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ALGEBRAIC AND GRAPH-THEORETIC PROPERTIES
OF INFINITE n-POSETS ∗

Zoltán Ésik1 and Zoltán L. Németh1

Abstract. A Σ-labeled n-poset is an (at most) countable set, labeled
in the set Σ, equipped with n partial orders. The collection of all
Σ-labeled n-posets is naturally equipped with n binary product oper-
ations and n ω-ary product operations. Moreover, the ω-ary product
operations give rise to n ω-power operations. We show that those
Σ-labeled n-posets that can be generated from the singletons by the
binary and ω-ary product operations form the free algebra on Σ in
a variety axiomatizable by an infinite collection of simple equations.
When n = 1, this variety coincides with the class of ω-semigroups of
Perrin and Pin. Moreover, we show that those Σ-labeled n-posets that
can be generated from the singletons by the binary product operations
and the ω-power operations form the free algebra on Σ in a related
variety that generalizes Wilke’s algebras. We also give graph-theoretic
characterizations of those n-posets contained in the above free algebras.
Our results serve as a preliminary study to a development of a theory
of higher dimensional automata and languages on infinitary associative
structures.
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Introduction

The input structure of an automaton is usually a free algebra, freely generated
by some finite alphabet Σ in a variety of algebras equipped with a finite number
of operations. For example, in classical automata theory, the input structures
can be identified as the finitely generated free semigroups, or monoids. Regarding
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automata on ω-words, Perrin and Pin [15, 16] proposed to use free ω-semigroups,
which are a two-sorted generalization of semigroups and possess both a binary and
an ω-ary product operation. Independently, Wilke proposed to use another kind
of two-sorted algebras, see [18], freely generated in an infinitely axiomatizable
variety equipped with only finitary operations, a binary product and a unary
ω-power operation. It has been shown by Wilke that the category of finite Wilke
algebras is equivalent to the category of finite ω-semigroups of Perrin and Pin.
Here, we propose an extension of the algebras of Perrin, Pin and Wilke as the
basic underlying variety for a generalization of the classical framework to higher
dimensional automata on infinitary associative structures. This may be seen as a
continuation of the paper [3], where we treated higher dimensional automata on
finitary associative input structures. Our work is closely related to [7, 8].

We call a set equipped with n associative operations, among which there is no
further connection, an n-semigroup. A concrete description of freely generated
n-semigroups, based on the notion of labeled n-posets, was given in [2]. Here, a
Σ-labeled n-poset, where Σ is a set of labels, consists of a set P equipped with
n partial orders and a labeling function P → A. We usually identify isomorphic
Σ-labeled n-posets. We define two types of operations on n-posets: n binary
product operations, and n ω-power operations, where a product and an ω-power
operation corresponds to each partial order. It was shown in [2] that a subcol-
lection of finite Σ-labeled n-posets, equipped with the binary product operations,
forms the Σ-generated free n-semigroup. Here, we show that those finite or infinite
Σ-labeled n-posets that can be generated from the singletons by the binary and
ω-ary product operations form the free algebra on Σ in the variety of
n-ω-semigroups axiomatizable by an infinite collection of simple equations. When
n = 1, this variety coincides with the class of ω-semigroups of Perrin and Pin.
Moreover, we show that those Σ-labeled n-posets that can be generated from the
singletons by the binary product operations and the ω-power operations form the
free algebra on Σ in a related variety that generalizes Wilke’s algebras. We also
give graph-theoretic characterizations of those n-posets contained in the above
free algebras. These characterizations are related to the characterization of series-
parallel posets as the finite N-free posets, cf. [5,6,17], and to the characterizations
obtained in [1, 4]. Our results serve as a preliminary study to a development of a
theory of higher dimensional automata and languages on infinitary structures.

Automata on series-parallel posets were studied by K. Lodaya and P. Weil in
[12–14]. Their work was extended into two directions by D. Kuske [9–11], to
automata on infinite posets and to (first- and second-order) logical definability.

1. n-posets

Some notation. In the sequel, n always denotes a positive integer and Σ a
finite alphabet. We write [n] for the set {1, 2, . . . , n}.

Let Σ denote a nonempty set of labels. A Σ-labeled n-poset, or n-poset, for short,
is an (at most) countable set P of vertices equipped with n (irreflexive) partial
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orders <P
i , i ∈ [n], and a labeling function λP : P → Σ. We denote an n-poset

variously by (P, <P
1 , . . . , <P

n , λP ) or (P, <1, . . . , <n, λ), or by just (P, <1, . . . , <n)
or P . We say that P is a complete n-poset if for every u, v ∈ P with u �= v there
is exactly one i ∈ [n] such that u <i v or v <i u holds.

A morphism between n-posets is a function on the vertices that preserves the
partial orders and the labeling. An isomorphism is a bijective morphism whose
inverse is also a morphism. Below we will usually identify isomorphic n-posets.
We say that P is an (induced) sub-n-poset of Q if P ⊆ Q and the partial orders <P

i

are the restrictions of the corresponding orders <Q
i , moreover, λP is the restriction

of λQ to the set P .
For each i ∈ [n], we define a binary ·i-product, an ω-ary ·i-product, and a unary

ωi-power operation on the collection of all n-posets.
·i-product. Suppose that P = (P, <P

1 , . . . , <P
n , λP ) and Q = (Q, <Q

1 , . . . , <Q
n

, λQ) are n-posets. Without loss of generality, assume that P and Q are disjoint.
We define the ·i-product P ·i Q to be the n-poset with underlying set P ∪Q, partial
orders

<P ·iQ
j =

{
<P

j ∪ <Q
j if j �= i

<P
i ∪ <Q

i ∪ (P × Q) if j = i,
j ∈ [n],

and labeling λP ·iQ = λP ∪ λQ.
It is clear that each ·i-product operation is associative.
ω-ary ·i-product. Suppose that P1, P2, . . . are n-posets. We may assume that

they are pairwise disjoint. For each i ∈ [n], the ω-ary ·i-product is defined by

ωi(P1, P2, . . .) = (P1 ∪ P2 ∪ . . . , <′
1, . . . , <

′
n, λ′),

where for any x ∈ Pk and y ∈ Pl (k, l ≥ 1),

x <′
j y ⇔ (k = l and x <j y in Pk) or (j = i and k < l), j ∈ [n],

and

λ′ = λP1 ∪ λP2 ∪ . . .

In order to simplify the treatment, we will also use the notation P1 ·i P2 ·i . . . for
ωi(P1, P2, . . .).

ωi-power. If P is any n-poset, then the ωi-power of P is defined as the ω-ary
·i-product of ω copies of P :

Pωi = P ·i P ·i . . .

Let Posn,F (Σ) and Posn,I(Σ) denote the sets of all nonempty, finite and countably
infinite Σ-labeled n-posets, respectively.
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2. Constructible n-posets

Below we will restrict the operations P ·i Q and Pωi to finite n-posets P . The
n-poset Q may be either finite or infinite. Similarly, we allow the formation of an
ω-ary product P1 ·i P2 ·i . . . only when each Pi is finite.

We call a Σ-labeled n-poset constructible if it can be generated from the single-
ton Σ-labeled n-posets by the binary and ω-ary ·i-product operations. Moreover,
we call a Σ-labeled n-poset strictly constructible if it can be generated from the
singletons by the binary ·i-product operations and the ωi-power operations. It is
obvious that every strictly constructible n-poset is constructible. Moreover, a finite
n-poset is constructible iff it is strictly constructible iff it can be generated from
the singletons by the binary ·i-product operations only. Note that a constructible
n-poset is nonempty.

Example 2.1. Let Pn = a ·1 (b ·2 . . . ·2 b) ·1 a, for each n ≥ 1, where a and b
denote the singleton 2-posets labeled a and b, respectively, and where there are n
copies of b. Then each Pn is constructible. Moreover, P1 ·1 P2 ·1 . . . is constructible
and P1 ·1Pω2

2 is strictly constructible. Note that aω1 ·b is not constructible since aω1

is infinite.

We define SPn,F (Σ) to be the set of all finite constructible Σ-labeled n-posets,
and denote by ωSPn,I(Σ) the set of all infinite constructible Σ-labeled n-posets.
Similarly, we let SPω

n,I(Σ) denote the set of all infinite strictly constructible
Σ-labeled n-posets.

For any finite constructible n-poset P , let rank(P ) denote the rank of P, i.e.,
the least number of binary product operations needed to construct P from the
singletons. When P is an infinite constructible n-poset, say that P is primitive if
it is of the form

P1 ·i P2 ·i . . .

for some i ∈ [n] and finite constructible n-posets P1, P2, . . . Now each infinite
constructible n-poset can be generated from the primitive infinite constructible
n-posets by multiplication with finite constructible n-posets on the left. We define
the rank of an infinite constructible n-poset P as the least number of left multipli-
cations with finite constructible n-posets needed to construct P from the primitive
infinite n-posets.

Lemma 2.2. Every constructible n-poset is complete.

Proof. By induction on the rank. �

Lemma 2.3. Suppose that (P, <1, . . . , <n) is constructible. Then the relation
<=<1 ∪ . . .∪ <n is a total order relation on P .

Proof. By induction on the rank. �

When the total order < has a greatest element v, then we say that v is the
greatest element of P .
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Suppose that P is a ∆-labeled n-poset and for each vertex v in P , Qv is a
Σ-labeled n-poset. Then we denote by P [Qv/v]v∈P the Σ-labeled n-poset obtained
from P by replacing each vertex v in P by Qv. The following fact is clear.

Lemma 2.4. Suppose that P1, P2, . . . are (disjoint) n-posets and for each vertex v
in Pi, i = 1, 2, . . ., Qv is an n-poset. Let R = P1 ·i P2 and R′ = P1 ·i P2 ·i . . .,
where i ∈ [n]. Then

R[Qv/v]v∈R = P1[Qv/v]v∈P1 ·i P2[Qv/v]v∈P2

R′[Qv/v]v∈R′ = P1[Qv/v]v∈P1 ·i P2[Qv/v]v∈P2 ·i . . .

Lemma 2.5. Suppose that P is a constructible n-poset and for each vertex v
in P , Qv is a constructible n-poset. Suppose that Qv is finite whenever v is not
the greatest vertex of P . Then P [Qv/v]v∈P is constructible.

Proof. First assume that P is finite. We argue by induction on k = rank(P ). When
k = 0, then P is a singleton and our claim is obvious. When k > 0, P = P1 ·i P2,
for some finite constructible n-posets P1 and P2 with rank(P1), rank(P2) < k. By
Lemma 2.4 we have P [Qv/v] = P1[Qv/v]v∈P1 ·i P2[Qv/v]v∈P2 . Now, Qv is finite for
each v in P1, and Qv is finite for each v in P2 such that v is not the greatest vertex
of P2. Thus, by induction, both P1[Qv/v]v∈P1 and P2[Qv/v]v∈P2 are constructible.
Also, we have that P1[Qv/v]v∈P1 is finite. It follows that P [Qv/v]v∈P is also
constructible.

Assume now that P is infinite. We again argue by induction on k = rank(P ). If
k = 0 then P = P1 ·iP2 ·i . . ., where each Pj is finite and constructible. Clearly, each
Qv, v ∈ P is also finite, and each Pj [Qv/v]v∈Pj is finite and constructible. It follows
by Lemma 2.4 and the induction hypothesis that P [Qv/v]v∈P = P1[Qv/v]v∈P1 ·i
P2[Qv/v]v∈P2 ·i . . . is constructible. Assume now that k > 0. Then P = P1 ·i P2,
for some finite constructible n-poset P1 and infinite constructible n-poset P2 with
rank(P2) < k. Now P1[Qv/v]v∈P1 is finite and constructible by the first case,
while P2[Qv/v]v∈P2 is infinite and constructible by the induction hypothesis. It
follows that P [Qv/v]v∈P is constructible. �

3. Freeness

We start our discussion with the finite case. The notion of semigroup can nat-
urally be generalized to the case of any number of associative operations. We
define an n-semigroup to be an algebraic structure consisting of a set and n as-
sociative binary product operations, usually denoted ·i, i ∈ [n]. A morphism of
n-semigroups preserves all operations.

Below we identify each letter a ∈ Σ with the singleton n-poset labeled a. We
need the following result.

Theorem 3.1 [2]. For each nonempty set Σ, SPn,F (Σ), equipped with the opera-
tions ·i defined above, is freely generated by Σ in the variety of all n-semigroups.
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Recall that Posn,F (Σ) and Posn,I(Σ) denote the set of all finite and countably
infinite Σ-labeled n-posets, respectively. Equipped with the binary and the ω-ary
·i-product operations, for all i ∈ [n], these sets form a two-sorted algebra

ωPosn(Σ) = (Posn,F (Σ),Posn,I(Σ), ·1, . . . , ·n, ω1, . . . , ωn),

where the ·i-product operations are appropriately polymorphic. (We use the same
notation for the product of two finite n-posets and for the product of a finite
and an infinite n-poset.) It is easily seen that the algebra ωPosn(Σ) satisfies the
following equations:

x ·i (y ·i u) = (x ·i y) ·i u, (1)
x ·i ωi(x1, x2, . . .) = ωi(x, x1, x2, . . .), (2)

ωi(x1 ·i . . . ·i xk1−1, xk1 ·i . . . ·i xk2−1, . . .) = ωi(x1, . . . , xk1−1, xk1 , (3)
xk1+1, . . . , xk2−1, . . .),

for all x, y, x1, x2, . . . ∈ Posn,F (Σ), u ∈ Posn,F (Σ) ∪ Posn,I(Σ) and i ∈ [n], and
for all increasing sequences of positive integers k1 < k2 < . . . This motivates the
following definition.

Definition 3.2. Call an algebra C = (CF , CI , ·1, . . . , ·n, ω1, . . . , ωn) an n-ω-semi-
group if it satisfies equations (1)–(3) above, where x, y, x1, x2, . . . range over CF

and both u ∈ CF and u ∈ CI are allowed. A morphism of n-ω-semigroups C → D,
where D = (DF , DI , ·1, . . . , ·n, ω1, . . . , ωn), is a pair of functions h = (hF : CF →
DF , hI : CI → DI) that jointly preserve the operations.

Remark 3.3. When n = 1, an n-ω-semigroup is just an ω-semigroup as defined
in [16].

Note that the smallest subalgebra of ωPosn(Σ) containing the singleton n-
posets labeled with the elements of Σ is the algebra ωSPn(Σ) = (SPn,F (Σ),
ωSPn,I(Σ), ·1, . . . , ·n, ω1, . . . , ωn) of all constructible Σ-labeled n-posets.

Suppose that P is an n-poset. We call P ·i-irreducible if P is nonempty and has
no decomposition P1 ·i P2, where P1 and P2 are nonempty. Note that for every i ∈
[n], each finite constructible n-poset has a unique, possibly trivial decomposition
into the ·i-product of ·i-irreducible n-posets.

We omit the proof of the following lemma.

Lemma 3.4. Any P ∈ SPn,I(Σ) can uniquely be written as

P = P1 ·i P2 ·i . . . , (4)

where i ∈ [n] and each Pk ∈ SPn,F (Σ) is ·i-irreducible, or as

P = P1 ·i P2 ·i . . . ·i Pr ·i Q, (5)

where i ∈ [n], r > 0, moreover, Pk ∈ SPn,F (Σ), k ∈ [r] and Q ∈ SPn,I(Σ) are
·i-irreducible. Moreover, in case (5), the rank of Q is strictly less than the rank
of P .
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Theorem 3.5. The algebra ωSPn(Σ) if freely generated by Σ in the variety of all
n-ω-semigroups.

Proof. Suppose that C = (CF , CI) is an n-ω-semigroup. We show how to extend
any function h : Σ → CF to a homomorphism h� = (h�

F , h�
I) : ωSP(Σ) → C.

Indeed, by Theorem 3.1, there exists a unique n-semigroup homomorphism h�
F :

SPn,F (Σ) → CF which extends h. We need to define h�
I : SPn,I(Σ) → CI . The

definition is based on Lemma 3.4. In case (4), let

h�
I(P ) = h�

F (P1) ·i h�
F (P2) ·i . . .

In case (5), let

h�
I(P ) = h�

F (P1) ·i h�
F (P2) ·i . . . ·i h�

F (Pr) ·i h�
I(Q),

where, using induction on the rank of P , we can assume that h�
I(Q) is already

defined.
It is easy to verify that h� is indeed a homomorphism. Here, we only demon-

strate that h� preserves the ω-ary product operations, i.e.,

h�
I(P1 ·i P2 ·i . . .) = h�

F (P1) ·i h�
F (P2) ·i . . . , (6)

for all i ∈ [n] and finite constructible n-posets P1, P2, . . . Since each Pk, k ≥ 1 is
finite, let Pk = Pk,1 ·i Pk,2 ·i . . . ·i Pk,sk

, sk ≥ 1, be the unique decomposition of Pk

into a ·i-product of ·i-irreducible n-posets. By definition, the left-hand side of (6)
is equal to

h�
F (P1,1) ·i . . . ·i h�

F (P1,s1) ·i h�
F (P2,1) ·i . . . ·i h�

F (P2,s2) ·i . . .

Moreover, using the fact that h�
F is a homomorphism of n-semigroups, the right-

hand side of (6) is equal to

(h�
F (P1,1) ·i . . . ·i h�

F (P1,s1)) ·i (h�
F (P2,1) ·i . . . ·i h�

F (P2,s2 )) ·i . . .

Thus, the two sides are equal by axiom (3). With the help of (1) and (2), one can
prove similarly that h�

I(P ·i Q) = h�
F (P ) ·i h�

I(Q) for all constructible P, Q such
that P is finite and Q is infinite. �

One can consider the ωi-power operations instead of the ω-·i-products. Let

Posω
n(Σ) = (Posn,F (Σ),Posn,I(Σ), ·1, . . . , ·n,ω1 , . . . ,ωn ).
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Now Posω
n(Σ) satisfies (1) and the following equations:

(x ·i y)ωi = x ·i (y ·i x)ωi , (7)
(x ·i x ·i . . . ·i x︸ ︷︷ ︸

k times

)ωi = xωi , k ≥ 2, (8)

for all x, y ∈ Posn,F (Σ) and i ∈ [n].

Definition 3.6. Call an algebra C = (CF , CI , ·1, . . . , ·n,ω1 , . . . ,ωn ) an n-Wilke-
algebra if it satisfies equations (1), (7) and (8) above. A morphism of n-Wilke-
algebras preserves all operations.

Note that every n-ω-semigroup can be viewed as an n-Wilke algebra, where the
ω-power operations are defined naturally with the help of the ω-product opera-
tions: xωi = x ·i x ·i . . . Then the equations (2) and (3) imply equations (7) and (8).
In fact, the argument from [18] establishing the equivalence of the category of fi-
nite ω-semigroups and the category of finite Wilke-algebras is easily applicable to
show that this result generalizes to n-ω-semigroups and n-Wilke-algebras.

Proposition 3.7. For each n, the category of finite n-ω-semigroups and the cat-
egory of finite n-Wilke-algebras are equivalent.

The smallest subalgebra of Posω
n(Σ) containing the singletons labeled with the

elements of Σ is the algebra SPω
n(Σ) = (SPn,F (Σ),SPω

n,I(Σ), ·1, . . . , ·n,ω1 , . . . ,ωn )
of strictly constructible n-posets.

Let us now define the (strict) rank of an infinite strictly constructible n-poset P
as the least number of binary product and ω-power operations needed to generate
P from the singletons.

Lemma 3.8. Any P ∈ SPω
n,I(Σ) can be uniquely written either as

P = P1 ·i . . . ·i Pk ·i (Pk+1 ·i . . . ·i Pm)ωi ,

where i ∈ [n] and P1, . . . , Pm ∈ SPn,F (Σ) are ·i-irreducible, moreover, Pk is not
isomorphic to Pm and there is no proper divisor d of m such that (Pk+1 ·i . . . ·i
Pk+d)m/d is isomorphic to (Pk+1 ·i . . . ·i Pm), or as

P = P1 ·i P2 ·i . . . ·i Pr ·i Q,

where i ∈ [n], r > 0, moreover, Pk ∈ SPn,F (Σ), k ∈ [r] and Q ∈ SPω
n,I(Σ) are

·i-irreducible, and the rank of Q is strictly less than the rank of P .

Using the above lemma, the following theorem can be proved similarly to the
proof of Theorem 3.5.

Theorem 3.9. The algebra SPω
n(Σ) if freely generated by Σ in the variety of

n-Wilke-algebras.
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4. A characterization

In this section, we recall the graph-theoretic characterization of the finite con-
structible n-posets from [2] and provide a related characterization of the infinite
constructible and strictly constructible n-posets.

Note that a (strict, countable) partially ordered set, or a poset, is just an n-
poset for n = 1, without the labeling function, or with a singleton set of labels
and a trivial labeling function.

A filter of a poset is a nonempty upward closed subset, while an ideal is a
nonempty downward closed subset. Each nonempty subset of a poset is included
in a smallest filter and a smallest ideal, respectively called the filter and the ideal
generated by the set. A filter is called a principal filter if it is generated by a single
element, or more precisely, by a singleton set. Principal ideals are defined in the
same way. We say that a nonempty set X ⊆ P is directed if any two elements
of X have an upper bound in X . A poset (P, <) is connected if the symmetric
closure of the order relation < defines a connected graph on P . The connected
components of a poset P are the maximal connected subposets of P . A chain is
a totally ordered poset, and an ω-chain is a chain isomorphic to the usual order
of the naturals. An antichain is a poset such that no two elements are related by
the order relation.

We say that a poset (P, <) has a linearization to an ω-chain if there is an
extension of the partial order < to an order <′ such that (P, <′) is an ω-chain.

Lemma 4.1. A poset P has a linearization to an ω-chain iff it is countably infinite
and each principal ideal of P is finite.

A poset (P, <) satisfies the N-condition, or is N-free, if it has no “N’s”, i.e.,
there is no four element subset {a, b, c, d} of P whose only order relations are
a < c, b < c and b < d. We say that an n-poset P satisfies the triangle condition if
any three different vertices u, v and w of P are related by at most 2 of the partial
orders <i (i.e., there is no triangle whose sides have different “colours”).

Lemma 4.2. If a connected poset P satisfies the N -condition, then any two ver-
tices of P have an upper or lower bound.

Proof. Let u, v ∈ P , u �= v. By assumption, there is a finite sequence v0, . . . , vk

of vertices of P with u = v0, v = vk and such that vi < vi+1 or vi+1 > vi for
all i = 0, . . . , k − 1. When k = 1, it is clear that u and v have both an upper
and a lower bound. We proceed by induction on k. Assume that k > 1. By the
induction hypothesis, u and vk−1 have an upper bound or a lower bound. Suppose
that x is an upper bound. If vk−1 ≥ v, then x is also an upper bound of u and v.
So let vk−1 < v. If either x < v or x > v or u < vk−1 or u > vk−1, then it is clear
that u and v have an upper or lower bound. If none of these order relations holds,
then by the N-condition, u < v. The case when u and vk−1 have a lower bound is
symmetric. �

A graph-theoretic characterization of finite constructible n-posets was given in
[2].
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Figure 1: An upward comb (a) and a downward comb (b).

Theorem 4.3 [2]. A finite nonempty n-poset P is in SPn,F (Σ) iff the following
hold:

i) P is complete.
ii) P satisfies the triangle condition.
iii) (P, <i) is N -free for each i ∈ [n].

We now set out to provide a related characterization of infinite constructible n-
posets.

An upward comb is a poset which is isomorphic to the poset whose vertices are
the ordered pairs (i, j), for all nonnegative integers i ≥ 0 and j ∈ {0, 1}. Moreover,
the immediate successors of a vertex (i, 0) are (i + 1, 0) and (i, 1), and vertices of
the form (i, 1) are maximal. The order relation is the transitive closure of the
immediate successor relation. We call a poset a downward comb if it is isomorphic
to the poset whose vertices are the ordered pairs (i, j), where i is a nonnegative
integer and j is 0 or 1. The only immediate successor of a vertex (i, 1) is (i+1, 1),
and the only immediate successor of vertex (i, 0) is (i, 1). (Thus all vertices of the
form (i, 0) are minimal.) The order relation is again the transitive closure of the
immediate successor relation.

We say that an n-poset (P, <1, . . . , <n) is free of upward combs or free of down-
ward combs if none of the posets (P, <i) contains an (induced) subposet isomorphic
to an upward comb or a downward comb, respectively.

Proposition 4.4. The following conditions hold for all n-posets in ωSPn,I(Σ):

i) P is complete;
ii) P satisfies the triangle condition;
iii) for each i ∈ [n] the poset (P, <i) satisfies the following conditions:

a) (P, <i) is N -free;
b) (P, <i) is free of upward combs;
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c) (P, <i) is free of downward combs; and
d) each principal ideal of (P, <i) is finite.

Proof. By induction on the rank of P . When the rank is 0, one uses
Theorem 4.3. �

Remark 4.5. Suppose that (P, <1, . . . , <n) is a complete n-poset satisfying the
triangle condition. If u <i v <j w holds for some u, v, w ∈ P and i, j ∈ [n], then
it follows that either u <i w or u <j w. Thus, the relation <=<1 ∪ . . .∪ <n is a
linear order on P . By Theorem 4.3 and Proposition 4.4, this gives another proof
of Lemma 2.3.

Suppose that (P, <1, . . . , <n) is a complete n-poset satisfying the triangle condi-
tion such that each principal ideal of any (P, <i) is finite and free of upward combs.
In Lemma 4.10, we will give several equivalent conditions that for some i, (P, <i)
contains a downward comb. Lemma 4.10 will in turn be applied in the proof of
the main characterization theorem. But first we need some auxiliary lemmas.

Lemma 4.6. Suppose that (P, <1, . . . , <n) is a complete n-poset satisfying the
triangle condition and i0 ∈ [n]. Let Q1, Q2, . . . , Qγ , . . . be all the connected com-
ponents of the poset (P, <i0). For any two components Qγ1 , Qγ2 , γ1 �= γ2, there
exists an i ∈ [n], i �= i0, such that either x <i y for all x ∈ Qγ1 and y ∈ Qγ2 , or
x >i y for all x ∈ Qγ1 and y ∈ Qγ2 .

Proof. Let Qγ1 and Qγ2 be two connected components of (P, <i0). Suppose that
x <i y for some x ∈ Qγ1 , y ∈ Qγ2 and i ∈ [n], i �= i0. We claim that x′ <i y′

for all x′ ∈ Qγ1 , y′ ∈ Qγ2 . We only show that x <i y implies x′ <i y for all
x′ ∈ Qγ1 . (The proof of the fact that x′ <i y implies x′ <i y′ for all y′ ∈ Qγ2

is symmetrical.) Since x′ ∈ Qγ1 means that x and x′ are in the same connected
component of (P, <i0 ), there exists a sequence x0 = x, x1, . . . , xt = x′ (t ≥ 0), such
that xs−1 <i0 xs or xs−1 >i0 xs holds for all s ∈ [t]. We prove by induction on s
that xs <i y for all s with 0 ≤ s ≤ t. Indeed, x0 = x <i y holds by assumption.
If we have xs <i y for some s, (0 ≤ s ≤ t − 1), then since P is complete and
satisfies the triangle condition, and by the fact that y is not in the connected
component Qγ1 , we have that xs+1 and y are related by <i. But y <i xs+1 is not
possible, because xs <i y and y <i ss+1 would imply xs <i xs+1, so necessarily
xs+1 <i y. We conclude that xs <i y for all s with 0 ≤ s ≤ t. In particular,
x′ = xt <i y, as claimed. �

Lemma 4.7. Suppose that a complete n-poset (P, <1, . . . , <n) satisfies the triangle
condition. Then there exists some i such that (P, <i) is connected.

Proof. By induction on n. The base case n = 1 is obvious. Assume n > 1. Let P0,
P1, . . . , Pγ , . . . be all the connected components of (P, <n). If there is only one
component then we are finished with the proof. Otherwise, by Lemma 4.6, for all
γ1 �= γ2 there exists j ∈ [n], j �= n such that x <j y for all x ∈ Pγ1 and y ∈ Pγ2 , or
y <j x for all x ∈ Pγ1 and y ∈ Pγ2 . Thus, if we collapse each Pγ into a single point,
we get a non-singleton (n−1)-poset (the relation <n does not appear) that is also
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x′
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Figure 2: Either xs <i0 xs+1 or xs >i0 xs+1 holds, xs <i y
implies xs+1 <i y in the proof of Lemma 4.7.

complete and satisfies the triangle condition. Thus, we can apply the induction
hypothesis to conclude that there exists some i such that (P, <i) is connected. �

Lemma 4.8. Suppose that (P, <1, . . . , <n) is a complete n-poset satisfying the
triangle condition and such that for each j ∈ [n], any principal ideal of (P, <j) is
finite. If for some i ∈ [n], the poset (P, <i) contains an ω-chain, then there are
only a finite number of elements of P not related to any element of this chain by
the relation <i.

Proof. Let x0, x1, . . . denote an ω-chain in (P, <i) and assume to the contrary that
there are an infinite number of elements y0, y1, . . . not related to any xk by the
relation <i. We claim that for each ym there is some j ∈ [n], j �= i, such that
ym <j xk holds for all xk. Indeed, since P is complete and for each j ∈ [n], any
principal ideal of (P, <j) is finite, we have that ym <j xk0 for some j and xk0 .
Now x0, x1, . . . all belong to the same connected component of (P, <i). Thus, by
Lemma 4.6, we have ym <j xk for each xk, proving the claim. Since there are
only a finite number of order relations, there must be a j ∈ [n], j �= i such that
infinitely many of the ym are below each xk with respect to the relation <j. But
this contradicts Lemma 4.1. �

Lemma 4.9. Under the assumptions of Lemma 4.8, if X ⊆ P contains an
ω-chain in the poset (P, <i), then either (P, <i) contains an upward comb, or
it is possible to remove a finite number of elements from X such that the resulting
set generates a directed filter of (P, <i).

Proof. Assume that X contains an ω-chain x0, x1, . . . There are two cases, either
(P, <i) has a finite or an infinite number of maximal elements.
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Assume first that there are a finite number of maximal elements. Then the
number of elements below some maximal element is also finite. We claim that the
infinite set Y obtained from X by removing all such elements generates a directed
filter F . Suppose that u, v are distinct elements in F . Since F has no maximal
elements, u and v are the least elements of some ω-chains C1 and C2 in (P, <i).
But by Lemma 4.8, C1 and C2 must have at least one pair of elements related
by <i. Thus, u and v have an upper bound in (P, <i) and thus in F .

Assume now that (P, <i) has an infinite number of maximal elements. By
Lemma 4.8, it follows that for each xm there is a maximal element ym with
xm <i ym. But since each element of P generates a finite ideal of (P, <i), this is
possible only if (P, <i) contains an upward comb. To see this, let xt0 = x0 and
yt0 = y0. When xts , yts are already defined, let xts+1 be the least xt such that
xt �<i ytr for all r ≤ s. Then xt0 , yt0 , xt1 , yt1 , . . . form an upward comb. �

Lemma 4.10. Suppose that (P, <1, . . . , <n) is a complete n-poset satisfying the
triangle condition. Moreover, suppose that for each i ∈ [n], any principal ideal of
(P, <i) is finite and (P, <i) is free of upward combs. Then the following conditions
are equivalent.

i) There is a k ∈ [n] such that (P, <k) has a directed filter which contains an
infinite antichain.

ii) There is a k ∈ [n] such that (P, <k) has a directed filter which contains
infinitely many minimal elements.

iii) There is a k ∈ [n] such that (P, <k) contains a downward comb.
iv) For some i, j ∈ [n], i �= j, (P, <i) and (P, <j) both contain an ω-chain.

Proof. First, (i) implies (ii). If (P, <k) has a directed filter containing an infinite
antichain, then simply omit the vertices below some element of that antichain. The
filter so obtained is directed and contains an infinite number of minimal elements.

Next, we prove that (ii) implies (iii). Suppose that the poset (P, <k) has a
directed filter F which contains infinitely many minimal elements x0, x1, . . . We
construct an downward comb in (P, <k). Let r0 = x0 and let v0 be an upper
bound of x0 and x1 in F , which exists since F is directed. If rt and vt are already
defined for some t ≥ 0, then xi <k vt can hold only for finitely many i, otherwise vt

would generate an infinite principal ideal of (P, <k). Choose an index j such that
xj <k vt does not hold and let rt+1 = xj and let vt+1 be an upper bound of vt

and xj in F . It is easy to see that r0, v0, r1, v1, . . . form a downward comb.
Now, we prove that (iii) implies (iv). Suppose that (P, <i) contains a downward

comb R. Then the non-minimal elements of R form an ω-chain in (P, <i). We
show that an appropriate subset of the minimal elements of R forms an ω-chain in
(P, <j), for some j ∈ [n], j �= i. Indeed, any two minimal elements are related by
one of the finitely many relations <1, <2, . . . , <i−1, <i+1, . . . , <n. Thus, according
to the Ramsey theorem, cf., e.g., [16], there exists a relation, say <j , (j ∈ [n],
j �= i), and an infinite subset C of the minimal elements of P such that any
two elements of C are related by <j. So (C, <j) is an infinite linearly ordered set,
and thus an ω-chain by Lemma 4.1.
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Last, we prove that (iv) implies (i). Suppose that for some i, j ∈ [n], i �= j,
both (P, <i) and (P, <j) contain an ω-chain, say x0, x1, . . . and y0, y1, . . . Since the
two chains can have at most one element in common, we may neglect this element
and assume that the two chains are disjoint. Since the set X = {x0, y0, x1, y1, . . .}
contains an ω-chain with respect to the partial order <i, by Lemma 4.9 it is
possible to remove a finite number of elements from X such that the resulting set
generates a directed filter. Clearly, this filter contains an infinite antichain. �

Remark 4.11. As shown above, under the assumptions of Lemma 4.10, if for
some k, (P, <k) has a directed set containing an infinite antichain, then it has a
directed filter containing an infinite antichain.

Remark 4.12. For n-posets (P, <1, . . . , <n) such that no (P, <i) contains an
infinite principal ideal, (iv) of Lemma 4.10 is equivalent to the condition that
there is no i ∈ [n] such that (P, <i) contains both an infinite ω-chain and an
infinite antichain.

In the following theorem, we give a graph-theoretic characterization of infinite
constructible n-posets.

Theorem 4.13. An infinite n-poset P is in ωSPn,I(Σ) iff the following hold:

i) P is complete;
ii) P satisfies the triangle condition;
iii) for each i ∈ [n] the poset (P, <i) satisfies the following conditions:

a) (P, <i) is N -free;
b) (P, <i) is free of upward combs;
c) (P, <i) is free of downward combs; and
d) each principal ideal of (P, <i) is finite.

Remark 4.14. Instead of (iii/c), we could use the negation of any of the equiva-
lent conditions of Lemma 4.10. For later use we note that if an n-poset P satisfies
conditions (i)–(iii) of Theorem 4.13, then any (induced) sub-n-poset of P also
satisfies these conditions. Moreover, suppose that Q is an n-poset which satis-
fies (i)–(iii) and no two vertices of Q are related by the relation <n. Then Q is
also an (n − 1)-poset, and as an (n − 1)-poset, it satisfies conditions (i)–(iii) of
Theorem 4.13.

Proof. The necessity part of the Theorem is a restatement of Proposition 4.4. Sup-
pose now that the n-poset P satisfies conditions (i)–(iii). We argue by induction
on n to prove that P is in ωSPn,I(Σ). The base case n = 1 is obvious. Assume
n > 1. We know by Lemma 4.7 that there exists i0 ∈ [n] such that the poset
(P, <i0 ) is connected. We distinguish between two cases depending on whether
(P, <i0 ) is directed or not.

Case 1. (P, <i0 ) is directed. By (iii/d), each element of (P, <i0) is over a minimal
element. Since by Lemma 4.10 the set of minimal elements is finite, there is an
element strictly over all minimal elements with respect to the partial order <i0 .



ALGEBRAIC AND GRAPH-THEORETIC PROPERTIESOF INFINITE N-POSETS 319

Let

P ′ = { y | ∀x minimal x <i0 y},
P0 = P − P ′.

Note that P0 and P ′ are nonempty. We have that P = P0 ·i0 P ′. Indeed, if x ∈ P0,
y ∈ P ′, we show that x <i0 y. If x is a minimal element then we are done.
Otherwise, let x0, x1 be minimal elements such that x0 <i0 x and x1 �<i0 x. Since
y ∈ P ′, we have x0 <i0 y and x1 <i0 y. It is not possible that y <i0 x, since
otherwise we would have x1 <i0 x. Thus, if x �<i0 y, then x0, x1, x and y form
an N in (P, <i0). We conclude that x <i0 y, as claimed. Since P = P0 ·i0 P ′, it
follows now by (iii/d) that P0 is finite.

Now, (P ′, <i0) is also directed, and P ′ satisfies conditions (i)−(iii), so that we
can decompose P ′ as P ′ = P1 ·i0P ′′, where P ′′ is the set of all elements of P ′ strictly
over all minimal elements with respect to the partial order <i0 , etc. Continuing
in the same way, it follows by (iii/d) that

P = P0 ·i0 P1 ·i0 . . . ,

where each Pi is nonempty, finite, N-free and satisfies the triangle condition. Hence
by Theorem 4.3, each Pi belongs to SPn,F (Σ). It follows that P is in ωSPn,I(Σ).

Case 2. (P, <i0) is not directed. Then there exists some h such that the height ≥h
vertices are disconnected in (P, <i0 ), where the height of a vertex x is the number
of elements of the longest chain in (P, <i0) strictly below x. (The height of a
vertex is a nonnegative integer by (iii/d).) Indeed, there exist x, y ∈ P which do
not have an upper bound in (P, <i0). Let h denote the minimum of the heights
of x and y. Then x and y are disconnected in the subposet of (P, <i0 ) consisting
of the height ≥ h vertices, since by Lemma 4.2 they were connected iff they had
an upper or lover bound. Assume now that h is minimal such that the vertices of
(P, <i0 ) of height ≥ h form a disconnected poset. Since (P, <i0 ) is connected, we
have h ≥ 1. We show that

P = P0 ·i0 P ′, (9)

where

P ′ = { x | height(x) ≥ h},
P0 = P − P ′.

Note that P0 �= ∅. Assume to the contrary that (9) does not hold. Then there
exist x ∈ P0 and u ∈ P ′ of height h such that x <i0 u does not hold. By the
choice of h, the vertices x and u have an upper bound z. Since P ′ is disconnected,
there is at least one vertex p of height h which belongs to a connected component
of P ′ not containing u, i.e., such that p and u have no upper bound in (P, <i0 ).
But since the vertices of height at least the height of x are connected, it follows
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Figure 3: An n-poset that satisfies all conditions of Theorem 4.13 except (iii/c).

from Lemma 4.2 that x and p have an upper bound y. Of course, y belongs to the
connected component of (P ′, <i0) containing p and hence not containing u. Thus,
the vertices x, z, u, y form an N, contrary to the assumption (iii/c).

We have thus proved that (9) holds. Note that by (iii/d), P0 is finite. Thus,
by Theorem 4.3, P0 belongs to SPn,F (Σ). Thus, to complete the proof, we have
to show that P ′ is in ωSPn,I(Σ). Let Q0, Q1, . . . be all the induced sub-n-posets
of P determined by the connected components of (P ′, <i0). (The list may be finite
or infinite.) By Lemma 4.6, if x <i y holds for some x ∈ Qj1 and y ∈ Qj2 , where
j1 �= j2 and i �= i0, then x′ <i y′ holds for all x′ ∈ Qj1 and y′ ∈ Qj2 . Let us
collapse each Qj into a single point vj . Let Q denote the resulting (n − 1)-poset.
Since Q is isomorphic to any subposet R of P ′ which contains exactly one vertex
form each Qj , it follows using Remark 4.14 that Q satisfies all conditions (i)–(iii).
Thus, by induction, Q is in ωSPn,I(Σ). Moreover, each Qj is constructible and
each Qj is finite unless vj is the greatest vertex in Q. Thus, by Lemma 2.5, P ′

and P also belong to ωSPn,I(Σ). �

Remark 4.15. Note that the conditions (i), (ii), (iii/a), . . . , (iii/d) are indepen-
dent, that is, for each of these conditions there exists an n-poset which satisfies
all except that particular condition. In most cases it is almost trivial to construct
such an n-poset. For condition (iii/c), Figure 3 shows such an n-poset. An n-poset
that violates only condition (iii/b) can be constructed simply by reversing all the
relations between the two “chains” of the n-poset in Figure 3.

With a slight modification of the conditions of the previous theorem, we obtain
a graph-theoretic characterization of the n-posets in SPω

n,I(Σ). In the following
Theorem, by a suffix of an n-poset (P, <1, . . . , <n) we mean a sub-n-poset of P
determined by a subset Q ⊆ P which is a filter with respect to all partial orders <i.
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Theorem 4.16. An infinite n-poset P is in SPω
n,I(Σ) iff P satisfies the con-

ditions (i), (ii), (iii/a), (iii/b) and (iii/d) of Theorem 4.13 and the following
condition:

(iv) P has, up to isomorphism, a finite number of suffixes.

Proof. It is easy to see by induction on the rank of P that the last condition is
necessary. The other conditions are necessary by Theorem 4.13. To prove that the
conditions are sufficient, note that (iv) implies (iii/c) of Theorem 4.13. Thus, if P
is an infinite n-poset which satisfies the above conditions, then P is constructible.
The proof will be complete if we can show that every infinite constructible n-poset
satisfying (iv) is strictly constructible. But consider a product Q = Q1 ·i Q2 ·i
. . ., where each Qm is in SPn,F (Σ) and ·i-irreducible. Consider the sub-n-posets
F1, F2, . . . determined by the sets Q1 ∪ Q2 ∪ . . ., Q2 ∪ Q3 ∪ . . . , . . ., respectively.
By (iv), there exist integers j and k, j < k, such that Fj is isomorphic to Fk. But
then Qj+t is isomorphic to Qk+t, for all t ≥ 0, proving that Q is Q1 ·i . . . ·i Qj−1 ·i
(Qj ·i . . .·iQk−1)ωi . It follows now by a straightforward induction on the rank of the
infinite constructible n-poset P satisfying (iv) that P is strictly constructible. �
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