
A Hierarchy Theorem for Regular Languages over Free

Bisemigroups

Zoltán L. Németh
Dept. of Computer Science

University of Szeged
P.O.B. 652

6701 Szeged, Hungary
zlnemeth@inf.u-szeged.hu

June 10, 2004

Abstract

In this article a question left open in [2] is answered. In particular, we show that
it is essential that in the definition of parenthesizing automata an arbitrary number
of parentheses can be used. Moreover, we prove that the classes Regm of languages
accepted by a parenthesizing automaton with at most m pairs of parentheses form
a strict hierarchy. In fact, this hierarchy is proper for all alphabets.

1 Introduction

A bisemigroup is set equipped with two associative operations. In [2], the notion of
parenthesizing automaton operating on elements of free bisemigroups was introduced.
The elements of free bisemigroups can be represented by labelled series-parallel biposets,
or sp-biposets, for short. Biposets are sets with two partial order relations and a labelling
function defined on them. A biposet is series-parallel if it can be obtained from the single-
ton biposets by the two associative operations corresponding to the order relations, called
the series product (•) and the parallel product (◦). Hence, subsets of free bisemigroups ac-
cepted by parenthesizing automata will be called regular sp-biposet languages here. This
concept of regularity proved to be appropriate for the characterization of algebraic recog-
nizability, which is a very general notion well established in a universal algebraic setting:
recognizability means to be recognized by a homomorphism into a finite bisemigroup.

An important feature of parenthesizing automata is that it is allowed to use any finite
number of pairs of parentheses. The question emerges naturally if this feature is really

1

necessary, or the number of parentheses can be bounded. In other words, we want to know
whether there is a number K such that each regular sp-biposet language can be accepted
by a parenthesizing automaton with at most K pairs of parentheses. This article gives
the answer to this question. We show that no such K exists. Moreover, if Reg

m
denotes

the class of all regular sp-biposet languages that can be accepted by an automaton with
m ≥ 0 pairs of parentheses, then the classes Reg

0
(Reg

1
(Reg

2
(. . . form a strict

hierarchy. Furthermore, we prove that this hierarchy is proper even when we consider
languages over any fixed alphabet Σ.

This work can be seen principally as an addition to the paper of Ésik and the author on
higher dimensional automata [2, 3]. (The latter is the journal version of the former.) Here
we only briefly enumerate some related papers and refer to [3], where a whole section is
devoted to a detailed comparison.

The theory of automata on biposets is closely related to the work of Lodaya and Weil
[10, 11, 12] and Kuske [8, 9] on poset (partially ordered set) languages and on automata on
(labelled posets). They studied the class of N-free (or in their terminology series-parallel)
posets from the motivation of modelling concurrency. It is known that the N-free posets
represent the elements of the free “semi-commutative bisemigroups”, i.e., of the algebras
equipped with an associative and an associative and commutative operation [4].

Automata and languages over free bisemigroups (more precisely, free bisemigroups with
identity, called binoids or bimonoids) have also been studied in Hashiguchi et al., see
[5, 6, 7]. But there the elements of the free binoid over Σ are represented by ordinary
words in “standard form”, which are the shortest expressions representing them over the
extended alphabet Σ ∪ {•, ◦, (,)}. Ordinary finite automata are used to accept binoid
languages. In [6] and [7], the notion of regular binoid expression is introduced defining
the least class of binoid languages that contains the finite languages, and closed under
the operations of union, the two product operations on languages, and the two iterations
operations corresponding to the products. This class corresponds to the class of birational
sp-biposet languages in [3]. The main result of [6] and [7] is that the binoid languages over
Σ denoted by regular binoid expressions are those binoid languages, whose elements (in
standard form) constitute regular word languages over the extended alphabet Σ∪{•, ◦, (,)}.
This notion of regularity is less general than ours, e.g., the language of all biposets over an
alphabet Σ cannot be represented by a regular binoid expression, but it can be accepted
by a parenthesizing automaton with a single pair of parentheses. In fact, any language
denoted by a regular binoid expression can be accepted with a single pair of parentheses.

2 Bisemigroups and biposets

In the sequel, n always denotes a positive integer and Σ a finite alphabet. We write [n]
for the set {1, 2, . . . , n}. We use the notation Σn for the set of words over Σ of length n,
and write Σ∗ for the set of all words over Σ, as usual. Σm stands for any alphabet that
has m letters. Let Ω denote a finite set of parentheses, its elements are usually written as
〈1, 〉1, 〈2, 〉2, We assume that Ω is partitioned into the sets Ωop of opening and Ωcl of

2

closing parentheses, which are in bijective correspondence.

We call a set equipped with n associative operations an n-semigroup. Automata operate
on elements of some free algebra in general, on words in the classical case, i.e., on elements
of free semigroups. Thus, if we want to generalize the notion of automata to higher
dimensions, it is natural to investigate how they operate on elements of free n-semigroups.
In the following sections we only consider the case when n = 2, but all of our results can
be extended to any nonnegative integer n in a straightforward way. When n = 2, we call
an n-semigroup a bisemigroup. So a bisemigroup is a finite set S with two associative
binary operations on it, called the horizontal product and the vertical product. We denote
the two products by • and ◦, respectively.

We have several possible ways to describe the elements of a bisemigroup, freely generated
by some finite alphabet Σ. First, they can be represented as terms over the extended
alphabet Σ ∪ {•, ◦, (,)} modulo associativity, or we can consider the (finite ordered) tree
representations of these terms. But an element of a free bisemigroup can also be repre-
sented by a finite sp-biposet defined below.

Definition 2.1 A Σ-labelled biposet or biposet, for short, is a structure (P,<P
h , <P

v

, λP), where P is a finite nonempty set of vertices, <P
h and <P

v are (irreflexive) partial
orders on P and λP : P → Σ is a labelling function.

We say that two biposets are isomorphic if there is a bijective function on the vertices that
preserves the partial orders and the labelling. Below we will identify isomorphic biposets.

Suppose that P = (P,<P
h , <P

v , λP) and Q = (Q,<Q
h , <Q

v , λQ) are Σ-labelled biposets.
Without loss of generality, assume that P and Q are disjoint. We define their horizontal
product as P • Q = (P ∪ Q,<P•Q

h , <P•Q
v , λP•Q), and their vertical product as P ◦ Q =

(P ∪ Q,<P◦Q
h , <P◦Q

v , λP◦Q), where

<P•Q
h = <P

h ∪ <Q
h ∪(P × Q), <P◦Q

h = <P
h ∪ <Q

h ,
<P•Q

v = <P
v ∪ <Q

v , <P◦Q
v = <P

v ∪ <Q
v ∪(P × Q),

and the labellings are λP•Q = λP◦Q = λP ∪ λQ.

It is obvious that both product operations are associative. Each letter σ ∈ Σ may be
identified with the singleton biposet labelled σ. Let SPB(Σ) denote the collection of
biposets that can be generated from the singletons corresponding to the letters in Σ by
the two product operations. The biposets in SPB(Σ) are called series-parallel biposets, or
sp-biposets, for short.

As we mentioned above, the sp-biposets SPB(Σ) may serve as a possible description of
the free bisemigroup generated by Σ. This fact is formulated in the following theorem.

Proposition 2.2 [1] SPB(Σ) is freely generated by Σ in the variety of bisemigroups.

3

3 Parenthesizing Automata

In this section we define parenthesizing automata that process sp-biposets in a sequential
manner. The class of sp-biposet languages accepted by parenthesizing automata will be
called regular sp-biposet languages.

Definition 3.1 A (nondeterministic) parenthesizing automaton is a 9-tuple A = (S,H,
V, Σ, Ω, δ, γ, I, F), where S is the nonempty, finite set of states, H and V are the sets of
horizontal and vertical states, which give a disjoint decomposition of S, Σ is the input
alphabet, Ω is a finite set of parentheses, moreover,

- δ ⊆ (H × Σ × H) ∪ (V × Σ × V) is the labelled transition relation,

- γ ⊆ (H × Ω × V) ∪ (V × Ω × H) is the parenthesizing transition relation,

- I, F ⊆ S are the sets of initial and final states, respectively.

We say that a biposet P has a horizontal decomposition into the horizontal product of
biposets P1, P2, . . . , Pn, n ≥ 2, if P = P1 • P2 • . . . • Pn. A horizontal decomposition
is said to be maximal if no component Pi, (1 ≤ i ≤ n) has a horizontal decomposition.
Vertical decompositions and maximal vertical decompositions are defined similarly.

The operation of the parenthesizing automata is based on the notion of the run, defined
as follows.

Definition 3.2 Suppose that P ∈ SPB(Σ) and p, q ∈ S. We say that A = (S,H, V, Σ,
Ω, δ, γ, I, F) has a run on P from p to q, denoted [p, P, q]A if one of the following conditions
holds.

(Base) P = σ ∈ Σ and (p, σ, q) ∈ δ.

(HH) p, q ∈ H and P has maximal horizontal decomposition P = P1 • . . . • Pn, where
n ≥ 2, and there exist r1, . . . , rn−1 ∈ S, r0 = p, rn = q such that [ri−1, Pi, ri]A, for
all i ∈ [n].

(VV) p, q ∈ V and P has maximal vertical decomposition P = P1 ◦ . . . ◦ Pn, where n ≥ 2,
and there exist r1, . . . , rn−1 ∈ S, r0 = p, rn = q such that [ri−1, Pi, ri]A for all
i ∈ [n].

(HV) p, q ∈ H and P has maximal vertical decomposition P = P1 ◦ . . . ◦ Pn, where n ≥ 2,
and there exist 〈k, 〉k ∈ Ω, p′, q′ ∈ V and (p, 〈k, p

′), (q′, 〉k, q) ∈ γ such that [p′, P, q′]A
holds.

(VH) p, q ∈ V and P has maximal horizontal decomposition P = P1 • . . . • Pn, where
n ≥ 2, and there exist 〈k, 〉k ∈ Ω, p′, q′ ∈ H and (p, 〈k, p

′), (q′, 〉k, q) ∈ γ such that
[p′, P, q′]A holds.

4

An accepting run is a run from an initial state to a final state. The sp-biposet language
L(A) accepted by the automaton A is defined as the set of all labels of the accepting runs.
Formally,

L(A) = {P ∈ SPB(Σ) | ∃i ∈ I, f ∈ F : [i, P, f]A}.

b

a

c

e
H H

H H

V VV

H
d

H H1 2

1 2 3

3 4 5

6 7

〈1

〈2

〉1

〉2

Figure 1: A parenthesizing automaton accepting {a • (b ◦ (c • d)) • e}.

Example 3.3 The automaton given on Figure 1 has a single initial state H1 and a single final state
H7. The horizontal states are those labelled Hi and the vertical states those labelled Vj , for some i

and j. This automaton accepts the singleton sp-biposet language consisting of the biposet a • (b ◦ (c •

d)) • e. Indeed, there are runs [H1, a,H2]A, [H2, b ◦ (c • d),H6]A and [H6, e,H7]A corresponding to
the horizontal decomposition of the biposet. Moreover, according to the case (HV) of Definition 3.2,
the second run, [H2, b ◦ (c • d),H6]A starts with a parenthesizing transition (H2, 〈1, V1) followed by
a subrun [V1, b ◦ (c • d), V3]A and ends with the transition (V3, 〉1,H6). The existence of the subrun
[V1, b ◦ (c • d), V3]A comes from the existence of the runs [V1, b, V2]A and [V2, c • d, V3]A that can be seen
similarly. Several other examples of parenthesizing automata can be found in [3].

Recall from [3] that an sp-biposet language L ⊆ SPB(Σ) is called recognizable if there
is a finite bisemigroup B, a homomorphism h : SPB(Σ) → B, and a set F ⊆ B with
L = h−1(F). Let Rec(Σ) and Reg(Σ) denote the set of recognizable and regular sp-
biposet languages of SPB(Σ), respectively. Moreover, write Rec and Reg for the classes of
all regular and recognizable sp-biposet languages, respectively. One of the main results
of [3] shows that these two classes coincide.

Theorem 3.4 [3] Rec = Reg, i.e., an sp-biposet language L ⊆ SPB(Σ) is recognizable iff
L is regular.

4 Hierarchy Theorems

In this session we present the main hierarchy results of the paper, formulated in Theo-
rem 4.9 and 4.10. Let Reg

m
denote the regular sp-biposet languages that can be accepted

5

H1

H2 H3

H4 H5

H6

V1

V2 V3

V4

V5

V6

V7 V8

a
aa

a

a

a b b

bb

b

b

〈1 〈1〈2 〈2

〉1

〉1

〉2

〉2

Figure 2: An automaton A2 accepting L̂

by a parenthesizing automaton with at most m ≥ 0 pairs of parentheses. We will show
that Reg

m
(Reg

m+1
for all m ≥ 0. Moreover, if Reg

m
(Σ) is the set of all regular sp-

biposet languages over any fixed alphabet Σ that can be accepted by an automaton with
at most m pairs of parentheses, then Reg

m
(Σ) (Reg

m+1
(Σ), for all m ≥ 0. Our first aim

is to define a language L̂ in Reg
2
\Reg

1
.

Definition 4.1 For any words u = σ1σ2 . . . σn and v = ρ1ρ2 . . . ρn of even length over
any alphabet Σ, let Puv−1 denote the biposet

Puv−1 = σ1 • (σ2 ◦ (σ3 • (σ4 ◦ . . . (σn−1 • (σn ◦ ρn) • ρn−1) . . . ◦ ρ4) • ρ3) ◦ ρ2) • ρ1.

Definition 4.2 Let Σ2 denote the two-letter alphabet Σ2 = {a, b}, and let

L̂ =
∞⋃

i=1

L̂2i,where

L̂2 = {σ • (σ′ ◦ σ′) • σ | σ, σ′ ∈ Σ2 },

L̂2i+2 = {σ • (σ′ ◦ P ◦ σ′) • σ | σ, σ′ ∈ Σ2 and P ∈ L̂2i }, for all i ≥ 1.

Remark 4.3 Note that L̂ = {Pww−1 | w ∈ Σ∗

2, w has even length }.

Proposition 4.4 L̂ can be accepted by a parenthesizing automaton that has two pairs of
parentheses, i.e., L̂ ∈ Reg

2
(Σ2).

Proof. It is not hard to see that the automaton A2 in Figure 2 accepts L̂. ¤

6

Our next aim is to show that L̂ is not in Reg
1
(Σ2). In order to see this we must describe

the runs of an automaton step by step. So we introduce the notion of generalized state
of an automaton as follows.

Definition 4.5 A generalized state of a parenthesizing automaton A = (S,H, V, Σ, Ω, δ,
γ, I, F) is a pair (q, ω), where q ∈ S and ω ∈ Ω∗

op.

Definition 4.6 We say that an automaton A has a transition from a generalized state
(q1, ω1) to a generalized state (q2, ω2) with respect to the symbol α ∈ Σ ∪ Ω if one of the
following conditions holds:

(i) α ∈ Σ, ω1 = ω2 and (q1, α, q2) ∈ δ, or

(ii) α ∈ Ωop, ω2 = ω1α and (q1, α, q2) ∈ γ, or

(iii) α ∈ Ωcl, ω1 = ω2ᾱ, where ᾱ is the opening pair of the closing parenthesis α and
(q1, α, q2) ∈ γ.

Remark 4.7 Thus, every run [p, P, q]A corresponds to a sequence of transitions between generalized
states

(q0, ε)
α1

⊢ (q1, ω1)
α2

⊢ (q2, ω2)
α3

⊢ . . .
αn

⊢ (qn, ε),

where q0 = p, qn = q and (qi, αi, qi+1) ∈ δ ∪ γ for i ∈ [n], and ωi is the sequence of opened but not yet
closed parentheses after the first i steps of the run.

Proposition 4.8 There is no parenthesizing automaton with a single pair of parentheses
accepting L̂, i.e., L̂ /∈ Reg

1
(Σ2).

Proof. On the contrary, suppose that there is a parenthesizing automaton A = (S,H, V,
Σ2, Ω1, γ, δ, I, F) accepting L̂ with Ω1 = { 〈, 〉 }. Let n be an even integer greater than
|V |. The number of all biposets Pww−1 ∈ L̂, where w is of length n, is 2n. Thus, since
2n−2 ≤ 2n holds for all n, either there are n biposets accepted between horizontal states,
or there are n biposets accepted between vertical states. For simplicity, we assume the
former case. This is not a real restriction, since in the other case our proof would be
essentially the same, only an opening and a closing parenthesizing transition needs to be
added before and after the runs.

Thus, let us take n distinct words wj ∈ Σn
2 , j ∈ [n], and consider the biposets

Pwjw−1

j
= σj

1
• (σj

2
◦ (σj

3
• (σj

4
◦ . . . (σj

n−1
• (σj

n
◦ σj

n) • σj
n−1) . . . ◦ σj

4) • σj
3) ◦ σj

2) • σj
1,

where σj
1σ

j
2 . . . σj

n = wj. Now, each Pwjw−1

j
is in L̂, by definition, but, as we shall see, A

must accept biposets that do not belong to L̂.

7

Indeed, each accepting run of A on any Pwjw−1

j
must have the form

(q0, ε)
σ

j
1

⊢ (q1, ε)
〈

⊢ (q2, 〈)
σ

j
2

⊢ (q3, 〈)
〈

⊢ (q4, 〈〈)
σ

j
3

⊢ . . .
σ

j
n−1

⊢ (q2n−3, 〈
n−2)

〈

⊢ (q2n−2, 〈
n−1)

σ
j
n

⊢

(q2n−1, 〈
n−1)

σ
j
n

⊢ (q2n, 〈
n−1)

〉

⊢ (q2n+1, 〈
n−2)

σ
j
n−1

⊢ (q2n+2, 〈
n−2)

〉

⊢ . . .
σ

j
2

⊢ (q4n−4, 〈)
〉

⊢

(q4n−3, ε)
σ

j
1

⊢ (q4n−2, ε), where q0 ∈ I ∩ H and q4n−2 ∈ F ∩ H.

For our investigation the main point is that after processing the “first half” of Pwjw−1

j
,

(i.e., after 2n−1 transitions) the automaton enters a generalized state (q2n−1, 〈
n−1), where

q2n−1 is vertical and after an additional 2n − 1 transitions, the run ends in (q4n−2, ε).

Given Pwjw−1

j
, let ij, vj and fj denote the states q0, q2n−1, and q4n−2, respectively, which

appear in the above accepting run of A on the biposet Pwjw−1

j
. Moreover, let us abbreviate

the transition sequences determined by the first 2n− 1 and the second 2n− 1 transitions
by

(ij, ε)
Pwj∗

⊢ (vj, 〈
n−1) and (vj, 〈

n−1)

P
∗w

−1

j

⊢ (fj, ε),

respectively.

Now we have n vertical states v1, v2, . . . , vn, but we have chosen n > |V |, so there must
be two indices k 6= l such that vk = vl. Hence, the transition sequence

(ik, ε)
Pwk∗

⊢ (vk, 〈
n−1) = (vl, 〈

n−1)

P
∗w

−1

l

⊢ (fl, ε)

corresponds to a valid run of A, showing that Pwkw−1

l
is accepted by A. But Pwkw−1

l
/∈ L̂, a

contradiction. Thus, no A with a single pair of parentheses can accept L̂, so L̂ /∈ Reg
1
(Σ2).

¤

The previous theorem can be extended to any m ≥ 1 as follows.

Theorem 4.9 For all m ≥ 1 there exists a language L̂(Σm) that can be accepted by an au-
tomaton with m but not with m−1 pairs of parentheses. Thus, the classes Reg

0
(Reg

1
(

Reg2 (. . . form a strict hierarchy of regular (i.e., recognizable) sp-biposet languages.

Proof. Our claim is trivial for m = 1, and Reg
1

(Reg
2

was shown in Proposition 4.4 and
Proposition 4.8. As for m ≥ 3, we show how the proofs of these two propositions can be
generalized. Let

L̂(Σm) = {Pww−1 | w ∈ Σ∗
m, w has even length}.

Note that L̂ = L̂(Σ2). In Proposition 4.4, the automaton A2 accepting L̂ can easily
be generalized to an automaton Am accepting L̂(Σm), by using m different parentheses
corresponding to the m letters.

8

In order to see that L̂(Σm) /∈ Reg
m−1

, suppose on the contrary that L̂(Σm) = L(A)
for some automaton A = (S,H, V, Σm, Ωm−1, γ, δ, I, F), where Ωm−1 = { 〈1, 〉1, 〈2, 〉2, . . . ,
〈m−1, 〉m−1 }. We choose pairwise different words w1, w2, . . . , wn in Σn

m as before, but this
time we give the value of n later.

We notice that after reading the first half of Pwjw−1

j
, where Pwjw−1

j
is defined as in the

proof of Theorem 4.8, automaton A is necessarily in a generalized state

(vj, 〈i1〈i2 . . . 〈in−1
), (*)

where vj ∈ V and 〈ik∈ Ωm−1 for all k = 1, 2, . . . , n − 1.

But the number of this type of generalized states, |V | · (m − 1)n−1 is asymptotically less
than mn, the number of words wj of length n, which is the number of all biposets of the
form Pwjw−1

j
. Thus, in the same way as above, n can always be chosen such that A accepts

at least one biposet Pwjw−1

k
for some wj 6= wk. ¤

In the proof of Theorem 4.9 we used the m-letter alphabet Σm to show that Reg
m−1

(Σm) (

Reg
m
(Σm). However this proper inclusion holds for every Σ.

Theorem 4.10 For all alphabets Σ the classes Reg
0
(Σ) (Reg

1
(Σ) (Reg

2
(Σ) . . . form a

strict hierarchy in Reg(Σ).

Proof. It is sufficient to prove this claim for a one-letter alphabet. So assume that
Σ = Σ1 = {a} and suppose that m ≥ 1. Let h denote the bisemigroup homomorphism
SPB(Σm) → SPB(Σ1) determined by the assignment

ai 7→ a • a • . . . • a
︸ ︷︷ ︸

i times

, for all ai ∈ Σm.

We claim that the language h(L̂(Σm)) is in Reg
m
(Σ1)\Reg

m−1
(Σ1).

Indeed, it is not hard to modify the automaton Am in the proof of Theorem 4.9 to accept
h(L̂(Σm)) instead of L̂(Σm). On the other hand, after reading the “first half” of a biposet
h(Pwjw−1

j
), any parenthesizing automaton with m − 1 pairs of parentheses must be in a

generalized state (*) as before. Thus, the same cardinality argument can be applied to
show that h(L̂(Σm)) is not in Reg

m−1
(Σ1). ¤

5 Conclusions and further work

In this paper we dealt with the descriptional complexity of regular sp-biposet languages
measured in terms of the least number of parentheses that an automaton needs to accept
them. We have shown that with more pairs of parentheses strictly larger classes of regular
sp-biposet languages can be accepted.

9

Recall from [3] that BRat denotes the class of birational languages which is the least
class of sp-biposet languages containing the finite languages and closed under union,
horizontal and vertical product and horizontal and vertical iteration. We can prove that
BRat ⊆ Reg

1
. The proof relies on the fact that every birational language has bounded

alternation depth, i.e., for each birational sp-biposet language L there is a bound K ≥ 0
such that every element in L has at most K pairs of nested parentheses. BD is the class of
bounded alternation depth languages. Thus, if a parenthesizing automaton A accepts a
birational language, then the successful runs of A must have a bounded number of opened
but not yet closed parentheses at any time. So one can construct an equivalent automaton
A′ with a single pair of parentheses by storing the information about all such opened
parentheses in the (inner) states. This fact together with the equation BRat = Reg ∩ BD

(see [3]) leads to the characterization of BRat as BRat = Reg
1
∩ BD.

An open problem that seems to be difficult to solve is the decidability status of the
question whether a given regular language appears in a certain level of the hierarchy. It
would also be interesting to find algebraic or logical characterizations of the levels of our
hierarchy.

Acknowledgement The author is indebted to Zoltán Ésik for many valuable comments
and suggestions.

References

[1] Z. Ésik. Free algebras for generalized automata and language theory. RIMS
Kokyuroku 1166, Kyoto University, Kyoto, 2000, 52–58.

[2] Z. Ésik and Z. L. Németh. Automata on series-parallel biposets. In: proc. DLT’01,
LNCS 2295, Springer, 2002, 217–227.

[3] Z. Ésik and Z. L. Németh. Higher dimensional automata, J. of Automata, Languages
and Combinatorics, 9(2004), 3–29.

[4] J. L. Gischer. The equational theory of pomsets. Theoret. Comput. Sci., 61(1988),
199–224.

[5] K. Hashiguchi, S. Ichihara and S. Jimbo. Formal languages over free binoids. J.
Autom. Lang. Comb., 5(2000), 219–234.

[6] K. Hashiguchi, Y. Wada and S. Jimbo. Regular binoid expressions and regular binoid
languages. Theoret. Comput. Sci., 304(2003), 291–313.

[7] K. Hashiguchi, Y. Sakakibara and S. Jimbo. Equivalence of regular binoid expres-
sions and regular expressions denoting binoid languages over free binoids. Theoret.
Comput. Sci., 312(2004), 251–266.

[8] D. Kuske. Infinite series-parallel posets: logic and languages. In: proc. ICALP 2000,
LNCS 1853, Springer, 2001, 648–662.

10

[9] D. Kuske. Towards a language theory for infinite N-free pomsets. Theoret. Comput.
Sci., 299(2003), 347–386.

[10] K. Lodaya and P. Weil. Kleene iteration for parallelism. In: proc. FST & TCS’98,
LNCS 1530, Springer-Verlag, 1998, 355–366.

[11] K. Lodaya and P. Weil. Series-parallel languages and the bounded-width property.
Theoret. Comput. Sci., 237(2000), 347–380.

[12] K. Lodaya and P. Weil. Rationality in algebras with series operation. Inform. and
Comput., 171(2001), 269-293.

11

