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Abstract—In risk-based testing, compromises are often made
to release a system in spite of knowing that it has outstanding
defects. In an industrial setting, time and cost are often the “exit
criteria” and – unfortunately – not the technical aspects like
coverage or defect ratio. In such situations, the stakeholders
accept that the remaining defects will be found after release,
so sufficient resources are allocated to the “stabilization” phases
following the release. It is hard for many organizations to see that
such an approach is significantly costlier than trying to locate the
defects earlier. We performed an empirical investigation of this
for one of our industrial partners (a financial company). In this
project, significant perfective maintenance was performed on the
large information system. Based on changes made to the system,
we carried out procedure level code coverage measurements
with code level change impact analysis, and a similarity-based
comparison of test cases in order to quantitatively check the
completeness and redundancy of the tests performed. In addition,
we logged and compared the number of defects found during
testing and live operation. The data obtained were surprising
for both the developers and the customer as well, leading to a
major reorganization of their development, testing, and operation
processes. After the reorganization, a significant improvement in
these indicators for testing efficiency was observed.

Index Terms—Code coverage, White-box testing, Impact anal-
ysis, Test redundancy, Test similarity, Test efficiency, Risk-based
testing

I. INTRODUCTION

In risk-based testing, test conditions (features to be tested)
are selected based on priority and the likelihood or impact
of failure. Decisions on exit criteria (i.e. when to stop testing
and release the software) are also determined based on risk
analysis [1]. Such a risk analysis often includes not only
technical aspects such as severity of faults detected, but also
non-technical issues like business considerations about when
to release the system with new functionality. For example, a
bank may decide to release a new version of the software
despite being aware of certain defects in the system, in order
to reduce the risk of losing customers because they are unable
to provide a financial service that competitors of the bank
already provide. The drawback of this strategy is, however,
that the organization needs to be prepared for an increased

number of after-release failures and intensive “stabilization”
phases in the software lifecycle.
What is especially interesting is that companies are often

unaware of how uneconomical this approach is in the long
term [2]. Since the after-release fixes are usually very costly,
a modest investment in more efficient testing processes should
pay off in the medium term, while not losing the ability to
perform a good business risk analysis at the same time. In
particular, if appropriate tests with appropriate priorities are
performed, this may significantly reduce the risk of after-
release failures. This means thoroughly testing the important
modified parts of the system (referred to as completeness

hereafter), and efficiently removing redundant or irrelevant
tests (referred to as redundancy hereafter).
Although the objective to improve testing and release pro-

cesses sounds straightforward in theory, it is quite hard to
achieve it in practice. It requires in particular code coverage
analysis [3] and change impact analysis [4], both areas being
technically very difficult in the general case. These methods
are usually applied at lower testing levels such as unit testing,
but rarely at the system level. However, the above-mentioned
risk reduction capabilities can be most effective at higher
testing levels, so it is desirable to apply coverage measurement
and impact analysis whenever feasible.
In this paper, we describe our experiences on applying

the above-mentioned techniques to assess and improve the
testing process of one of our industrial partners (a financial
organization) through a specific software enhancement project.
One novelty of this project was the application of a special
procedure level coverage measurement and change impact

analysis. We defined a set of different coverage measurements
based on procedure call and control transfer, which were
applicable to large and complex systems and their system
level testing. We applied the coverage measures and impact
analysis to assess the completeness and redundancy of the tests
performed. Similar techniques are usually applied at lower
testing levels, and we are not aware of previous publications
of a similar combined approach, especially at the system level.
The assessment and improvement involved two phases.



First, we evaluated the efficiency of testing without altering
the testing procedure. The outcome of this was a surprise
to all concerned, and resulted in a major reorganization of
their testing processes. The second phase was carried out
four months later. This time we gave suggestions on how to
design the test cases based on the uncovered components and
redundant tests.
Our key finding was that the efficiency of testing was

unacceptably low. Namely, procedure level coverage in the
first phase was only 36% with at least 40% of the tests being
redundant. However, in the second phase the coverage reached
almost 100%. Furthermore, the number of defects reported
during and after the tests were logged. These findings also
supported an improvement in efficiency; the number of after-
release failures halved in the first five weeks.
Overall, these findings showed that even a small enhance-

ment in the process can result in a significant improvement in
software quality. Although the company and the technology
in question have some quiet special properties, we think that
this experience report can be profitable to other researchers
and practitioners facing similar problems.
The paper is organized as follows. In the next section

we continue with an overview of related work, while in
Section III we provide some basic data about the environment
and the issues to be addressed. Section IV describes the
assessment methodology of the first phase with some technical
details, while Section V discusses our methodology for the
second phase. Section VI provides a detailed results of our
experiments. After, in Section VII we discuss the threats to
validity, and in Section VIII we draw some conclusions and
describe our future plans.

II. RELATED WORK

Code coverage measurement has been used for a long time
as a white-box testing technique to evaluate the quality of
testing activities. Since the first publication by Miller and
Maloney [3], many different studies have been published
that elaborate on the relationship between code coverage
measures and software reliability [5], fault density or defect
coverage [6], [7], and fault detection capability [8]. Weiser et
al. described the relationship between different kinds of code
coverage measures [9], while Malaiya et al. showed that
there was a clear relationship between code coverage and the
efficiency of testing [10].
It is always a problem to eliminate the redundancy of a

test, and thus lower the testing costs. There is a significant
amount of literature suggesting different approaches to test
case selection (or prioritization), which are based on differ-
ent kinds of measurement. Rothermel et al. [11] presented
different test case ordering techniques including techniques
that use statement and branch coverage information, and they
concluded that code coverage can be effectively used for test
case selection. White et al. [12] applied the firewall testing
technique for regression testing to detect late bugs. They saved
about 40% of the tests while the testing became more effective;
this result is quite similar to ours.

In the present study, we applied procedure level coverage
measurement together with impact analysis. It is based on
constructing a static call graph [13]. Many researchers agree
that building upon a call graph can lead to imprecision in
the analysis [14], [15]. However, in many situations it is
impractical if not impossible to apply more sophisticated
analyses. In this work we extended the traditional coverage
variants (branch, decision, statement) to procedure level con-
cepts, which is a novelty. Similar approaches are hard to find.
Badri et al. also use procedure level dependencies in their so-
called control call graph where nodes that do not influence the
execution of the procedure calls are left out [16]. The approach
based on Static Execute After (SEA) relations also uses a
high level program representation, but extends the simple call
relationship with other control dependencies, and in this way
provides a safer and more complete dependency analysis [17].

III. ENVIRONMENT AND GOALS

A. Overview of the subject organization and the system

We performed this study as part of our research cooperation
with a local financial firm which provides various services
to their private and corporate customers including financial
leasing and real estate loans. The company is one of the market
leaders and has many customers, and thus employs a state-of-
the-art IT infrastructure to support their operations.
The IT architecture of the company is heterogeneous and

consists of various technologies, with a central role of a propri-
etary technology provided by another local software company.
Most of the core systems are built upon this technology,
which is an integrated administrative and management system
made up of modules (subsystems) using Windows-based user
interfaces and MS-SQL database management software. The
modules contain programs, and the programs are an aggregate
of procedures.
In this study, we focused on a core system based on this

technology, referred to as the subject system in the following.
Specifically, it is a database-oriented application with different
layers and a number of external connectors as interfaces to
other systems. It has 631, 043 source code lines, 802 programs,
6, 201 procedures and uses 745 SQL tables.
The development and maintenance of the subject system are

both performed by the same external software company, which
is the owner of the technology. The development projects of
this subject system are usually performed in a waterfall-like
fashion with semiformal specification and design phases and a
very intensive reuse oriented, RAD-like implementation stage.
Modest unit testing and a fair amount of integration testing are
done by the developer, while most of the testing is devoted to
system level testing. The system testing has roughly two main
stages. In the first stage (called the ‘expert test’), developer and
user representatives together test the features of the system.
These exploratory tests are based on the technical knowledge
of the developer representative and the business expertise of
the user representative. Most of the observed failures are fixed
in a short time frame without leaving any trace. The second
stage (known as ‘user test’) is the real user acceptance testing



which is performed at the site of our partner and by the end
users. It is based on a more formal test specification made
by business analysts and software architects and validated by
the end users. The failures are recorded and – after fixing –
are handled with confirmation testing. During user testing new
versions of the system under test are deployed on a daily basis.

The decision on releasing the software is usually based on
business considerations like deadlines, and the quality assessed
by the testing of the software is often a secondary aspect. Still,
there are some minimal conditions that have to be met, such as
most of the functional tests must be executed, and there may
be only a few outstanding critical errors in the system, but the
thresholds for “most” and “few” are not precisely defined, for
example.

In our case study, the company followed these general
practices. They asked us to perform an initial assessment
of the processes overviewed above, after which we realized
two things that the company also later agreed on: 1) there
are several possible ways to improve the processes based on
organizational aspects, and 2) there is a significant amount of
uncertainty in the testing projects in terms of the complete-
ness and the redundancy of the tests, as no measurement is
performed in this respect.

B. The case study and the research goals

Based on the above, we decided to conduct a quantitative
assessment of one of the major perfective maintenance projects
to find out the actual level of testing quality and provide
suggestions for improving the processes.

For this assessment, we chose to apply procedure level code
coverage measurements on the selected project and compare
these measurement results with the testing activities and with
the changes observed in the source code base of the system.
For the latter, we employed change impact analysis based on
the static code analysis of the modified code partions. Impact
analysis is especially important in maintenance testing projects
like this (see the previous section on related work). With these
measurements, we wanted to address four issues:

1) How complete are the performed tests in terms of the
coverage of the changed code?

2) How redundant are the tests in terms of the similarity of
the performed tests?

3) Can the testing process be improved using the measure-
ments and observations of the test assessment?

4) How are the coverage values affected when test selection
techniques are applied in order to eliminate the redun-
dancy of the tests?

Here the tests were planned based on functional specifica-
tion only, and no white-box design techniques were applied.
Hence out assessment of the tests is in essence a verification

or rejection of the expertise of the test designers based on

objective measurement.1 White-box techniques are usually
applied at lower levels like unit testing, but as this project
showed, it is indeed possible to provide useful feedback to
the testers about the current efficiency of testing based on
coverage and redundancy.
To answer these questions, we performed a two-phase

measurement of the testing projects.
a) Phase I.: The aim of the first phase was to assess the

testing process of the company. We recorded the execution
logs of all of the performed tests and the changes made
to the source code during the testing project. The number
of recorded defects was also available. We performed four
types of coverage measurements, calculated redundancy in
other ways and evaluated the bug detection performance of the
testing project using the recorded data. In the next section we
will provide more technical details on these issues. Through
these measurements and by investigating the testing process
itself, we were able to answer the first two questions. Both
the developer and the customer were quite convinced that the
testing was not optimal from both aspects, but they wanted to
know the extent objectively. After the evaluation of the results,
they both agreed that the processes could be improved in many
ways.

b) Phase II.: About four months later, we were involved
in another testing project of the same system as part of
another major perfective maintenance. Based on the results
of Phase I., the testing process was improved to allow the
user tests to be proactively controlled based on the results of
the measurements. However, this control affected just what is
tested (e. g. test cases) and not how (e. g. duration or number of
testers). In this phase we applied one selected type of coverage
measurement, and did not perform redundancy measurements,
but of course we again recorded and evaluated defect numbers.
After this phase we were able to answer the third research
question too, in a positive and definite way.
In the table below, we provide some basic data about the

testing phases of the project.

first second
Test duration 3 weeks 4 weeks
Tests performed (executions) 1, 578 1, 858

Testers 55 users 60 users
Versions during test 20 23

Table I
BASIC PROJECT DATA

IV. ASSESSMENT METHODOLOGY

In this section, we review the overall approach used to assess
the selected testing project and the steps we performed, and

1We were able to gather a posteriori information about the redundancy of
tests, but this information is rarely available during testing. Hence, it was
useful to draw the attention of test designers to the problems of the current
tests. However, the methods developed are rarely useful in new projects to
drive the test design.



provide some technical details about the techniques and the
tools we applied.

A. Overview

The first testing project and our assessment consisted of the
following main steps:

• Preparation

A new version of the software was deployed for testing
purposes. We performed our measurements during the
user testing period (see above). The corresponding source
code was available as well. Test plans were provided by
the developer and validated by the user.

• Daily work

Execution logs were collected from all the work sta-
tions where the testers performed the tests. Incident

reports from failing test cases were placed in a common
repository. Source code diff at the procedure level was
calculated using the new version. Impact analysis was
performed on the source code diff at the procedure level
according to the different algorithms described below.
Coverage data was calculated based on the diff, the
impact set, and the execution logs. Daily changes were
made to the system under test to repair the defects found
on the previous day.

• Final conclusions

Completeness and redundancy information was ob-
tained through the statistical analysis of coverage data.
Feedback about this information was provided to both
the developers and the testers on a regular basis. Final
conclusions were made after all the test iterations were
completed and all the measurement data had been jointly
evaluated. This included an investigation of the number
of defects identified in the different phases of the life
cycle.

B. Data collection for daily measurements

The source code of the changes was available on a daily
basis. Changes were detected automatically from the source
code repository revisions by creating a textual diff. As the
granularity of the measurements was at the procedure level, we
identified those procedures that contained any changes made
since the last version. The source code was then analyzed, and
a static call graph, which was used during impact analysis, was
built from it.
Source code programs were compiled to an intermediate

representation, and then they were executed by an interpreter.
Runtime information was obtained with the help of a modified
interpreter, which was able to record entries to and exits from
procedures. Calls to built-in procedures were excluded since
their source code is not part of the analyzed system. Whenever
the interpreter was started a textual log file, which stores the
names of the procedures called, was generated. The logs were
collected each day during the user test phase.

C. Coverage calculation and impact analysis

As already mentioned in Section II, code coverage can be
treated as an indicator of defect coverage in testing. However

in maintenance testing projects like this, change impact analy-
sis is essential as well. Both coverage measurement and impact
analysis can be implemented at various levels and with varying
precision in mind. Due to practical considerations [18], we
chose to use procedure level coverage analysis with specif-
ically designed procedure level impact analysis algorithms
based on the call graph; however, other coverage metrics
and/or impact analysis algorithms would have been sufficed.
Based on the principles of traditional statement level cov-

erage variants and impact analysis [4], [19] we designed
practical coverage computation methods. Specifically, in our
experiments we applied the following coverage measures:

• Noimpact

This is the simple procedure coverage without impact
analysis, i.e., in our measurements noimpact coverage
is a value that defines what percentage of the modified
procedures has been executed at least once during the
testing process. It is analogous to statement coverage at
the instruction level.

• Firewall

We call the limited impact analysis in which only di-
rect calls are treated firewall coverage. The impact set
contains the modified procedures and the procedures that
directly call or are called by the modified procedures.
Then we compute the rate of executed procedures in this
limited impact set.

• Point

The coverage value called point coverage is based on an
extended analysis of the call chains in the call graph.
Here, the impact set contains all procedures that directly
or indirectly call or can be called from a modified
procedure, regardless of the length of the call chain. The
coverage value is the percentage of executed procedures
within this unlimited impact set.

• Branch

In procedure level branch coverage the edges are impor-
tant, not the nodes. Here we do not count the procedures
themselves, but we check the incoming and outgoing call
edges in the call graph. The coverage value is the number
of the executed call edges of the procedures in the impact
set divided by the total number of the call edges of the
modified procedures. This kind of coverage measure is
derived from instruction level branch coverage.

For an assessment of the completeness of testing, we
computed the four types of coverage measures described above
using our custom built tool, which takes the source code, the
list of changes, and the execution logs as input, and generates
the required coverage data.

D. Calculating Redundancy

In order to determine the amount of redundancy in the
executed tests we adopted the following principle. We assumed
that some of the tests had been executed unnecessarily as
other tests checked the program in a similar way; or, in other
words, their execution logs were similar (we experimented
with different methods to check their degree of similarity).



Of course, the limitation of this approach is that it only takes
into account the procedure call graph, which is imprecise due
to its inability to analyze statement level control flows, data
flows, and so on. Hence, it is not a safe approach, but it is a
good approximation.
To examine tests with similar execution properties, we

applied test selection to get a subset of all executed tests
with the property that this reduced set produces about the
same amount of coverage as the original, full set. We assumed
that if this reduced set of tests had been executed, the same
defect detection capabilities would have been achieved, but
with lower cost.
We experimented with three different approaches to test

selection, which in some cases produced quite different results:
two of them attempted to find a subset of all tests as small
as possible that represented all the tests, while the third one
used a very simple heuristic to reduce a fixed portion of all
the tests. The algorithms are described below.

• Coverage-based test selection

In this selection method, the selection criterion was that
the reduced set yielded the same noimpact coverage as
the full set, while keeping the reduced set as small as pos-
sible. Note that there are a number of different possible
algorithms available to approximate the optimal solution
to this problem. We used a matrix-based algorithm in
which the rows and columns represented the modified
procedures and the execution logs, and a new row was
selected iteratively, and covered columns and irrelevant
rows were deleted from the matrix, until the original
coverage was obtained.

• Limited testing effort

This was a very simple approach in which we followed
the principle that a subset of a fixed size was selected in
every case ignoring overall coverage or other similarity
measures. However, the subset is not selected randomly,
but based on the coverage values. Namely, the top 20%
of all tests were selected. In this simple greedy algo-
rithm, the logs were ordered by the average of their
four coverage values, and then the top 20% of the logs
were selected. The choice for this threshold was rather
arbitrary, but here it was the estimated ratio of redundancy
values.

• Clustering-based

The principle of this method is to find the classes of
very similar tests (based on their execution logs) and to
keep just one representative of each class by removing
all the others. In this method, we defined a similarity
measure between the execution logs, and we applied a
clustering algorithm to find the classes. This was the
WPGMA algorithm [20].

As the size of the test logs varied by quite a lot, simply
getting redundancy values from the number of the reduced
tests compared to all the tests is imprecise. Thus, we also
computed redundancy in another way: as the total number of
procedure calls in the logs of the reduced set divided by the

total number of procedure calls in all the test logs (which are
basically the sizes of the logs, and which correspond to the
lengths of executions).

V. ENHANCED TESTING METHODOLOGY

After the first testing project we drew several key conclu-
sions, which were then utilized in the second testing project.
These are described below.

A. Technical aspects

First, there were a number of technical issues that needed
to be addressed regarding the measurement methods. Namely,
some issues that possibly harmed the first measurements were
eliminated. Source code changes were examined and validated
as ‘to be tested’ by the developers. This way we eliminated the
problem caused by, for example, dead code which is present
in the system but does not affect any business functionality
(see more about this in the next section). After handling these
issues we found that the coverage measurement was much
more reliable.

B. Improvement in test organization

We suggested several improvements to the testing process,
which mostly concerned poor documentation, planning and
test case design. Most notably, we defined control points in
the process, where the measured values were used to affect
the other testing cycles. Namely, the coverage values were
continuously monitored in a similar way as before, and when
the progress (daily growth) of these values decreased for a few
days (i. e. the values stabilized), the coverage of each modified
procedure was checked. Based on these findings we suggested
the creation of new test cases intended to cover yet uncovered
procedures. New test cases were then designed and added to
the testing process by system architects and test experts.
We did not perform redundancy measurements in the second

phase, as it had been decided based on the data got from the
first phase that increasing coverage is of prime importance,
while redundancy is secondary. Also, in this phase we concen-
trated on noimpact coverage, as our partner asked the testers to
attempt 100% coverage for this kind as a start while manually
validating the changes — which, given the very low coverage
anyway, was a realistic choice at the time.
To evaluate this second project, we compared coverage

values and defect numbers with those of the first project. The
results of the evaluation are presented below.

VI. RESULTS

Here we present the results of our measurements in four
areas. First, we provide measurement data for the coverage
values which shed light on the completeness of testing. Then,
we give an overview of our measurements on the redundancy,
based on the methods described above. Since redundancy
measurement is based on skipping irrelevant or less important
tests, it can have a detrimental effect on various coverage
types. Hence, in this section we also attempt to verify the size



of this effect.2 After, we provide some data about the number
of defects found during and after the two testing periods, and
the changes in the coverage values between the tests.

A. Completeness

We evaluated the completeness of the first testing project in
different ways. In Figure 1, the overall growth tendencies of
the four coverage values are presented. It is not surprising that
at the beginning the coverage values grow faster, while at the
end of testing only a minimal growth of the coverage values
can be seen. However, what was surprising for everyone par-
ticipating in this experiment is how fast this growth decreased
(only after about 5–6 days). This means that most of the tests
were mere repetitions after about the first 20% of the total
time spent on testing (the period was four weeks long).
Furthermore, it can also be seen from this figure that the

overall (final) coverage values were rather low (36%, 31%,
27%, and 27% for noimpact, firewall, point, and branch
coverages, respectively). What is more, in such a business-
critical application as the subject system these values would be
unacceptably low! However, the customer decided to release
the software as planned because of business risk considera-
tions, and work on an improvement of its processes in the
next project.
Nevertheless, we investigated the possible reasons for this

extremely low coverage. The first reason we identified was
related to so-called dead code. In a large software system like
this, changes to business logic imply implementation changes
at many different places where the specific logic is imple-
mented, and not just changes associated with specific modules.
It can also happen that some parts of the business logic become
obsolete, but for some reason their implementation is not
removed from the code. However, changes may occur in this
‘dead code’ too, since the propagation of changes requires it,
and the programmers cannot verify if the parts in question are
important from a business viewpoint or not. Testers performing
user system testing will most probably execute the kind of
tests that check those parts of the software that will be often
used in real operations, and they will ignore those parts that
are used rarely or not at all (dead code). Hence, these parts
would not have been important from a coverage point of view,
but unfortunately we could not easily eliminate them from the
measurement procedure.
The second issue was related to the parallel development

branches practised by the developers. Apart from the present
testing and release project, they are constantly working on
the maintenance of the software version in live operations.
So, bugfixes in the live version are ported to all development
branches as well. However, it was not the task of the testers
of the project in question to test these kinds of modifications.
The final, actually obvious, reason was that the base in-

formation for testing was the specification at the business
logic level and no white-box information was planned to be

2Note that this is not an assessment of the testing project itself, but of our
own test selection approach.

involved. Thus, the testers deliberately did not pay attention
to checking the list of modifications in the source code of the
system.
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Figure 1. Testing completeness: overall coverage growth

Apart from the overall picture, it was interesting to see the
coverage figures on a per-change basis. Changes were made
to the system during the testing period, usually on a daily
basis. In Table II, we list some statistics about how these
daily changes were covered in the case of different coverage
measures. We provide the minimal, maximal, and average
values (with standard deviation). It can be seen that the values
are higher than the overall coverage values given above, but
they are still not acceptable.

method min. max. avg. dev.

Noimpact 0% 64% 31.1% 12.3%
Firewall 31% 80% 53.4% 17.5%
Point 12% 64% 38.4% 17.9%
Branch 9% 52% 28.0% 24.0%

Table II
MEASURED COVERAGES OF DAILY CHANGES

B. Redundancy

For the assessment of the redundancy of tests performed,
we experimented with removing certain tests that did not
significantly contribute to the overall coverage values.
The average redundancy measures obtained by the different

selection methods introduced in the preceding section show
that the reduction capabilities of the coverage-based selection
method (8% of the tests (log files) and 12% of the size
(number of procedure calls) are kept) outperform the others
on average. This is not surprising since it seeks to select
the minimal set of logs that provide the maximum coverage.
The reduction was around 90%, which means in effect, that
it was ten-fold. The limited and clustering-based methods
selected a similar number of tests (20%, 21%) on average,
the least effective being the clustering-based method (48%
and 59% size). However, we should add this does not mean
that coverage-based selection is better than clustering-based
selection. On the contrary, as we shall see later on, clustering-
based selection has some benefits in terms of its positive effect
on other coverage measures.



According to any of the approaches used to measure re-
dundancy, a significant amount (at least 40%) of the test
executions could have been saved if a more careful test design
had been made and utilized.
In Figure 2, similar redundancy values are shown, but in

more detail; for the daily changes and for the procedure call
count (log size) variant (the count-based is similar). The values
tell us how much of the original tests were selected by our
reduction algorithms on each given day.
It can be seen that the redundancies measured on a daily

basis are smaller than on a general scale, but they are still
significant. We can see in the data that the effectiveness of the
coverage-based method greatly varies, but on all but one day
it is much better than any other algorithm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

coverage-based

limited

clustering-based

Figure 2. Redundancy values of tests per day (log sizes)

C. Effect of selection methods on coverages

Redundancy measurement is based on different test selec-
tion methods. Except for the coverage-based method – whose
goal is to achieve the maximum coverage – the selection meth-
ods may produce smaller coverages than the ones produced
without selection. In the following experiments, we checked
these effects in order to get a more complete picture of the
different selection algorithms and thus validate our approaches
to assess the redundancy (here, we do not assess the test
project itself).
These results are summarized in Table III. The measured

coverages are the average values of the daily coverage mea-
sures expressed in percentage terms. In this table, we compare
the original coverage (in parenthesis) with the coverage ob-
tained after being selected by the corresponding algorithms.We
provide data for all the different coverage computation meth-
ods. The last column for each coverage method shows the
amount of coverage percentage “lost” due to selection. In
Figure 3, the same values are depicted graphically. It shows the
difference between the coverages compared to the unreduced
coverage.

noimpact firewall point branch

(31.1%) (53.4%) (38.4%) (28.0%)
alg. abs. rel. abs. rel. abs. rel. abs. rel.

cov. 31.1 1.00 48.3 0.90 30.9 0.80 20.0 0.71
lim. 27.9 0.90 50.1 0.94 35.4 0.92 25.1 0.90
clust. 26.1 0.84 49.4 0.93 35.8 0.93 25.4 0.91

Table III
COVERAGE VALUES AFTER REDUCTION (AVERAGE OF DAILY VALUES, abs.

GIVEN IN PERCENTAGE)

It can be seen in Figure 3 that the coverage-based selection
algorithm performs better on less strict coverage methods.
On the other hand, it is interesting that the clustering-based
method produces better results on stricter coverage methods.
Therefore, as a conclusion, although it gives a less effective

reduction, the clustering-based approach seems to be most
reliable when different coverage-based methods are consid-
ered, while – according to its definition – the coverage-based
selection is best if noimpact coverage is used.

coverage-based limited clustering-based
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Figure 3. Coverage values after test selection

D. Evaluation of phase II.

The next thing we wanted to do in this experiment was
to learn how much improvement in the efficiency of testing
and, consequently, defects in the system can be observed
by applying code coverage measurement. As we mentioned
above, both technical and measurement issues were addressed
between the two phases. Thus, in the second phase we used
a validated set of changes and an improved testing (measure-
ment) methodology.
The effect of the improvements in the testing methodology,

overviewed in Section IV, can clearly be seen in Figure 4.
In this graph, the growth of the noimpact coverage (the one
applied in both phases) can be compared during the two
phases. The first phase lasted about three weeks, while the
second phase lasted four weeks. As can be seen, the coverage
of Phase I (lower line) grows for four days, then the growth
slows down and even ceases on some days. The overall
coverage is about 36% at the end of the testing. The first
half of the line of Phase II (upper line) looks much like the
curve we had in the first project. The decrease in coverage
on the 6th and 9th days are due to new features that were
added to the system after the testing started, but besides this,
the first two weeks show a coverage growth tendency very
similar to the first phase. The higher coverage values in this
interval are due to the fact that the change sets were validated
before inclusion into coverage measurement, which was not
done in the first phase. After about two weeks, the detailed
coverage values were examined by the developers, and new
test cases were designed and included in the testing. It can
readily be seen in the figure that after this occurred a steep
growth in the coverage was observed, which finally reached
95% at the end, which is significantly better than in the first
testing project.
This result itself was convincing enough, but the coverage

monitoring and feedback for test design had other, more direct
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Figure 4. Coverage changes in the two phases (lower line: Phase I, upper
line: Phase II)

positive effects as well. Namely, the actual number of defects
found in the live system after release decreased. Figure 5
shows the number of reported failures on a weekly basis, for a
longer period of time for both testing projects. The two vertical
dotted lines show the time of the releases (end of the tests).
The continuous line shows the number of defects reported for
the live system, while the two short lines before the releases
show the defects reported for the test system. Note that due
to the nature of test organization (see Section III) it is highly
probable that during the so-called expert tests not all defects
found were recorded in the incident management system. This
may distort the actual number of defects in the test system.
As the expert tests are usually performed at the beginning of
the testing period, this may be the reason for an unusually low
defect rate during the first fortnight.
As can be seen, during Phase I the number of defects was

quite high in the second week of the test, and dropped sharply
low by the end of the testing period. This is in agreement
with the findings about coverage growth in the first phase. As
for the defects in the live system, a relatively high spike can
be observed during the first weeks of live operation. These
defects were then only gradualy eliminated in the live system,
as predicted by the literature [2].
On the other hand, in Phase II the number of new defects

during testing built up and remained relatively high until the
end of the tests. Then, in the live system another spike was
observed in the first week, but it is notably smaller one than
in the first phase. After, the defect number decreased fairly
quickly to a constant, low level.
Overall, the improvement in software quality in the second

project compared to the first one is obvious; the number of
after-release defects of the first five weeks dropped from 477
to less than a half (214). Although the causal relationship
between high coverage and fewer after-release bugs could not
have been proven in this study, the testers at our partner site
— based on their previous testing experiments with the same
system — are convinced that this relationship exists. All these
observations confirmed that by simply monitoring the coverage
and taking action when necessary had a beneficial effect on
the efficiency of testing and, consequently, on the quality of

the software.

Reported defects

0

20

40

60

80

100

120

140

160

180

200

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 1

Week of the year

Figure 5. Reported defects in the system

VII. THREATS TO VALIDITY

We believe that this experience report can be helpful for
other researchers and practitioners. It demonstrates that the
good practices proposed in the literature are not always easy
to implement in practice, and that sometimes the trigger for a
change in the processes can be an objective measurement of
the current situation, as we did in this project.
However, our conclusions here should not be generalized

to other situations too hastily. We identified several possible
threats to validity. First, the subject of our case study was
a custom-built system based on a proprietary technology
which is used within a relatively closed community. Still,
since it employs traditional procedural programming and SQL
technology, the basic principles and algorithms can be readily
generalized to other technologies. Next, although the project
was a major development project, the number of measurement
data points might still seem modest compared to bigger testing
projects. One must not forget either that the redundancy
measurements we applied are available only at the end of the
testing project, so they are not suitable for driving the test
design process (except for optimizing existing regression test
suites, for instance).
There are some other technical issues as well. One is

that we performed our analyses at the procedure level, and
no intra-procedural relationships (like control- and data-flow)
were taken into account. This might invalidate our findings
about redundancy in some cases, since we compare only the
structure of the procedure call relationships and the coverages
in the execution logs. Another issue is that we based our
measurements on the analysis of different execution logs
without taking into account whether these logs were part of
different test cases or not. This is because the information
about the relationship between the test cases and the actual
executions was unavailable (or unreliable). Therefore, we
could not draw any conclusions about the efficiency of the
test cases themselves, but only about the set of executions.
Similarly, no detailed relationship between executions and the
defects detected by them were given. Thus, the defect detection



ratio of the selection methods were not computed, although it
could be the basis of a more precise redundancy value.
Lastly, the number of defects recorded as incidents during

the testing phase might not reflect the actual amount of defects
found from testing, as already mentioned. This is due to the
fact that the testing-fixing-release cycles in this organization
allow the testers and developers to fix bugs and continue
testing without leaving any trace of these activities. However,
this point of uncertainty does not invalidate our findings about
defects in the live system (this is the important one!), as these
are always faithfully recorded.

VIII. CONCLUSIONS AND FUTURE PLANS

Here we demonstrated that even in an industrial envi-
ronment, where business critical applications are developed,
tested, and deployed, the efficiency of testing effort is often
unknown, and therefore a purely business risk-based approach
is adopted when deciding on testing exit criteria. In the
long term, however, this may have a significant impact on
project costs, since the defects may be found late in the
process. However, if a more objective picture was available,
the stakeholders would be more motivated to start optimizing
their testing processes. The case study presented here shows
that the efficiency of such a setting can be rather low, leading
to many defects included in (and detected after) the release. By
efficiency we mean completeness (how much of the modified
code parts were covered) and redundancy (the degree of the
similarity among the executed tests) of the tests.
At the beginning of this project, the measured efficiency of

the company’s testing was very low. In this first phase, the
code coverage of modified parts was only about 36% (still
less with impact analysis), and at least 40% of the tests were
redundantly designed and executed. Moreover, we observed
that the efficiency decreased very rapidly only after a few days
of the testing project.
All this led to more defects being detected in the live system

after the release than in the test system during the testing
phase. It was clear to the participants in this experiment that
the reason for these results was that there were noticable
weaknesses in the process, such as careless test planning
including test design and test execution-bugfix-confirmation
cycles. Thus, this experiment was evidence to the project
owners that the application of such measurements could lead
to improvements in the process, so they started to reorganize
their processes and involve more white-box techniques and
opt for better test planning and control. This is especially
interesting given the business criticality of the organization
and the subject system, and experienced professional testers.
As part of this reorganization, we helped the company to

utilize the data obtained from coverage measurements during
test case design, and more actively use this feedback to
optimize the testing cycles. To verify this improved testing
methodology, we studied a second testing project. We found
that the coverage reached almost 100% this time, and that
the defect removal efficiency during testing was significantly

higher than previously, leading to far fewer failures in the live
system (on average less than half of those found previously).
Our partner found these experiments especially useful, and

we plan to continue this cooperation by further refining the
methods and applying them to similar future projects. How-
ever, in order to do this, we should first address some technical
questions like developing enhanced redundancy measurement
methods that take into account different coverage measure-
ments, and not just noimpact. Another research topic is to
perform other technology-independent experiments concerning
the coverage algorithms we defined earlier in this study.
Since we did not find any similar previous studies, we plan
to investigate the relationship between these measures and
actual defect detection or prediction capabilities and make
recommendations about their practical usefulness.
We also plan to continue monitoring our partner’s future

projects and perform similar measurements to see the overall
improvement. Of course, the organization expects economic
benefits from the reorganization, so we need to assess the
usefulness of the measurement pert and the reorganization
from this viewpoint as well.
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