizability. Now let Regi denote those binoid
languages that can be accepted by parenthesizing automata with at most i pairs
of parentheses symbols. In [20] it was shown that these languages form a strict
hierarchy, i.e. Reg0 ( Reg1 ( Reg2 ( . . .

The aim of this paper is to relate the above two approaches of regularity.
A comparison can be expressed as: RegFM = Reg1 ∩ BD, and RegFB = Reg′1.
Here Reg′1 is a slightly modified version of Reg1, and BD stands for the class of
bounded depth binoid languages, i.e. those languages that have a uniform bound
on the number of nested parentheses in their elements. So monoid automata
even in the free binoid mode are less expressive than parenthesizing automata

1 In [11, 13, 14], term representations are called s-forms.



with two or more parenthesis symbols. Next we extend the free binoid mode of
monoid automata using so-called i-term representations of binoid languages for
all i ≥ 0. The i-term representations of binoid languages are word languages over
the alphabet Ei(Σ) = Σ∪{〈1, 〉1, . . . , 〈i, 〉i, •, ◦}, so one can use i different pairs of
parentheses to describe biwords. Our main result shows that this new acceptance
mode of monoid automata corresponds to PA with i pairs of parentheses. Hence
the class of recognizable languages can also be captured by the monoid approach
of Hashiguchi et al.

2 Binoids and biwords

In the following, Σ will denote a finite nonempty alphabet. We will write Σ∗

for the set of all words, and Σ+ for the set of all nonempty words over Σ. The
empty word shall be denoted by λ. As usual, |x|, the length of a word x, is the
number of letters in x. The set Ω shall denote some finite set of parentheses. Of
course, Ω and Σ are always disjoint, and elements of Ω are usually written as
〈1, 〉1, 〈2, 〉2, . . . We will also assume here that each Ω is partitioned into sets of
opening and closing parentheses, denoted by Ωop and Ωcl respectively, which are
in bijective correspondence. For any integer j ≥ 0, let Ωj stand for a set of j
pairs of parentheses, that is Ωj = { 〈1, 〉1, . . . , 〈j , 〉j }. It is convenient to choose
Ω0 := ∅.

Let Σ∗(•, ◦) denote the free binoid generated by Σ. For simplicity, let us call
the elements of Σ∗(•, ◦), biwords (over Σ). We will give concrete representations
of biwords in the sequel. The identity of Σ∗(•, ◦), denoted by λ, is the empty
biword. Each generator of Σ∗(•, ◦) corresponding to a letter σ ∈ Σ is called
a singleton biword and will also be denoted by σ. The biwords that can be
written as a horizontal (resp. vertical) product of two nonempty biwords are
called horizontal (resp. vertical). We call this property the type of a biword.

Of course there are several possible ways of describing biwords. They may be
represented by relational structures called sp-biposets [6], but biwords may also
be regarded as labeled ordered unranked trees. Here we will employ two linear
representations, namely terms and condensed terms.

Now we associate the term representation wtm with each biword w ∈ Σ∗(•, ◦).
To this end, we extend the alphabet Σ with operation symbols and parentheses.
Let E(Σ) := Σ∪{ • , ◦ , 〈 , 〉 }. In the term representation we shall put parenthe-
ses around the subterm of horizontal biwords that appear as vertical factors, and
symmetrically around the subterm of vertical biwords that appear as horizontal
factors. This procedure can be stated more precisely as follows:

Definition 1. If w ∈ Σ∗(•, ◦), then wtm will denote the term representation of
w. Let wtm be a word over E(Σ), defined inductively as follows.

(i) If w = λ is the empty biword, then wtm := λ.
(ii) If w = σ ∈ Σ is a singleton biword, then wtm := σ.
(iii) If w = w1 • w2 with w1, w2 6= λ, then wtm := Hform(w1) • Hform(w2)

2

2 Here Hform(w1) • Hform(w2) stands for the concatenation of the word Hform(w1)
with the letter ‘•’ and with the word Hform(w2).



(iv) If w = w1 ◦ w2 with w1, w2 6= λ, then wtm := Vform(w1) ◦ Vform(w2).

In (iii), Hform(w) denotes the horizontal form of the biword w, defined as

Hform(w) :=

{
wtm if w is a singleton or horizontal biword,
〈 wtm 〉 if w is a vertical biword.

In (iv), Vform(w), the vertical form of w, is defined symmetrically.

It should be mentioned here that in cases (iii) and (iv) the definition of wtm

does not depend on the choice of factorization because of the associativity of the
operations •, ◦ and of the concatenation of words.

Another description of Σ∗(•, ◦) can be given using condensed terms, or cterms
for short. The condensation of the description of the terms is based on a simple
observation. It is that the operation symbols can be omitted provided we know
the type of a biword in advance. Actually, the arrangement of the parentheses
tells us precisely where we should put the horizontal and vertical product oper-
ations between the factors. Formally, condensed term representations are words
from the set {λ } ∪ Σ ∪ { •, ◦ }

(
Σ ∪ { 〈, 〉 }

)+
.

For a nonempty and nonsingleton biword, the first letter –the type-sign– gives
the type of the represented biword; namely • and ◦ designate the horizontal type
and vertical type, respectively. The remaining part is just the term representation
after the operation symbols have been deleted. We will write wctm for the cterm
representation of biword w. Thus if wtm = a • 〈b ◦ 〈c • d〉〉 • 〈e ◦ f〉, then
wctm = •a〈b〈cd〉〉〈ef〉. We can extend these notations to languages. Let Ltm :=
{wtm | w ∈ L } and Lctm := {wctm | w ∈ L }. Then, let TM(Σ) := Σ∗(•, ◦)tm

and CTM(Σ) := Σ∗(•, ◦)ctm denote the set of all (c)terms of biwords over Σ.
As we shall see, in order to accept all recognizable binoid languages by

monoid/parenthesizing automata, it is necessary to employ several pairs of paren-
theses. For this reason we choose an integer i ≥ 0, and let Ei(Σ) = Σ∪Ωi∪{•, ◦}
be the extended alphabet with i different pairs of parentheses. Suppose that wtm

(resp. wctm) is a (c)term representation of a biword w ∈ Σ∗(•, ◦). Now i-term
(resp. i-cterm) representations of w are obtained by replacing the matching pairs
of parentheses with pairs of indexed parentheses from Ωi in wtm (resp. in wctm).
Note that a biword can have several different i-(c)term representations. E.g.
〈2a • b〉2 ◦ 〈1c • d〉1 and 〈1a • b〉1 ◦ 〈1c • d〉1 are both 2-term representations of
the biword 〈a • b〉 ◦ 〈c • d〉. Now let TMi(Σ) and CTMi(Σ) stand for the i-term
and i-cterm representations of the biwords in Σ∗(•, ◦), respectively. For a binoid
language L ⊆ Σ∗(•, ◦), any word language L′ ⊆ TMi(Σ) (resp. L′ ⊆ CTMi(Σ))
such that ηi(L

′) = Ltm (resp. ηi(L
′) = Lctm ) will be referred to as an i-term

(resp. i-cterm) representation of L. Here ηi is the mapping that deletes the in-
dices of the parentheses, i.e. the homomorphism ηi : Ei(Σ)∗ → E(Σ)∗ which
extends

η̃i(x) =





x if x ∈ Σ ∪ { •, ◦ };
〈 if x ∈ Ωi,op;
〉 if x ∈ Ωi,cl,

for all x ∈ E(Σ).

Proposition 2. TMi(Σ) and CTMi(Σ) are deterministic context-free languages.



Proof sketch. Both TMi(Σ) and CTMi(Σ), as certain subsets of Ei(Σ)∗, can be
characterized by some simple conditions, and the conditions can be transformed
into deterministic pushdown automata.

3 The Monoid Approach

In [11] Hashiguchi et al. introduced two modes of operations of monoid automata
for defining binoid languages.

Definition 3. [11] Given a monoid automaton A over the alphabet E(Σ) and
a binoid language L ⊆ Σ∗(•, ◦), we say that

i) A accepts L in the free monoid mode if, for any word x ∈ E(Σ)∗, A
accepts x iff x is a term representation of a biword in L.

ii) A accepts L in the free binoid mode if, for any term representation w ∈
TM(Σ), A accepts w iff w is a term representation of a biword in L.

Let RegFM and RegFB denote the classes of binoid languages that can be
accepted in the free monoid mode and in the free binoid mode, respectively.

The concept of relativized regularity below will be useful for giving brief
formulations of various acceptance modes.

Definition 4. Let Σ be an alphabet and U ⊆ Σ∗ be an arbitrary language.
Now consider a language L ⊆ U . We say that L is regular relative to U (or
L is U -regular for short), if there exists a regular language L̂ ⊆ Σ∗ such that
L = L̂ ∩ U .

For example L = {〈n〉n | n ≥ 0} is a Dyck-regular language (cf. [9]), since
L = L̂ ∩ D1 with a regular language L̂ = 〈∗〉∗, where D1 denotes the Dyck
language over a pair of parentheses. We can now reexpress Definition 3 in the
following way.

Fact 5. (i) L ∈ RegFM ⇔ Ltm is a regular word language.

(ii) L ∈ RegFB ⇔ Ltm is TM(Σ)-regular word language.

To provide the main results of Hashiguchi at al. we need two additional concepts.
First we say that a binoid language L has a bounded depth if there is an

integer K such that, for every biword w ∈ L, the maximal number of nested
parentheses in wtm is at most K. Let BD denote the class of binoid languages
that have a bounded depth.

Second, let BRat denote the class of birational languages. They are those
binoid languages that can be obtained from the finite binoid languages by ap-
plying the operations of union, horizontal and vertical products, and the two
Kleene-iterations of the two products3.

It is not hard to see that RegFM ⊆ BD and Σ∗(•, ◦) ∈ RegFB \ BD. Hence we
have RegFM ( RegFB, cf. [11]. The main result of [13, 14] can be summarized as
follows.
3 In [13, 14] birational languages are introduced via regular binoid expressions and

BRat is also called ‘the languages denoted by regular binoid expressions’.



Theorem 6. (Hashiguchi et al. [13, 14]) RegFM = BRat.

The result above gives a nice operational characterization of RegFM, but this
class is not closed under complementation; see [6] for more details.

We can build another acceptance mode of monoid automata by using the
cterm representation instead of terms. We say that a monoid automaton A
accepts a binoid language L in the C1-mode if, for any cterm representation
w ∈ CTM(Σ), A accepts w iff w is a cterm representation of a biword in L.
From now on the free binoid mode will also be called the T1-mode. Moreover,
we will extend the T1 and C1 modes using i-terms and i-cterms.

Definition 7. Given an integer i ≥ 0, a monoid automaton A over the alphabet
Ei(Σ) and a binoid language L ⊆ Σ∗(•, ◦), we say that A accepts L in the Ti-
mode (resp. in the Ci-mode) if, for any i-term (resp. i-cterm) representation
x ∈ (C)TMi(Σ), automaton A accepts x iff the biword represented by x is in L.

Let RegT
i

and RegC
i

denote the classes of languages that can be accepted by
a monoid automaton over Ei(Σ) in the Ti-mode and the Ci-mode, respectively.
Furthermore, let RegT

∞
:= ∪∞

i=0RegT
i

and RegC
∞

:= ∪∞

i=0RegC
i
.

Fact 8.

(i) L ∈ RegT

i
⇔ there exists a TMi(Σ)-regular i-term representation of L.

(ii) L ∈ RegC

i
⇔ there exists a CTMi(Σ)-regular i-cterm representation of L.

4 Parenthesizing Automata

Here we give a brief overview of parenthesizing automata described in [6, 20, 21].

Definition 9. [6] A (nondeterministic) parenthesizing automaton, PA for short,
is a 9-tuple A := (S, H, V, Σ, Ω, δ, γ, I, F ), where S is a nonempty, finite set of
states; H and V are the sets of horizontal and vertical states which give a dis-
joint partition of S, Σ is the input alphabet and Ω is a finite set of parentheses.
Furthermore,

– δ ⊆ (H × Σ × H) ∪ (V × Σ × V ) is the labeled transition relation,
– γ ⊆ (H × Ω × V ) ∪ (V × Ω × H) is the parenthesizing transition relation,
– I, F ⊆ S are the sets of initial and final states, respectively.

Example 10. A simple illustration of a PA is given in Figure 1. The horizontal
states are those labeled by Hi and the vertical states are those labeled by Vj ,
for some i and j. There is a single initial state H1, and a single final state H7.
Later we will see that this automaton has a single run from H1 to H7, hence
the automaton just accepts the biword a • 〈b ◦ 〈c • d〉〉 • e. Of course, if the
automaton had cycles, the accepted binoid language would be more complicated
than in our example.



〈1

〈2

〉1

〉2

H1 H2

H3 H4 H5

H6 H7

V1 V2 V3

a

b

c d

e

Fig. 1. A PA accepting {a • 〈b ◦ 〈c • d〉〉 • e}.

Let A = (S, H, V, Σ, Ω, δ, γ, I, F ) be a PA. If t = (p, x, q) is a labeled or
parenthesizing transition of A, i.e. t ∈ δ ∪ γ, then the starting and the ending
state of t will be denoted by start(t) := p and end(t) := q, respectively. Two
transitions t1 and t2 are adjacent (in this order) if end(t1) = start(t2). From now
on we will demand that in any transition sequence the consecutive transitions
shall be adjacent. If r = t1t2 . . . tn ∈ (δ ∪ γ)∗ is a transition sequence, then let
start(r) := start(t1) and end(r) := end(tn). Here we say that two parenthesizing
transitions t1 = (p, ω1, q) and t2 = (s, ω2, t) ∈ γ form a parenthesizing transition
pair if ω1 is an opening parenthesis and ω2 is its closing partner.

Definition 11. [21] Let A be a parenthesizing automaton. The set of its runs,
Runs(A), is the least set of transition sequences that contains

(i) the singleton runs: (p, σ, q), for all (p, σ, q) ∈ δ;
(ii) the direct runs: r1r2, for every r1, r2 ∈ Runs(A) with end(r1) = start(r2);
(iii) the indirect runs: t1r t2, for every direct run r ∈ Runs(A), and parenthe-

sizing transition pair t1, t2 with end(t1) = start(r) and end(r) = start(t2).

Suppose that A is a PA and r = t1 . . . tn ∈ Runs(A). A parenthesizing
transition pair ti, tj , (i < j) is said to be a matching parenthesizing transition
pair in r if ti . . . tj is an indirect run of A. Note that not every parenthesizing
transition pair ti, tj with i < j is a matching parenthesizing transition pair in r.

Definition 12. Suppose that A is a PA and r ∈ Runs(A). The label of r is a
biword from Σ∗(•, ◦) defined inductively as follows:

(i) If r = (p, σ, q), then Label(r) := σ.
(ii) If r is a direct run, and r = r1r2 for some r1, r2 ∈ Runs(A), then

- if end(r1) ∈ H, then Label(r) := Label(r1) • Label(r2);
- if end(r1) ∈ V , then Label(r) := Label(r1) ◦ Label(r2).

(iii) If r is an indirect run r = t1r
′ t2, then Label(r) := Label(r′).

Since • and ◦ are associative, the definition of Label(r) does not depend on
the choice of factorization in case (ii) above.

A run from an initial state to a final state will be called an accepting run,
and the binoid language accepted by a PA is defined as the set of labels of the
accepting runs.



Definition 13. The binoid language L(A) accepted by a PA A = (S, H, V, Σ,
Ω, δ, γ, I, F ) is defined as {Label(r) | r ∈ Runs(A), start(r) ∈ I, end(r) ∈
F }, and, additionally, if I ∩ F 6= ∅ then L(A) also contains λ, the empty bi-
word.

Definition 14. A binoid language L ⊆ Σ∗(•, ◦) is called regular if there exists
a PA that accepts it. Let Reg denote the class of regular binoid languages over
all alphabets. Similarly, let Regi denote the classes of those binoid languages that
can be accepted by a PA with at most i ≥ 0 pairs of parentheses.

Recall that a binoid language is said to be recognizable if it is recognized by
a homomorphism into a finite binoid, i.e. L ⊆ Σ∗(•, ◦) is recognizable if and only
if L = ϕ−1(F ), for some binoid homomorphism ϕ : Σ∗(•, ◦) → B, where B is a
finite binoid, and F ⊆ B. The notion of second order definability is also quite
standard, but it is based on the sp-biposet representation of binoid languages.
For the definitions see [6]. Next, some key results for regular binoid languages
are the following.

Theorem 15. [6] A binoid language L ⊆ Σ∗(•, ◦) is regular if and only if it is
recognizable; and it is recognizable if and only if it is MSO-definable.

Theorem 16. [6, 20] BRat = Reg ∩ BD = Reg1 ∩ BD.

Theorem 17. [20] The classes Reg0 ( Reg1 ( Reg2 ( . . . form a strict hierar-
chy of regular binoid languages.

5 Comparison of models and modes

In this section we present our main result, namely the equivalence of PA that have
i pairs of parentheses with monoid automata in both the Ti-mode and Ci-mode.
For this we need to slightly modify the acceptance conditions of PA. Namely, we
will not allow indirect runs as accepting runs. If A = (S, H, V, Σ, Ω, δ, γ, I, F ) is
a PA, let L′(A) := {Label(r) | r ∈ Runs(A), start(r) ∈ I, end(r) ∈ F and r is
not an indirect run} and additionally, if I ∩ F 6= ∅ then L′(A) also contains λ,
the empty biword. Moreover, let Reg′i denote the class of those binoid languages
that can be written as L′(A) with a PA that has at most i pairs of parentheses.

At first sight it seems that the classes Reg′i are smaller than the original
classes Regi. But this is not true; on the contrary, while indirect acceptance can
be simulated in the new “no indirect acceptance” mode, the converse simulation
is not possible. If we have a PA A whose initial and final states are all horizontal,
then we are sure that L′(A) just contains horizontal biwords. On the other hand,
this property cannot be guaranteed in the old acceptance mode. Furthermore, it
can be proved that the set of all horizontal biwords is in Reg′1 \ Reg1. Thus one
can verify (with considerable effort) the following correspondence between the
new and the old acceptance modes of PA.

Theorem 18. We have Reg0 = Reg′0, and Regi ( Reg′i ( Regi+1, for all i ≥ 1.



Earlier results, namely Theorem 16 and Theorem 6, lead to the following char-
acterization of the free monoid mode in terms of PA.

Theorem 19. RegFM = Reg1 ∩ BD = Reg′1 ∩ BD.

Now we will establish a connection between the free binoid mode and PA.

Lemma 20. For any i ≥ 0, there exists a finite transduction τi : Ei(Σ)∗ →
Ei(Σ)∗ which transforms every i-cterm to the equivalent i-term.

Proof sketch. Observe that τi can be induced by a finite transducer like the one
depicted in Figure 2.

•/λ

◦/λ

σ/σ

σ/σ σ/•σ

σ/◦σ

〈/〈 〉/〉

〈/• 〈

〈/◦〈

Fig. 2. A finite transducer which transforms 1-cterms into 1-terms over a one-letter
alphabet Σ = {σ }.

Corollary 21. Suppose that L ⊆ CTMi(Σ) is a word language for some i ≥ 0.
Then L is CTMi(Σ)-regular iff τi(L) is TMi(Σ)-regular.

This result can be interpreted as follows. In the description of a binoid language
by words we can use the cterm (resp. i-cterm) representation instead of the term
(resp. i-term) representation, i.e. we can neglect the operation symbols without
affecting the regularity of the language. This simplification may be useful in
syntactic proofs using representations of biwords via words as in [13] and [14],
and it is also crucial in the proof of our main theorem presented below.

Theorem 22. For any integer i ≥ 0, we have Reg′i = RegC
i

= RegT
i
.

Proof sketch. The second equality can easily be derived from Corollary 21. On the
other hand, the proof of Reg′i = RegC

i
is rather technical. We need to transform

a PA into an equivalent monoid automaton over Ei(Σ) and vice versa. We will
use the following notation for a (nondeterministic) monoid automaton: A =
(S, Σ, δ, I, F ), where S is the set of states, Σ is the input alphabet, δ : S×Σ → 2S



is the transition function, and I and F are the sets of initial and final states
respectively.

Let A = (S, H, V, Σ, Ωi, δ, γ, I, F ) be a PA. If we do not distinguish between
the horizontal and vertical states, and if we do not distinguish between labeling
and parenthesizing transitions, then we obtain a monoid automaton (S, Σ ∪
Ωi, δ ∪ γ, I, F ). Let us take two new states i∗, f∗ /∈ S. Now replace I with {i∗},
and add the following transitions to δ ∪ γ

δ′ = {(i∗, •, i) | i ∈ I ∩ H} ∪ {(i∗, ◦, i) | i ∈ I ∩ V } ∪ {(i∗, σ, f∗) | σ ∈ L′(A)}.

We will regard i∗ as final state, iff λ ∈ L′(A). Thus we get a monoid automaton
AM := (S, Ei(Σ), δ ∪ γ ∪ δ′, {i∗}, F ′), where F ′ = F ∪ {i∗, f∗}, if λ ∈ L′(A),
and F ′ = F ∪ {f∗} otherwise. It can be proved that AM in the Ci-mode accepts
L′(A). Hence Reg′i ⊆ RegC

i
.

RegC
i
⊆ Reg′i can be proved as follows. Let A = (S, Ei(Σ), δ, I, F ) be a monoid

automaton which in the Ci-mode accepts a binoid language L. A PA A′ such
that L′(A′) = L can be defined as follows:

A′ = (H ′ ∪ V ′, H ′, V ′, δ′, γ′, I ′, F ′), where

H ′ = {sH | s ∈ S} ∪ {i∗, f∗}, V ′ = {sV | s ∈ S}, i∗, f∗ /∈ S,

δ′ = {(pH , σ, qH), (pV , σ, qV ) | σ ∈ Σ, (p, σ, q) ∈ δ} ∪ {(i∗, σ, f∗) | σ ∈ L},

γ′ = {(pH , ω, qV ), (pV , ω, qH) | ω ∈ Ωi, (p, ω, q) ∈ δ},

I ′ = {pH | ∃i ∈ I : (i, •, p) ∈ δ} ∪ {pV | ∃i ∈ I : (i, ◦, p) ∈ δ} ∪ {i∗},

F ′ =

{
{fH , fV | f ∈ F} if λ /∈ L,

{fH , fV | f ∈ F} ∪ {i∗} if λ ∈ L.

Corollary 23. RegFB = Reg′1, so Reg′1 is closed under complementation.

The next result shows that the more general class of recognizable binoid lan-
guages can also be captured by monoid mode acceptance.

Corollary 24. Reg = RegC
∞

= RegT
∞

.

Proposition 2 and the concept of relativized regularity lead to the following
result, whose proof is straightforward.

Corollary 25. For all i ≥ 0, any binoid language in Reg′i has a deterministic
context-free i-term (and i-cterm) representation. In particular, for any L ∈ Reg′1
the word languages Ltm and Lctm are deterministic context-free.

6 Conclusions and Final Remarks

Now let us summarize certain key points about the paper. The first is that The-
orem 22 is effective in the sense that, for a PA, an equivalent monoid automaton
(for the Ti-mode or Ci-mode) can be constructed and vice versa. Furthermore,



the transition algorithm increases the number of states of the automaton by just
a constant factor.

The operation of a PA is very similar to that of a visibly pushdown automaton
(or VPA for short) [1]. One can imagine that a PA uses a pushdown storage which
works in the following way. During an opening parenthesizing transition labeled
by 〈i the automaton puts the index i to the top of the stack, and later the
automaton can perform a closing parenthesizing transition labeled 〉i, only if the
index i can be popped from the stack. Notice that a PA alters the stack only when
it performs parenthesizing transitions: opening parentheses correspond to push
operations, while closing parentheses correspond to pop operations. This is what
is called visibly pushdown behavior. Therefore each PA over Σ∗(•, ◦) with i pairs
of parentheses naturally corresponds to a VPA with i stack symbols (operating on
words over the pushdown alphabet Σ̂ = 〈Σc, Σr, Σℓ〉, where Σc = {〈}, Σr = {〉}
and Σℓ = Σ, cf. [1].) However a PA operates on biwords, not on words, hence the
syntactic check of the input – not just the well balanced aspect of the parentheses,
but also making sure that no empty or superfluous parenthesization occurs – is
not the task of a PA. Consequently i stack symbols are not enough for a VPA
to accept the words of Lctm or Ltm, for an L ∈ Reg′i . But it can be proved that
both TM(Σ) and CTM(Σ) can be accepted by a VPA with 3 stack symbols, and
hence 3i is an upper bound on the number of stack symbols that is necessary
(the proofs are left to the reader). Hence we have that, for all L ∈ Reg, the
languages Ltm and Lctm are visibly pushdown, hence deterministic context-free
languages (cf. Corollary 26).

From a regularity point of view three classes of binoid languages might be of
interest to us, namely RegFM, Reg′1 and Reg = Rec, where the inclusion relations
for them are RegFM ( Reg′1 ( Reg. Note that, unlike the two other classes,
RegFM is not closed under complementation. Moreover, Theorems 17 and 22 tell
us that in order to attain the general concept of recognizability (Rec) we need to
handle several pairs of parentheses symbols and unambiguous representations.
However, this unambiguity can be avoided since from the proof of Rec ⊆ Reg of
[6] we obtain a PA that can be regarded as deterministic. This is not surprising
at all, as recognizability is clearly a deterministic notion.

Another key point of our above results is that, by generalizing the idea of
Hashiguchi et al., we managed to reduce the investigation of recognizable binoid
languages to the classical theory of word languages. But the well-developed the-
ory of monoid automata and word languages cannot be applied directly since
the reduction has been done via the concept of relativized regularity. Hence it
would be desirable to provide a detailed exposition of relativized regularity and
find out how the methods of monoid automata (determinization, minimization
and so on) can be transformed into automata over biwords, and, more generally,
learn what effect the theory of word languages has on the theory of binoid lan-
guages. Finally, a deeper understanding of automata models, and especially the
phenomenon of two-dimensional iterations, may also lead us to an operational
characterization of the class of recognizable binoid languages. These things are
what we plan to study in the near future.
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