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Abstract

Static program slicing is often proposed for software
maintenance-related tasks. Due to different causes static
slices are in many cases overly conservative and hence too
large to reduce the program-part of interest meaningfully.
In this paper we further investigate the concept of union
slices, which are defined as the unions of dynamic slices
computed for the same (static) slicing criteria, but for dif-
ferent executions of the program. We verify on real-world
Java programs their usefulness as a replacement to static
slices. For this we investigate the sizes of a number of back-
ward and forward dynamic and union slices, also by com-
paring them to the corresponding static slices. Our results
show that the union slices are precise enough (backward
slices are 5–20% of the program and forward slices are 5–
10%, the corresponding static slices being 25–45%), and
that with the saturation of the overall coverage given many
different executions, union slices also reach a steady level
and typically do not grow further by adding new test cases.
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1 Introduction

The notion of program slicing and the slices [17, 24, 29]
have been defined in many different ways in the literature.
The basic idea is, however, always the same: to attempt
to reduce the size of the problem by achieving to investi-
gate only those parts of the program to be analyzed that are
relevant from a specific point of view. Therefore, in some
typical applications such as maintenance in general, or in

understanding or debugging the reduction rate is crucial. In
other words, the smaller the slice, the better.

In this paper we present our results from experiments
aimed at investigating the sizes of different slices, and thus
elaborating on the reduction rate mentioned above. The is-
sue is important since the two fundamental categories of
slicing methods—static and dynamic slicing—behave very
differently from this perspective. Inherently, static slices
are execution independent and larger, while dynamic slices
correspond to one concrete execution and hence smaller.

We also further investigate the concept of the so-called
union slices [2], which may be a compromise solution in
the cases when static slices are too large, while dynamic
methods do not include but only a small portion of relevant
program points. Very simply, union slices are computed as
the union of dynamic slices for many test cases for the same
program and (static) slicing criteria. This way they repre-
sent both concepts: they deal with concrete test cases and,
at the same time, multiple possible executions are captured.

The concept of union slices is fairly obvious as the union
of dynamic slices for a (finite) set of test cases. However,
if we computed the union of dynamic slices for all possi-
ble executions, we would obtain a theoretical slice of the
program that contains all realizable dependencies. We will
refer to this slice as the realizable slice. The realizable
slice can be approximated by a sequence of union slices
by adding more and more dynamic slices to it (see Figure
1). As the realizable slice is generally uncomputable, we
cannot be sure whether a union slice computed for a set
of test cases is close enough to the realizable slice or not,
and hence we cannot estimate the distance to the static slice
neither (which is the upper bound for it). Our approach is
therefore to examine the relation between the union slice
and the coverage—the number of program instructions that
are executed at least once during different executions of the
program—and estimate the gap between these two kinds of
slices using this information.

Our previous investigation of union slices, their relation
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slice

to the corresponding static slices and the growth tendencies
of union slices was performed on medium size C programs
[2]. We defined several slicing criteria using a classification
of the slice variables and performed a variety of executions
for these programs. We found that union slices are in most
cases far smaller than static slices, and that the growth rate
of the union slices (by adding more test cases) significantly
declines after several representative executions of the pro-
gram. In the present article we continue this work by aiming
to answer the question whether the concept of union slices
shows similar behavior on a different platform and differ-
ent kind of applications. To this end, we applied the same
approach to experiment with union slices of Java programs.
We used our dynamic slicing method for Java bytecode pro-
grams [23], which deploys a novel approach in Java slic-
ing. Namely, it uses an instrumented Java virtual machine
for producing the execution trace, after which our forward
global dynamic slicing method [3, 4] is applied. This im-
plementation of the basic method is capable of computing
both backward and forward slices, and since it is able to
produce many dynamic slices globally with one run of the
slicer, it is very suitable to perform the desired experiments.
Furthermore, our experiments demonstrated that our tool is
capable of handling real-world programs and executions.

The contributions of this paper can be summarized as
follows:

• We verified the validity of the approach in Java envi-
ronment on five open source Java programs, finding
similar results to previous experiments for C.

• The dynamic and union slice sizes of forward slices
are investigated and compared to backward slice sizes.

• We compared the resulting union slice sizes to static
slices and this way recorded the benefits of the former.

• The relation between coverage and union slice sizes is
also investigated.

The remainder of the paper is organized as follows. In
the next section we give some background information on
the concept. In Section 3 we overview our methodology for
computing Java union slices, while Section 4 presents our
experimental results. Section 5 deals with related work, and
finally we close our paper with conclusions and some ideas
for future work in Section 6.

2 Overview of the concept

One possible definition of a slice of a program is its sub-
set that consists of all statements and predicates that might
affect a set of variables at a specific program point, called
the slicing criterion. This definition is sometimes more pre-
cisely referred to as the backward slice, since it associates
a slicing criterion with a set of program locations whose
earlier execution affected the value computed at the crite-
rion. Similarly, a forward slice is a set of program locations
whose later execution depends on the values computed at
the slicing criterion.1 Among many other applications, typ-
ical ones of backward slices are debugging and program un-
derstanding, while forward slices can be used for, say, im-
pact analysis.

From another point of view, slices can be divided into
two other categories: static slices and dynamic slices. Static
slices represent portions of a program regardless of any con-
crete execution (i. e. all possible relations between program
elements need to be taken into account), thus they must in-
clude a larger subset of it. On the other hand, dynamic slices
correspond to one concrete execution, meaning that only
one aspect of the program’s behavior is taken into account,
and naturally, resulting in a smaller subset.

The problems with these two extremities are the follow-
ing. Traditionally, static slices have been specifically pro-
posed for maintenance and program comprehension [5, 12,
15], and it is probably safe to speculate that the literature on
static slicing is much broader than that of dynamic slicing.
Unfortunately, in many cases the static slices are overly con-
servative (especially due to the dynamic aspects of modern
programming languages like reflection and polymorphism)
and hence too large to supply useful information. On the
other hand, dynamic slicing methods (e. g. [1, 19]) can pro-
duce a narrow result for one test case, which can be quite
useful for some applications such as debugging. However,
in many other applications one test case is not enough to in-
vestigate, but more global information may be needed about
the program.

Union slices [2] may be a compromise solution in the
cases when static slices are unacceptable because of their

1Both slicing directions are addressed in this paper, however if not
stated otherwise we will implicitly refer to backward slicing when slicing
in general is mentioned.



lack of precision and dynamic methods are unfeasible be-
cause of the lack of resources needed to involve lots of test
cases. Very simply, union slices are computed as the union
of dynamic slices for many test cases for the same program
and (static) slicing criterion. This way they represent both
concepts: they deal with concrete test cases and, at the same
time, multiple possible executions are captured. Naturally,
while static slices are safe, union slices are smaller but, alas,
unsafe (i. e. they do not contain all possibly realizable de-
pendencies). However, this is not a problem in many appli-
cations in maintenance and comprehension, as we are able
to determine the most important parts to be concentrated
on, based on a chosen set of test cases. Note that it has
been shown [11, 13] that a union of two dynamic slices is
not necessarily a valid dynamic slice in terms of preserving
the original semantics of the program, however this is not
a problem either with our usage scenarios, since we do not
want to preserve the executability of slices.

The verification of the concept of union slices relies on
measuring program coverage, which is the number of those
instructions of the program that were executed at least once
during the different program runs. Probably the best prop-
erty of union slices is that as soon as the desired degree
of coverage is reached the union slices also tend to satu-
rate at a certain level, which are, generally far smaller than
the corresponding static slices. In other words, when by
adding new test cases the coverage cannot be significantly
increased union slices can also be treated as ‘ready.’ Indeed,
one of our most significant findings, both in our previous
work on union slices and in the present article as well, is
that several representative executions of the program yield
a quite usable union slice (meaning that it can be used as a
replacement to static slice).

If we computed the union of dynamic slices for all pos-
sible executions, we would obtain the theoretical realizable
slice that contains all realizable dependencies. If we con-
sider the static slice as an upper bound of the realizable
slice (we can do so because every realized dependence in
some dynamic slice must be captured by the static slice as
well), the union slice can be seen on the other hand, as the
lower bound for it (see Figure 1). The most apparent advan-
tage of the combined application of static and union slices is
when they coincide, because in this case the realizable slice
is surely found. However, according to our experiences, this
is probable to occur only in the case of trivial programs.

The observation that the union slices are usually much
smaller than static slices opens a number of potential ap-
plications of this concept, since union slices can be treated
as the replacement of static ones. For instance, despite the
fact that the static slices provide smaller sets of data to be
investigated by the software maintainer than the whole pro-
gram, this reduction will be too small to provide real help.
In almost every practical situation the limited resources to

conduct a maintenance task will mean a real problem be-
cause the static slices will be too large to be able to cope
with. Further, the static slicing methods do not provide any
kind of information about those parts of the slices that may
be the most important with respect to the initial problem,
i. e. what parts of the program need to be definitely investi-
gated because they represent the real dependencies? How-
ever, with the application of the union slices, the resources
for the maintenance task can be used more effectively, since
the maintainer may concentrate on the most important parts
of the problem first.

Therefore, the primary goal of this paper is to verify
whether the concept of union slices can indeed be used as a
replacement to static slices thanks to the possibility of veri-
fying it using coverage information.

3 Computation of Java union slices

For performing the experiments we utilized our dynamic
slicing tool for Java programs called Jadys [23] that instanti-
ates our global method for computing dynamic slices [4]. In
this section we overview the most important aspects regard-
ing the tool’s functionality and internal architecture. An
important enhancement to the tool was the addition of the
capability of computing forward dynamic slices, which en-
abled us to extend the measurements to this kind of slices,
too.

3.1 The slicing toolbox

Code instrumentation is essential to obtain an execution
trace that is further used to calculate the slices. Our ap-
proach was to create an instrumented Java Virtual Machine
based on the code of a publicly available Open Source VM
called JamVM (http://jamvm.sourceforge.net). Instrument-
ing at the lowest level (VM) has some obvious advantages
over higher level (source code or bytecode) instrumenta-
tions. It can work without source code and it can track de-
pendencies that arise in third-party code, in code of standard
Java library classes, inside the VM itself, and to a limited
extent even in third-party native machine code. It is also
an advantage that instrumentation is confined to a single,
finite body of code – the C source code of the VM itself.
Finally, it works with programs in any language that can be
compiled to Java bytecode.

Figure 2 depicts the architecture of the toolbox. One el-
ement of it is an instrumented JVM that produces the ex-
ecution trace of a program as it runs. The other part is a
slicer that reads the execution trace and implements the for-
ward global method for computing backward and forward
dynamic slices. The main components of the slicer are the
thread multiplexer, the static analyzer, and one or more slice
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Figure 2. Experimental architecture

calculator instances. The thread multiplexer reads the exe-
cution trace, and handles all thread related events, so it cre-
ates, destroys or activates slice calculators accordingly. The
static analyzer is invoked whenever a method is entered for
the first time, and performs a necessary one-time analysis
of the method, which is a prerequisite for the tracking of
dependencies inside it.

3.2 Static analyzer

The static analysis of a method is comprised of three
key operations: that of translating bytecode to source ex-
pressions, narrowing the scope of interest, and calculating
control-flow information.

An important feature of the slicer is the ability to query
the generated slices using source-level symbolic expres-
sions in the slicing criterion. The slicer does not rely on the
source code of the classes, rather the bytecode of the classes
are passed to the static analyzer through the trace. It allows
us to process on-the-fly generated code like proxy classes.
The value of this approach lies in the fact that dynamic
on-demand code generation has become a widespread tech-
nique in Java programming.

When the slicer reads the class bytecode from the trace,
it will store it and later perform limited static analysis on it
method-by-method. Part of this static analysis is the assign-
ment of a symbolic expression to each bytecode instruction
that accurately describes the result of its operation. It is
trivial matter to assign a source code line number to each
bytecode offset using the line number information present
in the compiled class.

With the above process every non-jumping bytecode in-
struction became a static slicing criterion. The resulting set
of slicing criteria is huge for any non-trivial program, and
since our method is a forward method that, by default, cal-
culates slices for all of them, we usually narrow the cal-
culation to a certain subset of slicing criteria. Regular ex-
pressions for class names can be used to include or exclude
them from slice calculation in their code. The scope can

be further narrowed by eliminating some of the criteria in
the included classes. By default, we only consider left-hand
sides of assignments as well as branch predicates. We can
also narrow the set of code locations that can serve as ele-
ments of dependence sets and slices. We only use locations
of assignment instructions, conditional branch instructions,
method return instructions, and instructions that push argu-
ments for method calls onto the stack for this purpose.

In order to track control-flow dependencies we have to
perform a static analysis of the control flow inside every ex-
ecuted Java method. It is sufficient to perform only pro-
cedure level slicing, since we get interprocedural depen-
dencies from the execution trace. We partition the method
code into basic blocks assuming that exception throwing
and handling instructions are branch and branch target in-
structions. Then, we build two control flow graphs using
the basic blocks as vertices: one contains only edges rep-
resenting normal control flow, and another with extra edges
for control transfers occurring because of exception throws.

3.3 Dynamic slice calculation

In the following, we will overview the method for com-
puting the backward dynamic slices. The way of computing
forward slices is very similar, only the dependence direc-
tions need to be appropriately exchanged, so we will not
elaborate on this in detail.

The calculation of slices is driven by the events in the
trace file. The component indicated in Figure 2 as a multi-
plexer reads the trace file. It forwards the majority of events
to the currently active slice calculator.

Each data manipulating instruction overwrites a depen-
dence set at its target or calculates the union of several (usu-
ally two, in some cases three) dependence sets and stores it
in its target. If the current instruction is at a program loca-
tion of interest, the program location will be added to the
resulting dependence set. The elements of the currently ef-
fective control-flow dependence set are also added to the re-
sulting set. For tracking the intraprocedural control depen-
dencies, each slice calculator updates the active control flow
dependencies whenever a branch instruction is encountered
or a postdominator of the proper block is reached. When in-
terprocedural control flow dependencies are calculated, the
active dependencies remain in effect when a method is en-
tered or exits (normally or abruptly). As each method in-
vocation instruction is capable of throwing an exception in
Java, these instructions always end a basic block. Depen-
dencies arised in a called method are dropped only when a
postdominator of such a basic block is reached. This hap-
pens immediately on normal returns. Otherwise the control
flow dependencies remain in effect until the end of excep-
tion handling blocks of the caller. If an exception handler it-
self exits abruptly, the control flow dependencies will prop-



agate further to the next caller, and so on.
Finally, if the expression associated with the currently

executed bytecode instruction and its code location are a
slicing criterion of interest, the dependence set qualifies as a
slice for that criterion and is appended to the list of slices for
that criterion. The static slicing criterion (V, l) is thus effec-
tively extended to a list of dynamic slicing criteria (V, l, i),
where i is an index in the slice list assigned to the static
criterion (V, l).

3.4 Calculating union slices and coverage
information

After we obtained slices from several executions of the
same program, the slice calculator engine can merge those
slice sets to form union slices. Assuming all executions
used the same code-base, we can identify slicing criteri-
ons by matching class names, method signatures, and byte-
code offsets, and then simply calculate the union of slices
for each criterion separately.

The extent to which our slice calculator emulates the ex-
ecution of the sliced program is sufficient to ensure precise
instruction-level coverage measurement on it. By preserv-
ing the coverage information from separate runs we are able
to maintain precise coverage information for the unions too.

4 Experimental results

In this section we present the environment we used for
experimentation and the results of our measurements. Cre-
ating the measurements consisted of several steps. First,
we choose five open source command-line Java programs
to be measured. Static slices were computed by Indus [16],
a Java slicer and static analysis tool. This process required
the source code only. However, to compute dynamic and
union slices the programs must be executed on some in-
put data, so test cases were generated for all programs.
Then the programs were executed on the test inputs using
the instrumented java virtual machine jamvm that gener-
ated execution traces. These traces were processed by Jadys
that produced coverage information and the dynamic slices.
Finally, the dynamic slices were unioned step by step to
achieve data on union slice growth.

4.1 Test programs

We selected five open source medium size Java programs
for use in our experiments and we defined a number of
different test cases for each of them. The first program,
RayTracer is part of the Java Grande Forum Benchmark
Suite (http://www.epcc.ed.ac.uk/javagrande/index 1.html).
We slightly modified this program to accept some param-
eters instead of only computing one of the two fixed scenes.

JSubtitles (http://sourceforge.net/projects/jsubtitles) is a
subtitle converter, while the next program, NanoXML
(http://nanoxml.cyberelf.be/) is a small XML parser li-
brary, whose package contains an example program called
DumpXML that drives the library classes. We used this
program in our experiments. The program java2html
(http://www.java2html.de/) converts java source code into
syntax-highlighted html, tex, rtf and other formats, and fi-
nally dynjava (http://koala.ilog.fr/djava/index.html) is a dy-
namic java source code interpreter that executes programs
written in dynamic java language.

Some parameters of these test programs and the number
of test cases we defined are presented in Table 1. The num-
ber of program lines is the number of those lines for which
bytecode instructions were generated, summarized for all
classes in the program.

Test program Classes Lines Test cases
RayTracer 12 340 20
JSubtitles 15 460 100
NanoXML 27 1156 96
java2html 55 2290 95
dynjava 302 17447 25

Table 1. Program sizes

4.2 Test cases and coverage

The test cases we defined for the programs can be di-
vided into two sets. The first half of the executions were
aimed at covering only small but different parts of the pro-
gram (e. g. wrong parameter handling) if it was possible,
thus we used prepared inputs. We examined the programs
in order to identify specific parts of them that can be exe-
cuted by a well suited input data. The rest of the executions
were general meaning that real (not prepared) inputs were
given to the programs. In some cases we used the test data
that came along with the program, and in other cases real
inputs were collected from the internet. Then we created
two lists for each program: the first list contained the pre-
pared inputs in random order and the second contained the
general inputs also in random order. The two lists were then
concatenated. This order of the test cases in these lists deter-
mined the order in which the dynamic slices were unioned.

The programs were executed for all inputs in their own
test case lists. Table 2 shows the number of executed byte-
code instructions the different test cases produced. The ex-
ecution traces were generated by the instrumented jamvm
version 1.4.1 (with classpath version 0.19).

The slices were computed using our global slicing algo-
rithm for all reasonable slicing criteria within the test pro-
grams. Technically this means that we computed slices for
all possible slicing criteria in the executed code except for



Program Exec. min. Exec. max.
RayTracer 2 598 546 21 525 307 460
JSubtitles 516 213 55 459 126
NanoXML 910 806 94 754 237
java2html 1 541 531 20 370 505
dynjava 4 019 365 6 369 636

Table 2. Executed instructions

those that belong to java.*, javax.*, or gnu.* pack-
ages. Similarly, in the output no source code lines from the
mentioned packages were included in the slices.

The output of the slicer tool is a set of source code line
numbers, thus we counted slice sizes in source code lines.
The relative slice sizes (given in percentages in the follow-
ing) are the slice sizes divided by the total number of source
code lines of the given program (not just the loaded ones).

Finally, we computed the coverage information based on
the number of bytecode instructions. The relative coverage
sizes are comparable to slice sizes, so in the following we
use percentage values here as well.

4.3 Static slices

To compare our results with static slice results, we com-
puted static slices using Indus [16], a Java slicer and static
analysis tool. The slicer has many configuration options,
but eventually we have chosen a non-termination sensitive
backward slice configuration with both intra- and interpro-
cedural divergence analysis, context sensitive deadlock cri-
teria selection strategy, and symbol based ready- and in-
terference dependencies. This configuration produces non-
executable slices.

As Indus works on a low level intermediate code repre-
sentation called jimple, and the source code mapping is not
part of it, our static slice size computation is based on the
number of jimple statements. Like in the dynamic size com-
putations, we considered only the classes of the test pro-
grams, and excluded library classes. The first three columns
of Table 3 show results on static slice sizes (average, stan-
dard deviation and maximal values shown). Because of the
memory problems of Indus, we could not manage to com-
pute static slices for dynjava.

4.4 Dynamic slices

First we computed the dynamic slices for all available
criteria in one step for each execution, and investigated the
individual dynamic slice sizes. Taken into account that we
have some very long executions, we would get a huge num-
ber of different dynamic slices if we considered each occur-
rence of every statement as a distinct criterion. So we actu-
ally calculated dynamic slices for all static slicing criteria,

which means that the dependence sets for different occur-
rences of the same instruction were combined internally in
the slicer (we use static criteria for union slices anyway).
Both backward and forward slices, and in addition, cover-
age information were calculated.

The average backward dynamic slice sizes with standard
deviation and maximal values, the number of static slicing
criteria in the program and the total number of computed
slices (coming from different test cases) for the test pro-
grams are presented in the middle part of Table 3.

Almost all programs produced quite different dynamic
slice sets for their inputs, except RayTracer, which, being
part of the Java Grande benchmark, is aimed at performance
measurement, meaning that it is computationally intensive
but not too complex in terms of control flow. That is the
reason why its executions included so many instructions,
and why it produced only a very small number of different
dynamic slice sets for its 20 different inputs.

4.5 Union slices

Our next experiment was the investigation of union
slices. We computed both forward and backward union
slices, and also the union coverage – the number of byte-
code instructions executed during any test run (a simple
union of individual coverages). The last three columns of
Table 3 show the average values of union slice sizes and the
final coverage (at the last test case) for all test programs.
The deviation values were between 3 and 9%, except for
RayTracer whose deviation was much higher (25%). The
maximal slice sizes were between 9 and 60%. We have to
remark that no forward slices were computed for dynjava
due to technical reasons.

From these numbers it can be easily seen that union
slices are significantly smaller than static slices. More de-
tails can be observed in Figure 3, which shows the distri-
bution of union slice sizes per test program. Binkley and
Harman presented [7] that forward static slices are smaller
than backward slices. We found that (in general) forward
union slices are also smaller than backward union slices.

In Figure 4 we present the Monotone Slice-size Graphs
[8] for backward and forward union slices. As can be ob-
served, a lot more of the smaller slices can be found among
the forward slices, but the maximum sizes are about the
same as with the backward slices.

4.6 Union slice and coverage growth

We cumulatively summarized the individual dynamic
slices with each execution and investigated how the result-
ing union slices grow test case by test case towards the static
slice. In addition, we also monitored the combined cov-
erage. By examining the results we realized that both the



Static slice size Dynamic slice size Number of dynamic Average union slice Union
Program avg. dev. max. avg. dev. max. criteria slices backward forward coverage
RayTracer 45% 37% 92% 9% 16% 58% 248 4167 20% 5% 87%
JSubtitles 86% 24% 93% 6% 6% 36% 260 25168 11% 8% 72%
NanoXML 25% 29% 59% 8% 5% 23% 652 58428 19% 10% 63%
java2html 82% 21% 89% 3% 3% 16% 1191 106300 6% 3% 61%
dynjava N/A N/A N/A 2% 2% 7% 4823 120575 4% – 25%

Table 3. Program and execution data, static and dynamic slice sizes. Percentage values shown with respect to
program size.
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Figure 3. Distribution of backward and forward union slice sizes. The x axis shows the slice sizes measured in
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coverage and union slice sizes reached more than 95% of
their maximal value (which was well below the half of the
static slice size) after executing the programs with half of
the prepared input set. Figure 5 shows the coverage and av-
erage slice size growth for two test programs and backward
slices, whose results were typical and represent the rest of
the results well.

What can be instantly observed is that the union slice
sizes tend to follow the growth of the coverage. In fact, we
computed the correlation between slice sizes and coverage
for this data set, and found that it was very high (0.89–0.96).
In other words, it is a good property that union slices do not
grow further by adding more test cases. This means that
if one can reach a desired coverage level (by having a suit-
able test suite), the union of the dynamic slices for these test
cases will be a good replacement to the static slice. Further-
more, if a very high coverage is reached it is probable that
the realizable slice is well approximated.

When we compared union slice results to static slice
sizes we found it surprising that for JSubtitles and java2html
the average static slices are high, while the average union
slices are comparably small. For the other two programs,
the static and union slices are much closer to each other.

This phenomenon remains to be investigated, however our
initial guess is that the test suites for these two programs
were less well prepared to involve many different slices.

By investigating the growth of both kinds of dynamic
slices, it can be clearly observed here as well that the for-
ward slices are smaller than the backward ones. Figure 6
shows the average union slice growth for three programs
and both slice directions. The shapes of the two curves for
the same program look very similar, only their ‘heights’ are
different.
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Figure 6. Backward and forward slice growth
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Figure 5. Coverage and average slice size growth. Sizes shown as percentage relative to the program size.

5 Related work

The problem of reducing the portion of the program that
needs to be investigated (i. e. reducing the size of slices),
while retaining some of the advantages of static slicing (in
terms of slice generality) has been investigated by other re-
searchers as well. Conditioned slicing [9, 14] computes a
subset of the program which preserves the behavior of the
original program with respect to a slicing criterion for a
given set of execution paths. The main difference between
conditioned slicing and our approach is that the former is
primarily a static approach while trying to involve some dy-
namic information (but without actually performing the ex-
ecutions).

Combined use of static and dynamic slicing methods can
be found in several papers, but they all have some different
objectives than ours. Venkatesh introduced a hybrid slicing
method [26] to compute the quasi static slices where the
values of some input variables were fixed while other vari-
ables varied. Another example of a hybrid slicing method
is the work of Rilling et al. [22]. They introduced a frame-
work for the computation of both static and dynamic slices
based on the notion of removable blocks [18, 20]. The ob-
jective of this work is again not to reduce the size of the
parts of the program to be investigated, but to ease the com-
putation of the dynamic slices by removing certain parts of

the program first using static slicing techniques.
Significant resemblance between our approach and the

work of Hall [13] can be identified. He introduced the no-
tion of simultaneous dynamic program slicing to extract ex-
ecutable program subsets (for program subsetting and re-
design). Hall was motivated by the fact that simple unioning
of the dynamic slices (what exactly our approach is) cannot
produce correct slices in terms of executability on all the
test cases. This result was extended by De Lucia et al. [11]
for other forms of slicing including static slicing. However,
our motivation was not to create executable slices but only
program parts that can be utilized in a number of applica-
tions. It is important to note that Danicic et al. presented
an algorithm for computing executable union slices using
conditioned slicing [10], which opens further applications
of this concept.

Empirical investigation of the sizes of slices was rarely
the primary research objective of researchers. Static slice
sizes were intensively investigated by, for example, Bink-
ley and Harman [6, 7]. On the other hand, Venkatesh’s pa-
per [27] is among the very few publications that deal with
the evaluation of the sizes of dynamic slices. The author
performed a large number of experiments to determine the
typical size distribution of the dynamic slices and to inves-
tigate different kinds of slicing criteria with different kinds
of variables.



One of our findings in the present article is that forward
slices are typically smaller than the backward ones, which is
in accordance with the results Binkley and Harman demon-
strated for static slices of C programs [7].

Our basic method for the computation of the dynamic
slices, namely the forward global approach, significantly
differs from previous approaches, as elaborated in some of
our previous work in the field, e. g. [3, 4].

Dynamic slicing Java programs has a modest literature.
Umemori et al. [25] reported an implementation of a
bytecode-based Java slicing system. Their technique, how-
ever, is a hybrid static and dynamic approach that gener-
ally yields less precise slices compared to a fully dynamic
system like ours. They also state that their approach re-
quires a custom Java compiler and is therefore essentially
confined to analyzing programs written in Java source lan-
guage. Wang and Roychoudhury [28] also reported an im-
plementation of a bytecode-based Java slicing system. In
contrast with our system, they use a demand driven slicing
method where each slice calculation requires one traversal
of the execution trace, so their main focus is that of mini-
mizing the execution trace size and they do indeed present
a novel approach for compressing the trace. Wang’s im-
plementation uses manual dependence specifications for li-
brary and third party code, but we are able to track depen-
dencies in third party and library code as well. Zhang et
al. [30] reported a technique for improving the efficiency
of the forward slicing method for C programs that could be
adapted to our Java slicing method as well. Zhao [31] pub-
lished a fully static technique for slicing multithreaded Java
programs. Finally, Masri [21] presents a dynamic slicing
method for Java bytecode, which is similar to ours in its cal-
culation of data and control flow dependencies. However, it
does not deal with exception handling, multithreading, and
dependence tracking in native code.

6 Conclusion and future work

We compute the union slice as the simple union of dy-
namic slices for many different executions of a given pro-
gram and static slicing criterion. Static criterion is used
since different executions imply a different set of dynamic
slicing criteria, so the dynamic slices for a specific execu-
tion are produced also by unioning the dynamic slices for
criteria corresponding to different occurrences of multiply
occurring statements during the execution.

We demonstrated that union slices can be used as a re-
placement to static slices because of the observation that
with the saturation of the overall coverage given many dif-
ferent executions, union slices also reach a steady level and
typically do not grow further by adding new test cases. This
supports our initial assumptions that the realizable slice—
as defined at the beginning of this article—can be well ap-

proximated. A useful scenario for using union slices could
be that given a selected set of test cases, the resulting union
slices for this set may be used instead of the static slices.
The advantage of this approach lies in the fact that union
slices are generally much more precise than the static slices;
according to our experiments, they are usually more than
twice smaller.

With this paper we contributed to the topic with empiri-
cal measurements of real-world Java programs with versa-
tile test inputs. The experiments were performed for all sig-
nificant slicing criteria, and by examining both backward
and forward slices. We were able to do this kind of detailed
measurements thanks to the global nature of our dynamic
slicing tool. We also demonstrated that our tool is capable
of handling real-world programs and executions.

The backward and forward slice sizes showed similar
tendencies in our experiments, with an interesting observa-
tion that forward slices are typically smaller than the back-
ward ones (which is in accordance with the findings by
other researchers [7]). This phenomenon is another inter-
esting topic for future research, especially as one of the
most important applications of forward slicing is with im-
pact analysis for regression testing, and testing in general,
which is a very important field in software engineering and
software maintenance.

The graphs in Figure 4 show resemblance to what Bink-
ley and Harman presented in their work about dependence
clusters for C programs [8]. The ‘plateaus’ that can be ob-
served mean that there are groups of slices with the same
size, which are potential dependence clusters. In the future
we plan to investigate this phenomenon with union slices.

Although our current implementation of the Java dy-
namic slicer was able to analyze really long execution traces
as can be read in Section 4, we are planning to extend it in
such a way that potentially infinite traces could be processed
by the slicer; acting as a kind of slice server that stores all
occurring slices on disk and waits for trace events endlessly.
This kind of operation could ease the computation of union
slices as well.
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T. Gyimóthy. Dynamic slicing method for maintenance
of large C programs. In Proceedings of the Fifth Euro-
pean Conference on Software Maintenance and Reengineer-
ing (CSMR 2001), pages 105–113. IEEE Computer Society,
Mar. 2001.

[5] D. Binkley and K. B. Gallagher. Program slicing. Advances
in Computers, 43:1–50, 1996. Marvin Zelkowitz, Editor,
Academic Press San Diego, CA.

[6] D. Binkley and M. Harman. A large-scale empirical study of
forward and backward static slice size and context sensitiv-
ity. In Proceedings of the International Conference on Soft-
ware Maintenance (ICSM’03), pages 44–53. IEEE Com-
puter Society, Sept. 2003.

[7] D. Binkley and M. Harman. Forward slices are smaller than
backward slices. In Proceedings of the Fifth IEEE Inter-
national Workshop on Source Code Analysis and Manipu-
lation (SCAM’05), pages 15–24. IEEE Computer Society,
Sept. 2005.

[8] D. Binkley and M. Harman. Locating dependence clusters
and dependence pollution. In Proceedings of the 21st Inter-
national Conference on Software Maintenance (ICSM’05),
pages 177–186. IEEE Computer Society, Sept. 2005.

[9] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned pro-
gram slicing. Information and Software Technology, 40(11-
12):595–607, 1998.

[10] S. Danicic, A. De Lucia, and M. Harman. Building exe-
cutable union slices using conditioned slicing. In Proceed-
ings of the 12th IEEE International Workshop on Program
Comprehension (IWPC’04), pages 89–97, Bari, Italy, June
2004.

[11] A. De Lucia, M. Harman, R. Hierons, and J. Krinke. Unions
of slices are not slices. In Proceedings of the Seventh Euro-
pean Conference on Software Maintenance and Reengineer-
ing (CSMR’03), pages 363–367. IEEE Computer Society,
Mar. 2003.

[12] K. B. Gallagher and J. R. Lyle. Using program slicing in
software maintenance. IEEE Transactions on Software En-
gineering, 17(8):751–761, 1991.

[13] R. J. Hall. Automatic extraction of executable program sub-
sets by simultaneous dynamic program slicing. Automated
Software Engineering, 2(1):33–53, Mar. 1995.

[14] M. Harman, R. M. Hierons, C. Fox, S. Danicic, and
J. Howroyd. Pre/post conditioned slicing. In Proceedings
of the IEEE International Conference on Software Main-
tenance (ICSM’01), pages 138–147, Florence, Italy, Nov.
2001.

[15] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Program-
ming Languages and Systems, 12(1):26–61, 1990.

[16] http://indus.projects.cis.ksu.edu/ Indus
project: Java program slicer and static analyses tools.

[17] M. Kamkar. An overview and comparative classification of
program slicing techniques. Journal of Systems and Soft-
ware, 31(3):197–214, Dec. 1995.

[18] B. Korel. Computation of dynamic program slices for un-
structured programs. IEEE Transactions on Software Engi-
neering, 23(1):17–34, Jan. 1997.

[19] B. Korel and J. W. Laski. Dynamic slicing in computer pro-
grams. The Journal of Systems and Software, 13(3):187–
195, 1990.

[20] B. Korel and S. Yalamanchili. Forward computation of dy-
namic program slices. In Proceedings of the 1994 Interna-
tional Symposium on Software Testing and Analysis (ISSTA),
Seattle, Washington, Aug. 1994.

[21] W. A. Masri. Dynamic information flow analysis, slicing
and profiling. PhD thesis, Case Western Reserve University,
2005. Adviser-Andy Podgurski.

[22] J. Rilling and B. Karanth. A hybrid program slicing frame-
work. In Proceedings of the First IEEE International Work-
shop on Source Code Analysis and Manipulation (SCAM
2001), pages 12–23, Nov. 2001.
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