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Automata on Infinite Biposets∗

Zoltán L. Németh
†

Abstract

Bisemigroups are algebras equipped with two independent associative op-
erations. Labeled finite sp-biposets may serve as a possible representation of
the elements of the free bisemigroups. For finite sp-biposets, an accepting de-
vice, called parenthesizing automaton, was introduced in [6], and it was proved
that its expressive power is equivalent to both algebraic recognizability and
monadic second order definability. In this paper, we show, how this concept
of parenthesizing automaton can be generalized for infinite biposets in a way
that the equivalence of regularity (defined by acceptance with automata),
recognizability (defined by homomorphisms and finite ω-bisemigroups) and
MSO-definability remains true.

1 Introduction

The importance of automata and Büchi-automata is unquestionable in theoretical
computer science from both theoretical and practical point of view. Its widespread
applicability is mainly due to the fact that finite and infinite words can serve as
models of a wide range of sequential systems. But, of course, there are many
other computational models using more complex structures than words, such as
trees, traces, posets, message sequence charts, graphs, etc. These models were
introduced to capture other computational aspects, as timing or concurrency.

Besides the varying concept of automata and regularity, there is the more gen-
eral notion of algebraic recognizability (by homomorphisms into finite algebras)
and the concept of (counting) monadic second order logical definability. In many
important cases these three notions can be suitably defined and they are known
to be equivalent. In particular, this holds for finite trees, traces, message sequence
charts, series-parallel posets of bounded width. See [23] for a recent survey on this
topic. But sometimes we are confronted with serious difficulties. It is not always
clear how to choose an appropriate algebraic or logic framework, and for graphs,

∗An extended abstract of this paper appeared in the proceedings of AFL 2005 [19].
†Institute of Informatics, University of Szeged, P.O.B. 652, 6701 Szeged, Hungary, E-mail:

zlnemeth@inf.u-szeged.hu

1



2 Zoltán L. Németh

for posets, and even for sp-posets in general, a concept of automaton that matches
algebraic recognizability is not known.

However, one of the most obvious generalizations of the case of words is the
situation when we consider more than one, say n, associative operations. This
naturally leads to the concept of n-semigroups and n-ω-semigroups. Accordingly,
n-semigroups are sets equipped with n independent associative operations, and n-
ω-semigroups are generalizations of the ω-semigroups of Perrin and Pin [20], where
the formation of infinite (more precisely ω-ary) products is also allowed.

A description of the free n-semigroups by labeled finite n-posets was given by
Ésik [5]. A Σ-labeled n-poset is a set P equipped with n patrial orders and a
labeling function P → Σ. One of the main results of [7] is a similar description of
the free n-ω-semigroups by, so called, constructible n-posets. We say that a (finite
or infinite) n-poset is constructible if it can be constructed from the singleton n-
posets by the binary and the ω-ary product operations.

For simplicity, we only deal with the case when n = 2, i.e., we study bisemi-
groups and biposets only, although all of our notions and results can be generalized
to n-semigroups and n-posets for any integer n greater than 2, without any diffi-
culty.

In [6], an accepting device, called parenthesizing automaton, was introduced,
and it was proved that for finite sp-biposets the recognizable, regular and MSO-
definable languages coincide. Here we generalize the result mentioned above for
infinite biposets. First, we show, with the help of a suitably defined notion of
parenthesizing Büchi-automaton, that the class of regular languages of infinite con-
structible biposets coincides with the class of recognizable languages. We also
demonstrate that, contrary to the word case, automata for infinite biposets must
differ from automata for finite ones.

The equivalence of regular and recognizable sets implies that all MSO-definable
languages are regular. Finally, we prove the converse inclusion, namely that every
regular constructible biposet language is MSO-definable. (This verifies a conjecture
of the preliminary version [19] of the present article.)

There are several branches of research that are in close connection with our
investigations. Here we only briefly enumerate them, and refer to [6] where a whole
section is devoted to a more detailed comparison. First of all, automata on series-
parallel posets were studied by Lodaya and Weil in [15, 16, 17]. Their work was
extended into two directions by Kuske [14], to automata on infinite posets and to
(first- and second-order) logical definability. On text languages see the papers of
Hoogeboom and ten Pas [12, 13]. On picture languages we refer to Giammarresi and
Restivo [8] in general, and to Dolinka [1] in connection with sp-biposets. Finally,
automata and languages over free bisemigroups (more precisely, free bisemigroups
with identity, called binoids) have also been studied by Hashiguchi et al. [10, 11].
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2 Basic concepts

2.1 Biposets and bisemigroups

In this paper, n always denotes a positive integer and Σ a finite alphabet. The
empty word is denoted by ε. Let us call an algebra equipped with n associative
operations n-semigroup. A bisemigroup is an n-semigroup for n = 2. It is proved
in [5] that the elements of the free n-semigroups freely generated by some set Σ
can be represented by finite Σ-labeled series-parallel n-posets defined as follows.

A Σ-labeled n-poset, or n-poset, for short, is a (finite or countably infinite)
nonempty set P of vertices equipped with n (irreflexive) partial orders <i for i =
1, . . . , n, and a labeling function λ : P → Σ. We denote an n-poset by P=(P,<1

, <2, . . . , <n, λ), so we do not distinguish between the name of the biposet and the
name of its vertex set. A Σ-labeled biposet, or biposet, is a Σ-labeled n-poset for
n = 2.

The two partial orders of a biposet (P,<1, <2, λ) are called the horizontal and
the vertical order. Accordingly, instead of <1 and <2, we write <h and <v, or <P

h

and <P
v if we want to emphasize that these orderings belong to biposet P .

A morphism between biposets P and Q is a function on the vertices that pre-
serves the partial orders and the labeling. An isomorphism is a bijective morphism
whose inverse is also a morphism. Below we will identify isomorphic biposets.

Suppose that P = (P,<P
h , <

P
v , λP ) and Q = (Q,<Q

h , <
Q
v , λQ) are Σ-labeled

biposets. Without loss of generality, assume that P and Q are disjoint. We define
their horizontal product as P • Q := (P ∪Q,<P•Q

h , <P•Q
v , λP•Q), and their vertical

product as P ◦ Q := (P ∪Q,<P◦Q
h , <P◦Q

v , λP◦Q), where

<P•Q
h := <P

h ∪ <
Q
h ∪(P ×Q), <P◦Q

h := <P
h ∪ <

Q
h ,

<P•Q
v := <P

v ∪ <
Q
v , <P◦Q

v := <P
v ∪ <

Q
v ∪(P ×Q),

and the labelings are λP•Q = λP◦Q := λP ∪ λQ.
We say that a finite or infinite biposet P is horizontal if there are biposets P1

and P2 such that P = P1 • P2, otherwise P is called •-irreducible or horizontally
irreducible. Similarly, P is vertical if it can be written as P = P1 ◦ P2, and P is
said to be ◦-irreducible or vertically irreducible if no such decomposition exists. The
fact that P is a horizontal (vertical) biposet will be abbreviated as Type(P ) = •

(Type(P ) = ◦, resp.) If P is a horizontal (vertical) biposet, then any factorization
P = P1 • P2 • . . . • Pm (P = P1 ◦ P2 ◦ . . . ◦ Pm), wherem ≥ 2, is called a horizontal
(vertical, resp.) decomposition of P . A horizontal (vertical) decomposition is said
to be maximal if every factor is horizontally (vertically, resp.) irreducible.

It is obvious that both product operations are associative. Each letter σ ∈ Σ
may be identified with the singleton biposet labeled σ. Let SPB(Σ) denote the
collection of biposets that can be generated from the singletons corresponding to
the letters in Σ by the two product operations in a finite number of steps. Clearly,
these biposets are finite. The biposets in SPB(Σ) are called series-parallel biposets,
or sp-biposets, for short. It is known that series-parallel biposets have a graph-
theoretic characterization, which is an appropriate generalization of the “N-free”
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condition for posets, cf. [5, 9, 22]. We say that an arbitrary biposet P is complete
if every two vertices of P are related either horizontally or vertically, but not by
both order relations. It is obvious that every sp-biposet is complete.

Proposition 1 ([5]). A finite biposet (P,<h, <v, λ) is in SPB(Σ) if and only if P
is complete and both posets (P,<h) and (P,<v) are N -free.

Proposition 2 ([5]). SPB(Σ) is freely generated by Σ in the variety of bisemi-
groups.

2.2 Term and tree representation of sp-biposets

The most evident way of representing sp-biposets is describing them by terms. For
this reason, we extend the alphabet with operation symbols and parentheses. Let
Σ̂ := Σ ∪ { • , ◦ , 〈 , 〉 }. As usual, we should put parentheses around the horizontal
biposets that appear as vertical factors, and symmetrically, around the vertical
biposets that appear as horizontal factors. The precise definition is the following.

Definition 3. If P ∈ SPB(Σ), let P tm denote the term representation of P . It is

a word over the alphabet Σ̂, defined inductively as follows.

(i) If P = σ is a singleton biposet, then P tm := σ.

(ii) If P = P1 • P2, then P tm := Hform(P1) • Hform(P2).

(iii) If P = P1 ◦ P2, then P tm := Vform(P1) ◦ Vform(P2).

Here Hform(P ) denotes the horizontal form of the sp-biposet P , defined as:

Hform(P ) :=

{
P tm if P is a singleton or horizontal biposet,
〈 P tm 〉 if P is a vertical biposet.

In (iii), Vform(P ), the vertical form of P , is defined symmetrically.

It should be noted that in cases (ii) and (iii) above, the definition of P tm does
not depend on the choice of the factorization, since •, ◦ and the concatenation of
words are all associative operations.

We will also use finite ordered trees to represent sp-biposets. In that case, leaves
are labeled from Σ, and the inner nodes are labeled by • or ◦.

Definition 4. If P is an sp-biposet, its tree form P tr, is defined as follows.

(i) If P = σ is a singleton, then P tr is a tree consisting of a single vertex labeled
by σ.

(ii) If P is horizontal, then consider the maximal horizontal decomposition P =
P1 • P2 • . . . • Pm, (m ≥ 2). Now P tr is the tree whose root is labeled • and
this root connects the subtrees P tr

1 , P tr
2 , . . . , P tr

m (in that order).
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Figure 1: The biposet P of Example 5 (a), and its tree representation P tr (b).

(iii) If P is vertical, then consider the maximal vertical decomposition P = P1 ◦

P2 ◦ . . . ◦ Pm, (m ≥ 2). Now P tr is the tree whose root is labeled ◦ and this
root connects the subtrees P tr

1 , P tr
2 , . . . , P tr

m (in that order).

Example 5. Consider the sp-biposet P = ({1, 2, . . . , 6}, <h, <v, λ), where <h and
<v are the transitive closures of the relations 1 <h 2, 1 <h 3, 3 <h 4, 2 <h 5,
2 <h 6, 4 <h 5, 4 <h 6, and 2 <v 3, 2 <v 4, 5 <v 6, respectively. Moreover,
λ(1) = a, λ(2) = b, λ(3) = c, λ(4) = d, λ(5) = e, λ(6) = f . Now P tm = a • 〈b ◦

〈c • d〉〉 • 〈e ◦ f〉, and the graphical representation of P and the tree representation
P tr are depicted in Figure 1. In the figure, horizontal and vertical relations are
indicated by solid arrows and dashed arrows, respectively.

It is obvious that for any leaf node in P tr there is a corresponding vertex in P .
Hence, we may and will identify the leaves of P tr with the corresponding vertices
of P . This allows us to speak about elements and subsets of P as those of P tr.
Similarly, we can identify vertices of P with the corresponding letters in the term
representation P tm.

2.3 Infinite biposets and ω-bisemigroups

In this subsection, we briefly summarize the main results of [7] regarding infinite
biposets. First, we introduce two types of operations that construct infinite biposets
from finite ones: the ω-product and the ω-power.

Suppose that P1, P2, . . . are pairwise disjoint finite biposets. Their horizontal
ω-product is defined as

ω•(P1, P2, . . .) := (P1 ∪ P2 ∪ . . . , <h, <v, λ)

where

<h:=

∞⋃

i=1

<Pi

h ∪
⋃

i<j

(Pi × Pj), <v:=

∞⋃

i=1

<Pi

v
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and
λ := λP1

∪ λP2
∪ . . .

The vertical ω-product ω◦(P1, P2, . . .) is defined symmetrically. We will also refer to
horizontal and vertical ω-products as P1 • P2 • . . . and P1 ◦ P2 ◦ . . ., respectively.
The two ω-product operations naturally induce a horizontal and a vertical power
operation: Pω• := P • P • P • . . . , and Pω◦ := P ◦ P ◦ P ◦ . . .

Note that the definition of the product operations applies to both finite and
infinite operands. Nevertheless, in order to avoid constructing biposets which have
chains not contained in ω, we will restrict the product operations P • Q and P ◦ Q
to a finite biposet P only. The biposet Q may be finite or infinite. The ω-product
and ω-power operations are applied only to finite biposets. These restrictions seem
to be necessary for the proofs later.

All the restrictions just described imply that we should use two-sorted algebras
as our algebraic framework making a difference between the finite and the infinite
elements. Fortunately, this can be done in complete analogy to the case of finite
and infinite words cf. [20]. But, as a minor difference from op. cit., we assume the
binary product operations to be appropriately polymorphic, i.e., we use the same
notation for the product of two finite biposets and for the product of a finite and
an infinite biposet.

Accordingly, call an algebra B = (BF , BI , •, ◦, ω•, ω◦) an ω-bisemigroup if it
satisfies the following identities

x ∗ (y ∗ u) = (x ∗ y) ∗ u,

x ∗ ω∗(x1, x2, . . .) = ω∗(x, x1, x2, . . .),

ω∗(x1 ∗ . . . ∗ xk1−1, xk1
∗ . . . ∗ xk2−1, . . .) = ω∗(x1, . . . , xk1−1, xk1

,

xk1+1, . . . , xk2−1, . . .),

for all x, y, x1, x2, . . . ∈ BF , u ∈ BF∪BI , ∗ ∈ { •, ◦ }, and for all increasing sequences
of positive integers k1 < k2 < . . .

A morphism of ω-bisemigroups C = (CF , CI , •, ◦, ω•, ω◦) → D = (DF , DI , •
′, ◦′

, ω′
•, ω

′
◦) is a pair of functions h = (hF : CF → DF , hI : CI → DI) that jointly

preserve the operations.
We call a Σ-labeled biposet constructible if it can be generated from the singleton

Σ-labeled biposets by the (restricted) binary product operations • and ◦, and by
the ω-ary product operations ω• and ω◦.

Note that SPB(Σ) is exactly the set of those constructible biposets which are
finite. Let ISPB(Σ) denote the set of infinite constructible biposets, and let

ωSPB(Σ) := (SPB(Σ), ISPB(Σ), •, ◦, ω•, ω◦)

stand for the two-sorted algebra of all constructible biposets over Σ. It is clear
that this is an ω-bisemigroup. Now, it is easily seen that the set of all finite
and countably infinite biposets also form an ω-bisemigroup, and ωSPB(Σ) is the
smallest subalgebra of this ω-bisemigroup that contains Σ. The infinite counterpart
of Proposition 2 is the following.
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Figure 2: An upward comb (a) and a downward comb (b).

Proposition 6 ([7]). The algebra ωSPB(Σ) is freely generated by Σ in the variety
of ω-bisemigroups.

A graph-theoretic characterization of sp-biposets is also given in [7]. This, of
course, is a suitable generalization of the “generalized N-free” condition of the finite
case.

Proposition 7 ([7]). An infinite biposet (P,<h, <v, λ) is in ISPB(Σ) if and only
if P is complete, and both posets (P,<h) and (P,<v)

(i) are N -free,

(ii) are free of “upward combs”,

(iii) are free of “downward combs”, and

(iv) have only finite principal ideals,

where the “upward comb” and “downward comb” posets are depicted in Figure 2.

See [7] for precise definitions.
In order to simplify the notations, in the sequel, we use ∗ to indicate any of

the • and ◦ operations. Sometimes, we also give subscripts to the ∗-s, but in any
formula all ∗ symbols, without subscript or with the same subscript, always denote
the same operation.

A decomposition of P into an ω-product of infinitely many biposets P = P1∗P2∗
. . . is said to be maximal if every Pi is ∗-irreducible. If P is an infinite constructible
biposet, we say that P is primitive if it can be written as P1 ∗P2 ∗ . . . for some finite
sp-biposets P1, P2, . . . Now each infinite constructible biposet can be generated from
the primitive biposets by multiplication with finite sp-biposets from the left. We
define the rank of an infinite constructible biposet P as the least number of left
multiplications with finite sp-biposets needed to construct P from the primitive
infinite biposets. The rank of P is denoted by Rank(P ).
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It is easy to prove that if an infinite constructible biposet P is not primitive,
than it can be uniquely written as P = P ′ ∗ P ′′, where P ′′ is ∗-irreducible and
Rank(P ′′) < Rank(P ). A direct consequence of this fact is that every infinite
constructible biposet has the form

P1 ∗1 (P2 ∗2 (P3 ∗3 . . . Pk ∗k (Q1 ∗k+1 Q2 ∗k+1 Q3 ∗k+1 . . .))), (1)

where all Pi and Qi are finite biposets in SPB(Σ), and ∗1, ∗2, ∗3 . . . is an alternating
sequence of the • and ◦ operations. Moreover, this form is unique provided that
every Qi is ∗k+1-irreducible. In this case, we call it the normal form of P . Note
that if (1) is the normal form of P , then Type(P ) = ∗1 and Rank(P ) = k.

2.4 Tree and term representations of infinite constructible

biposets

Here we outline the changes to be made if one intends to represent infinite con-
structible biposets by terms and trees.

The only thing we need to describe is how to handle infinite products as P =
P1 • P2 • . . . The definition of P tr is straightforward if we allow ω-branching in
trees. The tree P tr has a root labeled by •, and this root has ω branches connecting
the tree representations of all the horizontally irreducible components of the Pi-s
(i ≥ 1).

There are only slight changes also in the term representation. The term rep-
resentations of a biposet in ISPB(Σ) is an ω-word over the extended alphabet

Σ̂′ := Σ ∪ { 〈, 〉, [ }. We should add two more cases to Definition 3:

(iv) If P = P1 • P2 • . . ., then P tm := Hform(P1) • Hform(P2) • . . .

(v) If P = P1 ◦ P2 ◦ . . ., then P tm := Vform(P1) ◦ Vform(P2) ◦ . . .

The definitions of the horizontal and vertical forms are also extended appropri-
ately. In the representation of a product of a finite biposet with an infinite one,
we use the [ symbol if the type of the product differs from the type of the infinite
factor. We only give the definition of the horizontal form:

Hform(P ) :=





P tm if P is a singleton or a horizontal biposet,
〈 P tm 〉 if P is a finite vertical biposet,
[ P tm if P is an infinite vertical biposet.

2.5 Recognizability

A language consisting of finite sp-biposets is said to be recognizable if it is recognized
by a homomorphism into a finite bisemigroup, i.e., L ⊆ SPB(Σ) is recognizable if
and only if L = ϕ−1(F ), for some bisemigroup homomorphism ϕ : SPB(Σ) → B,
where B is a finite bisemigroup, and F ⊆ B.
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Similarly, for a language that contains both finite and infinite biposets, L =
(LF , LI) ⊆ ωSPB(Σ), is recognizable if and only if there is a finite ω-bisemigroup
B = (BF , BI), a subset of it, T = (TF , TI) ⊆ (BF , FI), and a morphism ϕ =
(ϕF , ϕI ) : ωSPB(Σ)→ B such that L = ϕ−1(T ). Here (TF , TI) ⊆ (BF , FI) means
TF ⊆ BF and TI ⊆ FI , moreover, L = ϕ−1(T ) stands for LF = ϕ−1

F (TF ) and
LI = ϕ−1

I (TI).

Example 8. Let Σ = {a, b, c}, and consider the following language L ⊆ ISPB(Σ)
of infinite biposets

L = { cω• , a • (b ◦ (cω•)), a • (b ◦ (a • (b ◦ (cω•)))), . . . }.

L is the least solution of the fixed point equation a • (b ◦ X) + cω• = X . It is
not hard to show that L is recognizable. Indeed, consider the finite bisemigroup
B = (BF , BI), where BF = { da, db, dc, 0 }, and BI = { t1, t2, t3, 0 }. The binary
product operations are given by dc • dc = dc, and all other binary products of two
finite elements are equal to 0, moreover, dc • t1 = t1, db ◦ t1 = t2, da • t2 = t3,
db ◦ t3 = t2, and all other products of a finite element with an infinite one are
equal to 0. Finally, the ω-product operations are given by d

ω•
c = t1, and all other

ω-products are equal to 0. Now, if we take the homomorphism ϕ : ωSPB(Σ) → B
that is induced by the mapping a 7→ da, b 7→ db, c 7→ dc, then L = ϕ−1

I ({ t1, t3 }).
This shows that L is recognizable.

2.6 Logical definability

By considering biposets as relational structures, there is a usual way of defining
languages by logical formulas. Let V = {x, y, . . .} denote a fixed countable set of
first-order variables, and W = {X,Y, . . .} a fixed countable set of monadic second-
order variables.

Now we define monadic second order (MSO) formulas. An atomic formula (over
Σ, V and W) is of the form Qa(x), X(x), x <h y or x <v y, where a ∈ Σ, x, y ∈ V ,
and X ∈ W . MSO-formulas are composed from atomic formulas by the boolean
connectives ∨ and ¬ and first- and second-order existential quantifiers ∃x and ∃X ,
where x ∈ V and X ∈ W .

We interpret formulas over both finite and infinite constructible biposets. Sup-
pose that P is in SPB(Σ) or in ISPB(Σ). First order variables are interpreted to be
vertices (also called positions) in P , whereas second order variables are interpreted
to be sets of positions in P . Now, Qa(x) means that vertex x is labeled by a and
X(x) means that x belongs to X . The atomic formulas x <h y and x <v y have
their expected meanings. The fact that a closed formula (sentence) ϕ holds in, or
is satisfied by P is defined in the usual way, and it is denoted P |= ϕ. The language
defined by ϕ is Lϕ := {P ∈ (I)SPB(Σ) | P |= ϕ }.

Definition 9. We say that a language L ⊆ (I)SPB(Σ) is MSO-definable if there is
sentence ϕ with L = Lϕ.
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3 Automata and regularity

In this section, we will define parenthesizing automata operating on finite con-
structible biposets (i.e., on sp-biposets), and parenthesizing Büchi-automata oper-
ating on infinite constructible biposets.

3.1 Parenthesizing automata

An accepting device, called parenthesizing automaton, was introduced in [6] to
define the class of regular languages of sp-biposets. Its definition below involves
a finite set Ω of parentheses. We assume that Ω is partitioned into opening and
closing parentheses that are in a bijective correspondence. We usually denote the
corresponding pairs by 〈1, 〉1 and 〈2, 〉2, etc.

Definition 10. A (nondeterministic) parenthesizing automaton is a 9-tuple A :=
(S,H, V,Σ,Ω, δ, γ, I, F ), where S is a nonempty, finite set of states, H and V are
the sets of horizontal and vertical states, which give a disjoint partition of S, Σ is
the input alphabet, Ω is a finite set of parentheses, moreover,

• δ ⊆ (H × Σ×H) ∪ (V × Σ× V ) is the labeled transition relation,

• γ ⊆ (H × Ω× V ) ∪ (V × Ω×H) is the parenthesizing transition relation,

• I, F ⊆ S are the sets of initial and final states, respectively.

Let A = (S,H, V,Σ,Ω, δ, γ, I, F ) be a parenthesizing automaton. If t = (p, x, q)
is a labeled or parenthesizing transition of A, i.e., t ∈ δ ∪ γ, the starting and the
ending state of t is denoted by start(t) := p and end(t) := q, respectively. Moreover,
if r = t1t2 . . . tn ∈ (δ∪ γ)∗ is a sequence of transitions, then let start(r) := start(t1)
and end(r) := end(tn). We say that two parenthesizing transitions t1 = (p, ω1, q)
and t2 = (s, ω2, t) ∈ γ form a parenthesizing transition pair if ω1 is an opening
parenthesis and ω2 is its closing partner.

Definition 11. Let A be a parenthesizing automaton. The set of its runs, Runs(A),
is the least set of transition sequences that contains

(i) (p, σ, q) for every (p, σ, q) ∈ δ;

(ii) r1r2 for every r1, r2 ∈ Runs(A) provided that end(r1) = start(r2);

(iii) t1r t2 for every t1 and t2 parenthesizing transition pair such that end(t1) =
start(r), end(r) = start(t2), and for every r ∈ Runs(A) such that r is of the
form r = r1r2, where r1, r2 ∈ Runs(A).

In case (i), the run is called singleton run, in case (ii), it is called direct run, in
case (iii) the run is called indirect run.
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Let A be a parenthesizing automaton, r = t1 . . . tn ∈ Runs(A). A parenthesizing
transition pair ti, tj , (i < j) is said to be a matching parenthesizing transition pair
in r if ti . . . tj is an indirect run of A. It is obvious that every run of A is of the
form

r = t1t2t3 . . . tn = (p0, ω1, p1)(p1, ω2, p2)(p2, ω3, p3) . . . (pn−1, ωn, pn),

where pi ∈ S and ωi ∈ Σ ∪ Ω for all i = 1, . . . , n. If r is an indirect run, then
t1 and tn is a matching parenthesizing transition pair, and t2 . . . tn−1 is a direct
run of A. Moreover, if r is a direct run, then it has a unique decomposition into
subruns r = r1r2 . . . rk, where each ri is either a singleton run or an indirect run
for i = 1, . . . , k, and k ≥ 2.

Definition 12. Suppose that A is a parenthesizing automaton and r ∈ Runs(A).
The biposet of r is an element of SPB(Σ) defined inductively as follows:

(i) If r = (p, σ, q), then Biposet(r) := σ.

(ii) If r is a direct run, and r = r1r2 for some r1, r2 ∈ Runs(A), then

- if end(r1) ∈ H, then Biposet(r) := Biposet(r1) • Biposet(r2);

- if end(r1) ∈ V , then Biposet(r) := Biposet(r1) ◦ Biposet(r2).

(iii) If r is an indirect run r = t1r
′ t2, then Biposet(r) := Biposet(r′).

As in Definition 3, the definition of Biposet(r) is also independent of the choice
of factorization in case (ii) above.

If r = (p0, ω1, p1)(p1, ω2, p2) . . . (pn−1, ωn, pn) is a run of A, we define the word
of r as

Word(r) := ω′
1ω

′
2 . . . ω

′
n,

where

ω′
i :=





ωi if ωi ∈ Σ,
〈 if ωi ∈ Ω is an opening parenthesis, and
〉 if ωi ∈ Ω is a closing parenthesis.

The relationship between the term representation of a biposet and the word of
a run on that biposet, is given by the following lemma. This is a straightforward
consequence of Definition 3, Definition 11 and Definition 12. In the sequel, we write
Type(q) = • if q is a horizontal state, and Type(q) = ◦ if q is a vertical state of an
automaton A.

Lemma 13. Suppose that A is a parenthesizing automaton, r ∈ Runs(A), and
P = Biposet(r).

(i) r is singleton or direct run ⇔ Type(start(r)) = Type(P )
⇔Word(r) = P tm.

(ii) r is indirect run ⇔ Type(start(r)) 6= Type(P )⇔Word(r) = 〈P tm〉.
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Definition 14. Suppose that P ∈ SPB(Σ) and p, q ∈ S. We say that A =
(S,H, V,Σ,Ω, δ, γ, I, F ) has a run on P from p to q, denoted [p, P, q]A, if there
is a run r ∈ Runs(A) with start(r) = p, end(r) = q, and Biposet(r) = P .

Definition 15. The sp-biposet language L(A) accepted by the automaton A =
(S,H, V,Σ,Ω, δ, γ, I, F ) is defined as

L(A) := {P ∈ SPB(Σ) | [i, P, f ]A for some i ∈ I and f ∈ F }.

An sp-biposet language L ⊆ SPB(Σ) is called regular if there exists a parenthe-
sizing automaton A that accepts it, i.e., L = L(A). Two automata are said to be
equivalent if they accept the same language.

The following lemma is a straightforward consequence of Definition 11 and Def-
inition 12.

Lemma 16. Let A = (S,H, V,Σ,Ω, δ, γ, I, F ) be a parenthesizing automaton, and
let P be a horizontal sp-biposet, with maximal horizontal decomposition P = P1 •

. . . • Pn, (n ≥ 2).

If p, q ∈ H, then

[p, P, q]A ⇔ ∃ r1, . . . , rn−1 ∈ H, r0 = p, rn = q : [ri−1, Pi, ri]A ∀i = 1, . . . , n.

If p, q ∈ V , then

[p, P, q]A ⇔ ∃ 〈k, 〉k ∈ Ω, ∃ p′, q′ ∈ H : (p, 〈k, p
′), (q′, 〉k, q) ∈ γ, [p′, P, q′]A.

Obviously, for vertical sp-biposets there are two analogous statements.

Corollary 17. If A = (S,H, V,Σ,Ω, δ, γ, I, F ) is a parenthesizing automaton, and
P is a horizontal biposet, then

P ∈ L(A)⇔ either i) [i, P, f ]A, where i ∈ I ∩H, and f ∈ F ∩H ;

or ii) [r, P, s]A where r, s ∈ H, and (i, 〈, r), (s, 〉, f) ∈ γ,

i ∈ I ∩ V, f ∈ F ∩ V, 〈, 〉 ∈ Ω.

Again, an analogous statement holds for vertical sp-biposets.

We do not give examples of parenthesizing automata here, but several exam-
ples can be found in [6]. The main result concerning sp-biposet languages is the
following.

Theorem 18 ([6]). An sp-biposet language L ⊆ SPB(Σ) is recognizable if and only
if it is regular if and only if it is MSO-definable.



Automata on Infinite Biposets 13

3.2 Parenthesizing Büchi-automata

Our next task is to define parenthesizing Büchi-automaton so that a language is
recognizable if and only if it can be accepted by such an automaton. A straight-
forward approach would be to use the same accepting device and only extend the
notion of run appropriately for the acceptance of languages of infinite biposets, but,
as we shall see, this cannot be achieved. Thus, our definition is the following.

Definition 19. A parenthesizing Büchi-automaton is a tuple A := (S,H, V,
Σ,Ω, [, δ, β, γ, I, F ), where A′ := (S,H, V,Σ,Ω, δ, γ, I, F ) is a parenthesizing au-
tomaton, called the underlying parenthesizing automaton of A. And the new com-
ponents are the following:

- [ /∈ (Σ ∪ Ω) is the separating parenthesis, and

- β ⊆ (H × { [ } × V ) ∪ (V × { [ } ×H) is the separating transition relation.

For the sake of simplicity, we will write [p, P, q]A instead of [p, P, q]A′ if P is an
sp-biposet, andA′ is the underlying parenthesizing automaton of the parenthesizing
Büchi-automaton A.

Remark 20. It was proved in [18] that if we would like to accept all regular
sp-biposet languages, we cannot give a universal upper bound for the number of
parentheses used in parenthesizing automata. On the other hand, as we need not
to close parentheses of the separating transitions, a single symbol in itself is enough
for changing the type of the state at the borders of “finite-infinite” products.

Next, we define when a parenthesizing automaton A accepts an infinite biposet
P from a given state p. For this, we choose Büchi’s approach: for acceptance a run
must contain a final state r (in certain “outer” positions) infinitely many times. Let
[p, P, r]∞A denote this fact. Its definition distinguishes two cases and uses induction

on the rank of P . Recall that we write Type(p) = • if p is a horizontal state, and
Type(p) = ◦ if p is a vertical state of A. Similarly, Type(P ) = • (Type(P ) = ◦)
indicates that P is a horizontal (vertical, resp.) biposet.

Definition 21. Suppose that A = (S,H, V,Σ,Ω, [, δ, γ, β, I, F ) is a parenthesizing
Büchi-automaton, p and r are in S, and P is an infinite constructible biposet. We
write [p, P, r]∞A in the following cases.

i) Type(p) = Type(P ), and either

α) P can be written as P = P0 ∗P1 ∗P2 ∗ . . ., where each Pi is a finite (not
necessarily ∗-irreducible) sp-biposet such that [p, P0, r]A and [r, Pi, r]A
for i > 0; or

β) P = P ′ ∗ P ′′, where Rank(P ′′) < Rank(P ), and there is a state q ∈ S
such that [p, P ′, q]A and [q, P ′′, r]∞A, the latter is defined inductively.

ii) Type(p) 6= Type(P ), and there exists a state p′ ∈ S such that A has a sepa-
rating transition (p, [, p′) ∈ β, and [p′, P, r]∞A holds according to case i) above.
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Figure 3: A parenthesizing Büchi-automaton

Definition 22. A parenthesizing Büchi-automaton A accepts the following lan-
guage

L(A) := {P ∈ ISPB(Σ) | [i, P, f ]∞A for some i ∈ I and f ∈ F }.

Again, a language L ⊆ ISPB(Σ) is regular if there is a parenthesizing Büchi-
automaton A such that L = L(A).

Similarly to Definition 11, one could also define infinite runs formally. In this
case, runs are ω-words over the union of the sets of labeled, parenthesizing and
separating transitions. Later we will use the same notations as in the finite case:
Runs(A), Biposet(r), etc.

Example 23. Figure 3 shows a parenthesizing Büchi-automaton. The horizontal
states are those labeled Hi and the vertical states are those labeled Vj for some
i and j. There is a single initial state H1 and a single final state H5. The angle
brackets indicate parenthesizing transitions, while the square brackets represent
separating transitions. It is easy to check that this automaton accepts exactly the
constructible biposets of the form

(a ◦ b) • c • (a ◦ b) • c • . . . • (a ◦ b) • c • (d ◦ (e • (d ◦ (e • . . . (d ◦ (e • f • f • f . . .)) . . .))))

Remark 24. As we mentioned above, we cannot use original parenthesizing au-
tomata for acceptance of infinite biposets. First, there is no meaningful definition
of closing a parenthesis after the acceptance of an infinite subbiposet. E.g., suppose
that P = Q • R is an infinite constructible biposet, where Q is a finite sp-biposet
(either horizontal or vertical), and R is an infinite vertical biposet. Now, if there
is a finite run [p,Q, q]A for some horizontal states p and q, we must open a paren-
thesis by some transition (q, 〈, r) in order to arrive at a vertical state r, from where
the acceptance of the infinite vertical biposet R can be started. However, as R is
infinite, we have no possibility to close this parenthesis. Second, it can be proved
that we must distinguish between the normal and these “non-closable” parenthe-
sizing transitions, otherwise there would be ω-recognizable languages that cannot
be accepted by Büchi-automaton. To check this, consider the language L := {a •

(b ◦ c) • dω• , a • (b ◦ (a • (b ◦ c))) • dω• , a • (b ◦ (a • (b ◦ (a • (b ◦ c))))) • dω• , . . .}.
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4 From regularity to recognizability

The fact the regularity implies recognizability is easily follows from the finite-state
property of automata.

Theorem 25. Every regular language of infinite constructible biposets is recogniz-
able.

Proof. Let L denote a language containing only infinite constructible biposets, i.e.,
L ⊆ ISPB(Σ). We show how to transform a parenthesizing Büchi-automaton A =
(S,H, V,Σ,Ω, [, δ, γ, β, I, F ) accepting L into a finite ω-bisemigroup recognizing L
analogously to [20].

Recall that [p, P, q]A means that the automaton A has a run on the sp-biposet
P from state p to state q. Moreover, we write Type(p) = • if p is a horizontal state,
and Type(p) = ◦ if p is a vertical state of A. Suppose that Type(p) = Type(q) = ∗,
and consider an sp-biposet P . If P is ∗-irreducible, then take P1 = P and m = 1,
otherwise let the maximal ∗-decomposition of P be P = P1 ∗ P2 ∗ . . . ∗ Pm for
some m ≥ 2. According to Lemma 16, there are states p0 = p, p1, . . . , pm = q of
type ∗ such that [p0, P1, p1]A, [p1, P2, p2]A, . . . , [pm−1, Pm, pm]A hold. Let us write
[p, P, q]A+ to indicate the existence of such states for which {p0, . . . , pm} ∩ F 6= ∅.
Thus, [p, P, q]A+ if and only if there is at least one final state among the “outer”
states of a possible run between p and q on P .

Next, we define for any P,Q ∈ SPB(Σ) and P ′, Q′ ∈ ISPB(Σ)

P ∼F Q iff ∀ p, q ∈ S :
(
[p, P, q]A ⇔ [p,Q, q]A and [p, P, q]A+ ⇔ [p,Q, q]A+

)
,

P ′ ∼I Q
′ iff ∀ p ∈ S :

(
∃ r ∈ F : [p, P ′, r]∞A ⇔ ∃ r

′ ∈ F : [p,Q′, r′]∞A
)
.

Now one can check that ∼F and ∼I are equivalence relations with finitely many
equivalence classes. Furthermore, they satisfy the following equalities. If Pi, Qi ∈
SPB(Σ), for i = 1, 2, . . ., and P ′, Q′ ∈ ISPB(Σ), ∗ ∈ { •, ◦ }, then

P1 ∼F Q1, P2 ∼F Q2 ⇒ P1 ∗ P2 ∼F Q1 ∗Q2,

Pi ∼F Qi for i > 0 ⇒ P1 ∗ P2 ∗ . . . ∼I Q1 ∗Q2 ∗ . . . , and

P1 ∼F Q1, P
′ ∼I Q

′ ⇒ P1 ∗ P
′ ∼I Q1 ∗Q

′.

Hence the quotient can be equipped with the structure of an ω-bisemigroup.
Finally, the canonical epimorphism of ωSPB(Σ) onto this quotient accepts L(A).

5 From recognizability to regularity

In this section, our aim is to prove that every recognizable infinite constructible
biposet language is regular, i.e., can be accepted by a parenthesizing Büchi-
automaton. First, we observe that every parenthesizing automaton is equivalent to
one in normal form, i.e., with a single initial and a single final state.
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In the sequel, we assume that no automaton has two opening or closing paren-
thesizing transitions with the same label. This can easily be achieved by replacing
the multiple occurrences of the same parenthesizing transition pair with new tran-
sitions using different symbols. We start with the definition of the substitution
product of parenthesizing automata.

Definition 26. Suppose that A1 = (S1, H1, V1,Σ,Ω, δ1, γ1, I1, F1) and A2 =
(S2, H2, V2,Σ,Ω, δ2, γ2, I2, F2) are parenthesizing automata, and either p, q ∈ H1

and R,S ⊆ H2; or p, q ∈ V1 and R,S ⊆ V2. We assume that S1 and S2 are dis-
joint. We define the substitution product of A1 and A2 with respect to p, q, R and
S, as

A1 ∗[p→R,S→q] A2 := (S3, H3, V3,Σ,Ω3, δ3, γ3, I1, F1),

where

S3 := S1 ∪ S2, H3 := H1 ∪H2, V3 := V1 ∪ V2,

Ω3 := Ω ∪ { 〈first, 〉first, 〈last, 〉last | 〈, 〉 ∈ Ω },

δ3 := δ1 ∪ δ2

∪{ (p, a, x) | a ∈ Σ, x ∈ S2, ∃r ∈ R : (r, a, x) ∈ δ2 }

∪{ (y, b, q) | y ∈ S2, b ∈ Σ, ∃s ∈ S : (y, b, s) ∈ δ2 },

γ3 := γ1 ∪ γ2

∪{ (p, 〈first, x), (y, 〉first, z) | x, y, z ∈ S2, ∃r ∈ R : (r, 〈, x), (y, 〉, z) ∈ γ2 }

∪{ (x, 〈last, y), (z, 〉last, q) | x, y, z ∈ S2, ∃s ∈ S : (x, 〈, y), (z, 〉, s) ∈ γ2 }.

The construction is illustrated in Figure 4. If both R and S are singletons,
say R = {r} and S = {s}, then we will write A1 ∗[p→r,s→q] A2 instead of
A1 ∗[p→{r},{s}→q] A2. The next lemma formulates a key property of the substi-
tution product.

Lemma 27. Suppose that A1 and A2 are parenthesizing automata as above, p, q ∈
H1, R,S ⊆ H2 and A3 = A1 ∗[p→R,S→q]A2. Moreover, p 6= q, and no transition of
A1 arrives at p or starts from q. Then, for every P ∈ SPB(Σ)

[p, P, q]A3

⇔ either i) [p, P, q]A1

,

or ii) ∃r ∈ R, ∃s ∈ S : [r, P, s]A2

and P is horizontal.

Proof. [p, P, q]A3

implies that P = Biposet(r) for a run r = t1 . . . tm ∈ Runs(A3)
with start(t1) = p and end(tm) = q.

If end(t1) ∈ S1, then r ∈ Runs(A1) also holds. This follows from the definition
of A3 and from the fact that no transition arrives at p. Thus, case (i) is true.

If end(t1) ∈ S2, then we can modify r to obtain a run r′ := t′1 . . . t
′
m ∈ Runs(A2)

with Biposet(r′) = P and start(t′1) ∈ R, and end(t′m) ∈ S. Indeed, if t1 is of the
form t1 = (p, a, x), a ∈ Σ, then there is an r ∈ R such that t′1 := (r, a, x) ∈ δ2.
Similarly, if tm = (y, b, q), b ∈ Σ, then there is an s ∈ S such that t′m := (y, b, s) ∈ δ2.
On the other hand, if t1 or tm involves parenthesis, e.g., t1 = (p, 〈first, x), then
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Figure 4: The labeling (a) and the parenthesizing (b) transitions used in Defini-
tion 26. The thin arrows represent the original transitions, and the thick arrows
the new ones.

there is a closing transition partner of t1, say ti = (y, 〉first, z), where i < m, and
x, y, z ∈ S2. Moreover, by definition, there is an r ∈ R such that t′1 := (r, 〈, x),
t′i := (y, 〉, z) ∈ γ2. Similarly, if tm = (z, 〉last, q), then there is an index j > 1
such that tj = (x, 〈last, y). So, we can set t′j := (x, 〈, y) and t′m := (z, 〉, s) ∈ γ2

for a suitable s ∈ S. So far we have defined t′k for at most four k-s. Let t′k := tk
for all other k-s (note that tk ∈ δ2 ∪ γ2 in these cases). Now Biposet(r′) = P ,
start(t′1) = r ∈ R, and end(t′m) = s ∈ S implies [r, P, s]A2

. Since 〈first and 〉last do
not match, t1 and tm cannot be a matching parenthesizing transition pair. Hence,
r is a direct run, and so is r′. Consequently, by Lemma 13, r, s ∈ H implies that
P is horizontal. Thus, (ii) holds.

For the converse direction, it is obvious that [p, P, q]A1

implies [p, P, q]A3

.
Assume that ii) holds, so P = Biposet(r) for r = t1 . . . tm ∈ Runs(A2) with
start(t1) = r ∈ R and end(tm) = s ∈ S. By Lemma 13, as P is horizontal and r
and s are in H , r is a direct run. Hence, t1 and tm is not a matching parenthesizing
transition pair. Thus, it is possible to replace both 〈 and 〉 with 〈first and 〉last, in
the first and in the last transitions, if necessary. We can also substitute their closing
and opening partners by 〉first and 〈last, if needed. Therefore, the construction of
A3 ensures that [p, P, q]A3

holds.
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Definition 28. We say that a parenthesizing automaton is in horizontal normal
form if it has a single initial state ih, and a single final state fh, and both ih and fh

are horizontal states, moreover, there is no transition into ih or from fh. Automata
in vertical normal form can be defined accordingly.

Lemma 29. For every parenthesizing automaton A, there exists an equivalent
parenthesizing automaton Ah in horizontal normal form and an equivalent paren-
thesizing automaton Av in vertical normal form.

Proof. First we prove that for every parenthesizing automaton A = (S,H, V,Σ,
Ω, δ, γ, I, F ) there exists a parenthesizing automaton A∩H in horizontal normal
form that accepts exactly the horizontal biposets accepted by A, i.e.,

L(A∩H) = L(A) ∩ H,

where H denotes the set of all horizontal biposets. Indeed, let

T := { (s, t) | ∃i ∈ I ∩ V, ∃f ∈ F ∩ V, ∃〈, 〉 ∈ Ω : (i, 〈, s), (t, 〉, f) ∈ γ },

and assume that T = { (s1, t1), (s2, t2), . . . , (sn, tn) }. Moreover, let A0 be the
automaton without transitions, with two states only, an initial horizontal state ih,
and a final horizontal state fh.

Now, with the help of the substitution product, we define

A1 := A0 ∗[ih→I∩H,F∩H→fh ] A,

Ak+1 := Ak ∗[ih→sk ,tk→fh] A for k = 1, . . . , n,

A∩H := An+1.

Using Lemma 27 and Corollary 17, it is straightforward to check that L(A∩H) =
L(A) ∩ H, as claimed.

Similarly, there is an automaton A∩V in vertical normal form which accepts
exactly the vertical biposets accepted by A. Let iv and fv denote the (single)
initial and final vertical states of A∩V .

Now, we can construct Ah by taking the disjoint union of A∩H and A∩V and
adding two new parenthesizing transitions, (ih, {, iv) and (fv , }, fh), where { and }
is a new pair of parentheses. Of course, we do not regard iv and fv as initial and
final states any longer. In order to accept the singleton biposets, we also define
(ih, σ, fh) for each singleton biposet σ ∈ L(A). As A∩H accepts all horizontal,
and A∩V all vertical biposets of L(A), the resulting automaton is equivalent to A.
Again, Av can be defined symmetrically.

Now, we are ready to prove the converse of Theorem 25.

Theorem 30. Every recognizable language of infinite constructible biposets is reg-
ular.
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Proof. Suppose that a language L ⊆ ISPB(Σ) of infinite constructible biposets is
recognized by a morphism ϕ : ωSPB(Σ) → B, where B = (BF , BI) is a finite
ω-bisemigroup, and L = ϕ−1(F ) for some F ⊆ BI .

Let us call an element e ∈ BF horizontally idempotent if it is idempotent with
respect to the horizontal product, i.e., e • e = e. Similarly, e is said to be vertically
idempotent if e ◦ e = e. This notion is important for the fact that every primitive
biposet P0 ∗ P1 ∗ . . . can be written in the form P ′

0 ∗ P
′
1 ∗ . . ., where ϕ(P ′

0) = b and
ϕ(P ′

i ) = e for all i > 0, where e is a ∗-idempotent element of BF . This follows from
an application of the Ramsey-theorem, cf. [20]. We can even assume that b = b ∗ e,
but we do not need this now.

Thus, if we omit P ′
0 from the above biposet, then the remaining primitive biposet

is P ′
1 ∗ P

′
2 ∗ . . ., where ϕ(P ′

i ) = e for all i > 0. Let us call those biposets that can
be written in such a form e-∗-primitive.

For a given e and ∗, the set of all e-∗-primitive biposets is easy to accept by
a parenthesizing Büchi-automaton Ae,∗ constructed as follows. Since ϕ−1(e) is a
recognizable set of finite sp-biposets, it is also regular by Theorem 18. So there
is a parenthesizing (finite) automaton A accepting ϕ−1(e). Moreover, it can be
assumed that A is in ∗-normal form (i.e. in horizontal normal form if ∗ = •, or
in vertical normal form if ∗ = ◦). Thus, A has a single initial state i and a single
finite state f , both of them are of type ∗. We can transform A into Ae,∗ just by
merging i and f . We will refer to this fused state as the basic state of Ae,∗. Now,
it is obvious that if we regard Ae,∗ as a Büchi-automaton with its basic state as
the only initial and final state, it accepts exactly the e-∗-primitive biposets.

Recall that according to (1) the normal form of a constructible biposet is

P1 ∗1 (P2 ∗2 . . . (Pk ∗k (Q1 ∗k+1 Q2 ∗k+1 . . .))).

We can assume that except for a finite factor Q′, the biposet Q1 ∗k+1 Q2 ∗k+1 . . .
is e-∗k+1-primitive for some ∗k+1-idempotent e. Thus, we only need to build our
automaton in a way that it can also process the finite “introductory slice” P1 ∗1
(P2 ∗2 (. . . Pk ∗k (Q′∗k+1 before the e-∗k+1-primitive tail.

Assume that BI = {t1, t2, . . . , tm}. We start to construct a Büchi-automaton
A from the horizontal states H0, vertical states V0, with separating transitions β,
where

H0 := { t•1, t
•
2, . . . , t

•
m },

V0 := { t◦1, t
◦
2, . . . , t

◦
m }, and

β := { (t•i , [, t
◦
i ), (t

◦
i , [, t

•
i ) | i = 1, . . . ,m }.

For all b ∈ BF , there is a parenthesizing (finite) automaton Ab recognizing
ϕ−1(b). Similarly as before, we will incorporate these finite automata into A.

More precisely, if p and q are states of A of the same type, say ∗, then one can
take a copy of Ab in ∗-normal form and merge its initial state i and final state f with
the states p and q of A, respectively. In the sequel, we refer to this construction as
extension of A (between p and q) by ϕ−1(b). Let us denote it by

p
ϕ−1(b)
=⇒ q.
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Figure 5: A Büchi-automaton accepting the recognizable language of Example 8

We need to add the following extensions to A:

t∗i
ϕ−1(b)
=⇒ t∗j for all ti = b ∗ tj , b ∈ BF , ti, tj ∈ BI , ∗ ∈ { •, ◦ }.

Now we obviously have

[ t∗i , P, t
∗
j ]A ⇔ ti = ϕ(P ) ∗ tj for any P ∈ SPB(Σ).

Furthermore,

[ t∗i , P1 ∗1 (P2 ∗2 (. . . Pk−1 ∗ (Pk∗k, t
∗
j ]A ⇔ ti = ϕ(P1) ∗1 (ϕ(P2) ∗2 (. . . ϕ(Pk) ∗k tj)),

where the left hand side abbreviates the first part of an infinite run of A (as a
Büchi-automaton) on an infinite biposet beginning with P1 ∗1 (P2 ∗2 . . . (Pk∗k.

Next, add an instance of Ae,∗ for each ∗-idempotent element e in BF to A, and
assure the reachability of the new components by adding some new transitions. In
more detail, for Ae,∗, consider t := eω∗ and duplicate each transition arriving at
t∗ using the same source and label, but with the target of the basic state of Ae,∗

instead of t∗.
Our last task is to settle the initial and the final states. Let the initial states

be the states t• and t◦ for each t ∈ F , and set the basic states of the components
Ae,∗-s as final states.

Finally, it can be argued by induction on the rank of the biposets that in fact
this automaton accepts L = ϕ−1(F ). We omit the formal proof.

Example 31. Figure 5 shows a parenthesizing Büchi-automaton that was con-
structed according to the proof of Theorem 30 from the morphism ϕ, the ω-
bisemigroup B, and the set F ⊆ B of Example 8. We omitted the two shrink
states 0•, 0◦ that correspond to the infinite zero element, and also the transitions
pointing to them. We should admit that this example represents a somewhat spe-
cial case, since, for every x ∈ BF the extension by ϕ−1(x) is a single transition, and
there is only one idempotent in BF . Of course, in the general case the constructed
automaton can have a more complex structure.
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6 From regularity to MSO-definability

In this section, we prove the equivalence of regularity and MSO-definability. First
of all, it is not hard to demonstrate that MSO-definability implies recoginzability,
and hence regularity. This can be shown by formula induction using the closure
properties of the recognizable sets, more precisely, the closure under Boolean op-
erations and direct letter-to-letter morphisms. See Chapter III.1 of Straubing [21]
for a similar argument. Thus, we have the following theorem.

Theorem 32. Every MSO-definable language of infinite constructible biposets is
regular.

The rest of the paper is devoted to the converse of the previous theorem:

Theorem 33. Every regular language of infinite constructible biposets is MSO-
definable.

Before the proof, let us introduce a few definitions and lemmas.
The notion of clan is one of our key definition, that can be easily adapted from

the theory of 2-structures [2] and texts [4, 13]. If (P,<h, <v, λ) is a finite or infinite
constructible sp-biposet, a subset X of P is said to be a clan of P if for all x, y ∈ X ,
z ∈ P \X and for each relation ρ ∈ {<h, <v, >h, >v}

xρz ⇔ yρz.

Two clans X and Y overlap if X ∩ Y 6= ∅, X \ Y 6= ∅ and Y \X 6= ∅. A clan is
called prime clan if it does not overlap with any other clan. A clan of P is a proper
clan if it is neither a singleton, nor equal to P .

Example 34. In the biposet of Example 5, the clans of P are the following: the
singletons, P , { 1, 2, 3, 4 }, { 2, 3, 4 }, { 3, 4 }, { 2, 3, 4, 5, 6 } and { 5, 6 }. Since, only
{ 1, 2, 3, 4 } and { 2, 3, 4, 5, 6 } overlap, the other clans are prime clans as well. Thus,
the proper prime clans are { 2, 3, 4 }, { 3, 4 } and { 5, 6 }. As we will see later in
Lemma 38, these are the sets which are surrounded by parentheses in the term
representation of P .

The proof of the following lemma is trivial and is left to the reader.

Lemma 35. The property of being a clan, a prime clan or a proper prime clan can
be expressed in MSO logic.

Lemma 36. If P = (P,<h, <v, λ) is a (finite or infinite) constructible biposet,
then <h ∪ <v is a linear order on P .

Proof. By induction on the construction of P .

In the sequel, let < denote the <h ∪ <v relation, and we interpret the functions
+ and − also according to this relation.
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By definition, clans form sections (or intervals) with respect to <. That is, if X
is a clan then x ∈ X , y ∈ X and x < z < y imply z ∈ X . Thus, we can talk about
prefix and suffix relations among the clans of P . Formally,

Prefix(X,Y ) := X ( Y ∧ ∀x∀y
(
y < x ∧X(x) ∧ Y (y)→ X(y)

)
;

Suffix(X,Y ) := X ( Y ∧ ∀x∀y
(
y > x ∧X(x) ∧ Y (y)→ X(y)

)
,

where X ( Y means that X is a proper subset of Y . Thus, under prefix and suffix
relations we always mean proper prefix and suffix.

Recall that P tr denotes the tree representation of P . Two (or more) subtrees
of a tree are said to be sibling subtrees if their roots have the same parent.

Lemma 37. Suppose that P is a (finite or infinite) constructible biposet and X is
a subset of P , then

(i) X is a clan of P if and only if there are consecutive sibling subtrees in P tr

such that X is exactly the union of the sets of leaves of these subtrees;

(ii) X is a prime clan of P if and only if X is the set of leaves of a single subtree
of P tr.

Proof. We start with the proof of case (i). The necessity of the condition is based
on the following observation. Suppose that x and y are vertices of P . As we
mentioned earlier, we can regard them as two leaves in the tree representation P tr.
The (horizontal or vertical) type of the order relation between x and y is solely
determined by the label of their lowest common ancestor node. For this reason, let
u denote the lowest common ancestor of x and y. If the label of u in P tr is •, then
x <h y or y <h x; if the label is ◦, then x and y are ordered vertically. We can also
easily decide whether x is less or greater than y. Consider ux and uy, the children
of u that are ancestors of x and y, respectively. Now, x is less than y if and only if
ux is less than uy according to the order of the children nodes at u. It follows that
if a subset X of P satisfies the condition of (i), then it also fulfills the requirements
of being a clan. Indeed, the order relation between a vertex x from X and a vertex
y outside X is independent of the choice of x from X .

For the converse direction, suppose, on the contrary, that X is a clan, but the
condition does not hold. First let v denote the lowest common ancestor node of
the vertices of X . Now consider those children of v that have leaves in X , and then
take the subtrees generated by them. The condition can be violated in two ways.
Either these subtrees are not consecutive or there is a subtree that has leaves both
from X and P \X . In the first case, it is straightforward to show that X is not a
clan. In the second case, consider a child u of v that has a leaf x in X and has a
leaf z in P \X as well. We can even assume that x and z are descendant of different
children of u, so their lowest common ancestor is u. Moreover, there must also be
a vertex y in X whose lowest common ancestor with x is v, otherwise the lowest
common ancestor of the set X could not be v. But, x and z are related by an order
of type determined by the label of u, while y and z are related by an order of type
determined by the label of v. As u is a child of v, their labels in P tr are different.
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Consequently, the types of the order relations between x and z and between y and
z are also different. This contradicts to our assumption that X is a clan.

Now case (ii) easily follows from case (i), since if X consists of the leaves of
two or more (but not all) subtrees of a given node, then overlapping clans can be
constructed by (i) showing that X is not prime.

The following lemma is important for a later proof. It connects the various
representations of biposets with the use of parentheses of automata. Recall that
Σ̂ = Σ ∪ { • , ◦ , 〈 , 〉 }.

Lemma 38. For any P ∈ SPB(Σ), X ⊆ P , parenthesizing automaton A, and
r ∈ Runs(A) with Biposet(r) = P , the following statements are equivalent:

(i) X is a proper prime clan of P .

(ii) X is the set of leaves of a proper subtree of P tr.

(iii) P tm can be written as P tm = u〈Xtm〉v, where u, v ∈ Σ̂∗, and the subword
Xtm above corresponds to those vertices of P that are in X.1

(iv) r is of the form r = r1t1rxt2r2, where r1r2 6= ε, t1 and t2 form a matching
parenthesizing transition pair in r, and rx denotes the direct subrun of r on
the vertices of X.

Proof. The equivalence of (i) and (ii) follows from Lemma 37. The equivalence of
(ii) and (iii) is obvious, it expresses a usual correspondence between the term and
the tree representations. Finally, the equivalence of (iii) and (iv) is a consequence
of Lemma 13.

Now we are ready to start the proof of the main theorem of this section.

Proof of Theorem 33. For sp-biposet languages, the equivalence of MSO-definabil-
ity and recognizability (and hence regularity) directly follows from an analogous
equivalence result on text languages shown by Hoogeboom and ten Pas [13]. See
also [6] about the relationship between texts and biposets. Even though, here we
outline an alternative proof of this fact, since it will serve as the base for the proof
of the infinite case. Our argument does not rely on the equivalence of recogniz-
ability and MSO-definability of finite binary trees, but shows how the operations of
parenthesizing automata can be described by logical formulas. We start with the
finite case, i.e., with the case of sp-biposets, and explain the necessary changes for
the infinite case later.

Let A = (S,H, V,Σ,Ω, δ, γ, I, F ) be a parenthesizing automaton accepting an
sp-biposet language L. Our aim is to construct an MSO-formula ϕ for which Lϕ =
L.

The proof of Lemma 29 implies that we may assume that A accepts via direct
and singleton runs only. Therefore, it is sufficient to construct a formula ϕi,f which
expresses the fact that A has a direct run from an initial state i to a final state f .

1Note that the subword X
tm can also appear at other places in the word P

tm.
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We use second order variables for storing information about the states of the
runs. In more detail, two types of monadic second order variables are used. First,
let Xs be a variable for each state s in S, and let Z〈j〉j

denote a variable for each
pair of parentheses in Ω. Formally,

VarA := {Xs | s ∈ S } ∪ {Z〈j〉j
| 〈j , 〉j ∈ Ω }.

The general form of ϕi,f is the following

ϕi,f := ∃Xs1
∃Xs2

. . . ∃Xsm
∃Z〈1〉1∃Z〈2〉2 . . . ∃Z〈n〉n

ψi,f ,

where, ψi,f expresses the fact that the values of our variables in fact encode a direct
run of A from i to f .

We need to check three conditions. First, the run must start from i. Second, it
must end in f . Third, we need to verify that A has correct transitions everywhere
between the states indicated by the variables. We handle the labeled and the
parenthesizing transitions of the run separately.

For labeled transitions, the usual technique (cf. [21]) can be applied, that is,
the intended meaning of x ∈ Xs is that A reads position x in state s. The storage
of parenthesizing transitions is more involved. Fortunately, by Lemma 38 the use
of parentheses is always around proper prime clans. But we also need to arrange
a unique position in the biposet for each matching parenthesizing transition pair
used during the run.

For this purpose, the following rule can be applied. If a proper prime clan
is a prefix of an other proper prime clan, then let the designated position be its
last position, otherwise let the designated position be its first position. Thus,
the statement that z is the designated position of a proper prime clan X , can be
expressed as:

Dp(z,X) :=
[
¬∃Y

(
PPC(Y ) ∧ Prefix(X,Y )

)
∧ First(z,X)

]

∨
[
∃Y

(
PPC(Y ) ∧ Prefix(X,Y )

)
∧ Last(z,X)

]
,

where PPC(Y ) states that Y is a proper prime clan, and First(z,X) (Last(z,X))
is true if and only is z is the first (last, resp.) position of the clan X .

Now, it can be verified that the prime property implies that the designated
positions of any two proper prime clans do not coincide.

Lemma 39. Different proper prime clans have different designated positions.

Proof. For a contradiction, assume that X and Y are different proper prime clans,
but z is their common designated position. If z is the first position of both X
and Y , then either X is a prefix of Y , or Y is a prefix of X , in contradiction with
the definition of designated position. If z is the first position of one clan and the
last position of the other clan, then X and Y overlap, leading to a contradiction
again. Finally, assume that z is the last position of both X and Y , and X ⊆ Y . By
definition, there is a proper prime clan X ′ such that X is a prefix of X ′. Therefore,
in this case, Y and X ′ overlap, again a contradiction.
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Proof of Theorem 33, continued. If x is a position, then the intended meaning of
Z〈j ,〉j

(x) is that A uses parentheses 〈j , 〉j (more precisely the unique pair of tran-
sitions labeled 〈j and 〉j) before and after processing the proper prime clan whose
designated position is x.

As usual, we require that every position belongs to exactly one Xs:

ψ1 := ∀x
[ ∨

s∈S

Xs(x) ∧
∧

q1,q2∈S,
q1 6=q2

(
¬Xq1

(x) ∨ ¬Xq2
(x)

) ]
.

Moreover, the designated positions of proper prime clans must also belong to a
unique set Z〈i〉i

:

ψ2 := ∀x

[
∃X

(
PPC(X) ∧ Dp(x,X)

)

→
∨

〈j ,〉j∈Ω

Z〈j〉j
(x) ∧

∧

〈j ,〉j∈Ω,

〈k,〉k∈Ω,
j 6=k

(
¬Z〈j〉j

(x) ∨ ¬Z〈k〉k
(x)

)]
.

We know that for all positions x, the state of A before processing this position
is indicated by a unique state p such that x ∈ Xp. Moreover, q, the state after
reading position x, can be computed as follows. First we observe whether P has a
proper prime clan that ends at x. If so, then we determine the smallest such clan,
and q is the starting state of the closing parenthesizing transition of that clan. Of
course, this state can be determined by observing the designated position of the
clan. If there is no proper prime clan that ends at x, then q is indicated at the
position x + 1 or at the greatest prime clan that starts at x + 1. Besides, if x is
the last position, then q must be the final state of the run. Finally, we can check
whether A in fact has a labeled transition with the label of x between p and q. We
should perform this verification for every position x. The precise algorithm of this
computation and the way of converting it to an MSO-formula are presented in the
appendix.

We can also check the correctness of the parenthesizing transitions by a similar
procedure. For all proper prime clans, we compute four states of the encoded
run: the states before and after the opening, and before and after the closing
parenthesizing transitions around the clan. In the pseudocode presented in the
appendix, these states are denoted by ob, oe, cb and ce. Then, it is straightforward
to check whether A has a parenthesizing transition pair between the computed
states, and whether the labels of these transitions are indicated at the designated
position of the clan. It is also a nontrivial computation, since we must take into
consideration various inclusion relations of the clans. For more detail, see the
appendix again.

Finally, note that the algorithm of verification can be transformed into an MSO-
formula ψ3. Hence we can write ψi,f as ψi,f := ψ1 ∧ ψ2 ∧ ψ3. This completes the
proof for finite constructible biposets.
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We now turn to a brief discussion of the infinite case. Here we only describe the
necessary changes compared to the finite case. First, the adaptation of Lemma 38
for infinite constructible biposets is the following. Note that we must distinguish
between finite and infinite clans, but this distinction is in parallel to the use of the
parenthesizing and separating parentheses.

Lemma 40. For any P ∈ ISPB(Σ), X ⊆ P , parenthesizing Büchi-automaton
A, infinite run r ∈ Runs(A) with Biposet(r) = P , the following statements are
equivalent:

(i) X is a finite proper prime clan of P .

(ii) X is the set of leaves of a finite proper subtree of P tr.

(iii) P tm can be written as P tm = u〈Xtm〉v, where u, v ∈ Σ̂′∗, and the subword
Xtm above corresponds to those vertices of P that are in X.

(iv) r is of the form r = r1t1rxt2r2, where t1 and t2 is a matching parenthesizing
transition pair, and rx denotes the direct subrun of r on the vertices of X.

Moreover, the following statements are also equivalent.

(i’) X is an infinite proper prime clan of P .

(ii’) X is the set of leaves of an infinite proper subtree of P tr.

(iii’) P tm can be written as P tm = u[Xtm, where u ∈ Σ̂′∗, and the subword X tm

above corresponds to those vertices of P that are in X.

(iv’) r is of the form r = r1trx, where r1 6= ε, t is a separating transition of A,
and rx denotes the direct subrun of r on the vertices of X.

Proof of Theorem 33, completed. It is trivial that we can express the finiteness of
clans, as

Finite(X) := ¬∃z Last(z,X).

Hence, we can easily locate the separating transitions and check their correct-
ness, as well. Furthermore, we have no trouble formulating the acceptance condi-
tion: a finite state has to appear infinitely often as outer state of the encoded run.
We leave the reader to verify the correctness of the formulas bellow.

ψacc :=
∨

f∈F

∀z ∃X

[
MaxFiniteClan(X) ∧OuterStatef (X)

∧ ∀x
(
Last(x,X)→ (z < x)

) ]
;

MaxFiniteClan(X) := Finite(X) ∧ Clan(X)

∧ ¬∃Y
(
Finite(Y ) ∧ Clan(Y ) ∧X ( Y

)
;
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OuterStatef (X) :=
[
Singleton(X) ∧ ∃x

(
X(x) ∧Xf (x)

) ]

∨
[
PPC(X) ∧

∨

(f,〈k,p)∈γ

〈k∈Ω,p∈S

∃z
(
Dp(z,X) ∧ Z〈k〉k

(z)
) ]
.

Of course, here the formulas Finite(X), Clan(X) and Singleton(X) have their ex-
pected meanings.

Finally, we summarize the main results of the paper.

Theorem 41. Let L ⊆ ISPB(Σ). Then L is recognizable if and only if L is regular
if and only if L is MSO-definable.

Acknowledgement. The author would like to thank the anonymous referees for
their numerous valuable comments and suggestions.

Appendix

In this appendix, we give the detailed algorithm of verification of the correctness
of encoded runs. And we briefly describe how to build formula ψ3 that realizes the
algorithm.

Suppose that A = (S,H, V,Σ,Ω, δ, γ, I, F ) is a parenthesizing automaton, i ∈ I
and f ∈ F . Recall that VarA = {Xsi

| si ∈ S } ∪ {Z〈i〉i
| 〈i, 〉i ∈ Ω }. Let P =

(P,<h, <v, λ) ∈ SPB(Σ) denote an sp-biposet, and assume that η is an evaluation
of the monadic second order variables, i.e.,

η : VarA → P(P ),

where P(P ) denotes the power-set of P . Moreover, assume that P with η satisfies
formulas ψ1 and ψ2 on page 25.

The following algorithm decides whether η encodes a direct run of A on P that
starts from i and ends in f . For the sake of simplicity, we write Xj instead of
η(Xj). Moreover, in the names of the procedure calls below, “Clan” always means
a proper prime clan of P .

Unfortunately, in the definition of function NextState a difficulty arises. As
A is nondeterministic, for a given position x and s ∈ S, there can be more than
one t such that (s, λ(x), t) ∈ δ holds. But when we convert our algorithm into
an MSO-formula, we only need to test whether NextState(x) = t holds, which
resolves the problem.

The pseudocode in Lines 1–10 verifies that the run starts from i and ends in
f . The code in Lines 11–22 checks the correctness of the labeled transitions, while
Lines 23–49 verify the parenthesizing transitions. The proof of correctness of the
algorithm is omitted, but Figures 6–9 should help the reader to establish it.
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Algorithm Correct-Run(A, i, f, P, η)
1 b← FirstOf(P )
2 if IsClanStartsAt(b)
3 then i′ ← StartOfOpPar(GrClanStartsAt(b))
4 else i′ ← State(b)
5 e← LastOf(P )
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6 if IsClanEndsAt(e)
7 then f ′ ← EndOfClPar(GrClanEndsAt(e))
8 else f ′ ← NextState(e)
9 if i 6= i′ or f 6= f ′

10 then return ‘no’
11 for all x ∈ P
12 do p← State(x)
13 if IsClanEndsAt(x)
14 then q ← StartOfClPar(SmClanEndsAt(x))
15 else if IsLastPosition(x)
16 then q ← f
17 else if IsClanStartsAt(x+ 1)
18 then q ← StartOfOpPar(GrClanStartsAt(x+ 1))
19 else q ← State(x+ 1)
20 σ ← λ(x)
21 if not (p, σ, q) ∈ δ
22 then return ‘no’
23 for all proper prime clans X ⊆ P
24 do b← FirstOf(X)
25 e← LastOf(X)
26 if IsPrefixOfClan(X)
27 then ob← EndOfOpPar(PrefixCover(X))
28 else if IsFirstPosition(b)
29 then ob← i
30 else if IsClanEndsAt(b− 1)
31 then ob← EndOfClPar(GrClanEndsAt(b− 1))
32 else ob← NextState(b− 1)
33 if IsPrefixClanIn(X)
34 then oe← StartOfOpPar(GrPrefixClanOf(X))
35 else oe← State(b)
36 if IsSuffixClanIn(X)
37 then cb← EndOfClPar(GrSuffixClanOf(X))
38 else cb← NextState(e)
39 if IsSuffixOfClan(X)
40 then ce← StartOfClPar(SuffixCover(X))
41 else if IsLastPosition(e)
42 then ce← f
43 else if IsClanStartsAt(e+ 1)
44 then ce← StartOfOpPar(GrClanStartsAt(e+ 1))
45 else ce← State(e+ 1)
46 k ← IndexOfParUsedAround(X)
47 if not(ob, 〈k, oe), (cb, 〉k, ce) ∈ γ
48 then return ‘no’
49 return ‘yes’
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The input-output specifications of the predicates and functions used in the
algorithm are the following:

IsFirstPosition(x) / IsLastPosition(x)
input: a position x ∈ P ;
output: ‘yes’ if x is the first/last position of P ;

‘no’ otherwise.

IsClanStartsAt(x) / IsClanEndsAt(x)
input: a position x ∈ P ;
output: ‘yes’ if there is a proper prime clan X ⊆ P whose first/last position is x;

‘no’ otherwise.

IsPrefixOfClan(X) / IsSuffixOfClan(X)
input: a proper prime clan X ⊆ P ;
output: ‘yes’ if there is a proper prime clan Y such that X is a prefix/suffix of Y ;

‘no’ otherwise.

IsPrefixClanIn(X) / IsSuffixClanIn(X)
input: a proper prime clan X ⊆ P ;
output: ‘yes’ if there is a proper prime clan Z such that Z is a prefix/suffix of X ;

‘no’ otherwise.

State(x)
input: a position x ∈ P ;
output: a state s ∈ S in which A reads position x, i.e., x ∈ Xs.

NextState(x)
input: a position x ∈ P ;
output: a state t ∈ S at which A arrives after reading the position x, i.e., x ∈ Xs

and (s, λ(x), t) ∈ δ.

FirstOf(X) / LastOf(X)
input: a proper prime clan X ⊆ P ;
output: the first/last position of X .

StartOfOpPar(X) / EndOfOpPar(X)
input: a proper prime clan X ⊆ P ;
output: a state s ∈ S such that the s is the source/target of an opening paren-

thesizing transition (s, 〈j , t) / (r, 〈j , s) ∈ γ, and this transition was used
immediately before X , i.e., the designated position of X is in Z〈j〉j

.

StartOfClPar(X) / EndOfClPar(X)
input: a proper prime clan X ⊆ P ;
output: a state s ∈ S such that the s is the source/target of a closing paren-

thesizing transition (s, 〉j , t) / (r, 〉j , s) ∈ γ, and this transition was used
immediately after X , i.e., the designated position of X is in Z〈j〉j

.
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SmClanEndsAt(x) / GrClanEndsAt(x)
input: a position x ∈ P ;
output: the smallest/greatest proper prime clan of P that ends at position x.

GrClanStartsAt(x)
input: a position x ∈ P ;
output: the greatest proper prime clan of P that starts at position x.

GrPrefixClanOf(X) / GrSuffixClanOf(X)
input: a proper prime clan X ⊆ P ;
output: the greatest proper prime clan Y ⊆ X that is a proper prefix/suffix of

X .

PrefixCover(X) / SuffixCover(X)
input: a proper prime clan X ⊆ P ;
output: the smallest proper prime clan Y such that is X is a proper prefix/suffix

of Y .

IndexOfParUsedAround(X)
input: a proper prime clan X ;
output: an index k such that the parentheses 〈k, 〉k were used before and after X

in the encoded run, i.e., the designated position of X is in Z〈k〉k
.

Finally, we outline the transformation of the algorithm into formula ψ3. The
following observations lead to this transformation.

1. All predicates of the algorithm can be expressed by MSO-formulas. For ex-
ample, IsPrefixOfClan(X) can be formulated as

∃Y
(
PPC(Y ) ∧ Prefix(X,Y )

)

2. For any function f(x1, . . . , xl) of the algorithm and for any element c in the
range of f , the fact f(x1, . . . , xl) = c can also be expressed by an MSO-
formula. For example, for any state s in S, StartOfOpPar(X) = s can be
written as ∨

j∈J

∃ z
(
Dp(z,X) ∧ Z〈j〉j

(z)
)
,

where J = { j | ∃ t ∈ S, (s, 〈j , t) ∈ γ } is a finite set.

3. The variables whose values are not positions or sets of positions of P , all take
their values from a finite set. Namely, i, f , i′, f ′, p, q, ob, oe, cb, ce take
values from S, σ from Σ, and k is an index of a parenthesis in Ω.

4. The composition of functions can be handled with the help of auxiliary vari-
ables. For example, StartOfOpPar(GrClanStartsAt(b)) = s can be
expressed as

∃Z
(
GrClanStartsAt(b) = Z ∧ StartOfOpPar(Z) = s

)
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5. Assignments like y ← f(x1, . . . , xl) can be treated as follows. We can consider
all possible values c in the range of y in advance, and at the points of the
assignments we can test whether f(x1, . . . , xl) = c holds. If the range of
y is P or the power-set P(P ), i.e., y is a ‘standard’ first or second order
variables, then existential quantification can be used. On the other hand,
if y is not ‘standard’, then it has a finite range by point 3. Hence we can
use disjunction over this finite range. For example, we can start the formula
realizing Lines 12–22 as ∨

p∈S

∨

q∈S

∨

σ∈Σ

. . .

6. The control flow of the algorithm is easily expressible in the logic framework.
For the sequential executions conjunctions, for “for all” loops universal quan-
tifications, and for the conditional statements implications and negations can
be used.
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