The problem of reconstructing some special hv-convex discretesets from their two orthogonal projections is considered. In general, the problem is known to be NP-hard, but it is solvable in polynomial time if the discrete set to be reconstructed is also 8-connected. In this paper, we define an intermediate class - the class of hv-convex canonical discrete sets - and give a constructive proof that the above problem remains computationally tractable for this class, too. We also discuss some further theoretical consequences and present experimental results as well. {\textcopyright} Springer-Verlag Berlin Heidelberg 2009.

}, isbn = {978-3-642-10208-0}, doi = {10.1007/978-3-642-10210-3_22}, author = {P{\'e}ter Bal{\'a}zs}, editor = {Petra Wiederhold and Reneta P Barneva} }