

Laser scanning for cultural heritage applications

Csaba Benedek

Distributed Events Analysis Research Laboratory (DEVA) http://web.eee.sztaki.hu/i4d/

COSCH Training School on Heterogeneous visual data fusion techniques - acquisition and algorithms

07-09 December 2015

Outline

Aerial Lidar

Velodyne HDL 64-E *Car-mounted laser scanner*

Lidar based terrestrial mapping

Multi-sensorial mobile mapping system

Point cloud segmentation

Vegetation filtering by echo number information

Optical aerial image

© Astrium (Infoterra) HU

LIDAR echo map

City models: vehicles should be detected and removed

Vehicle detection and traffic segmentation

Traffic interpretation: e.g. parking vehicles may be included in the reconstructed cities

City reconstruction from Lidar

(a)

Task

• Convex triangulation + removing false triangles

Triangle classification

- Markov Random Field (MRF) model for removing false triangles from the mesh
 - Nodes: triangles
 - Edges: triangle neigborhoods

Naive way vs. MRF

Workflow - results

Point cloud

Convex triangulation

Concave triangluation

Results

Texturing with satellite images

3D reconstructed city model

Lidar based geometric city model – automatic texturing with up-to-date satellite images

Outline

Aerial Lidar

Velodyne HDL 64-E *Car-mounted laser scanner*

Lidar based terrestrial mapping

Multi-sensorial mobile mapping system

Velodyne LIDAR

Link to the video

Velodyne LIDAR

- Hardware: Velodyne HDL-64E LIDAR
- **Output:** 2.5D point cloud sequence from outdoor environments
- Technical data:

MTA SZTAKI

- 64 laser and sensor
- 120 m distance
- <2cm accuracy
- >1.333M points/sec

Moving LIDAR platform

© DiFilton-ARC

•Horizontal LIDAR: street object and traffic monitoring

• Tilted LIDAR: reconstruction of building facades

MTA SZTAKI

Preprocessing – point cloud segmentation

- A grid based method.
 - $\,\circ\,$ Uniform grid defined in the 2D space along the ground.
 - The grid is segmented as an *image* first
 - Runs in real time.
- Point classes:
 - Noise and sparse data: grid cells with a few data points
 - Ground surface: cells of points with small elevation differences (used threshold: 25cm)
 - Tall objects (e.g. walls): cells with large elevation differences (more than 310cm) or large maximal elevation (used 350cm)
 - Short street objects: everything else (cars, pedestrians, street furniture, etc)

Street scene segmentation

• O. Józsa, A. Börcs and Cs. Benedek: "Towards 4D Virtual City Reconstruction From Lidar Point Cloud Sequences," <u>ISPRS</u> <u>Workshop on 3D Virtual City Modeling</u>, Regina, Saskatchewan, Canada, May 28-31, 2013, vol. II-3/W1 of <u>ISPRS Annals of</u> <u>Photogrammetry, Remote Sensing and the Spatial Information Sciences</u> pp. 15-20, 2013

•A. Börcs, O. Józsa and Cs. Benedek: "Object Extraction in Urban Environments from Large-Scale Dynamic Point Cloud Datasets," IEEE International Workshop on Content-Based Multimedia Indexing (CBMI), Veszprém, Hungary, June 17-19, 2013

MTA SZTAKI

Registration

- Only the points in the Wall or Tall Static Object class are used.
 - Noise and dynamic data are removed
 - Reduced number of points
 - Remaining points are strong features
- Registration techniques
 - Normal Distributions Transform(NDT) used for most of the following results
 - Trimmed Iterative Closest Point algorithm (TrICP, Chetverikov at all, ICV 2005) alternative method used in some tests

MTA SZTAKI

Hungarian Academy of Sciences Institute for Computer Science and Control

Registration: results

30 merged frames

Kálvin square

Tree crown removal

- Overhanging trees can corrupt the scene reconstruction as they <u>may</u> <u>occlude facades</u>
- Registered data is dense, thus sparse regions with large scattering (such as leafs) can be detected
- Overhanging tree crowns can be removed

Result of upper vegetation detection

Vehicle detection

30 merged frames

2D recognition

•vehicles should be removed from the city models

Surface reconstruction

Poisson triangulation of the obtained point cloud

Figures: main and southeastern facades of the Great Market Hall

NDT vs TrICP

NDT

NDT is more robust for 'featureless' buildings (like offic

TrICP

TrICP

• TrICP gives superior results for surfaces containing characteristic features.

NDT vs TrICP

- NDT is more robust for 'featureless' buildings (like office houses)
- TrICP gives superior results for surfaces containing characteristic features.

NDT

TrICP

Surface models

MTA SZTAKI

1331

Surface + texture

Great Market Hall, Budapest

Data fusion

• Roof (aerial) + facades (terrestrial scan)

Aerial scans © Infoterra Hungary Ltd

MTA SZTAKI

Hungarian Academy of Sciences Institute for Computer Science and Control

Outline

Aerial Lidar

Velodyne HDL 64-E *Car-mounted laser scanner*

Lidar based terrestrial mapping

Multi-sensorial mobile mapping system

Terrestrial laser scanning

V-Line® 3D Laser Scanner RIEGL VZ-400

General figures				
Maximal range		2,000 m		
Meas. rate up		400,000 meas/sec		
150 m range evaluation				
Accuracy (vs. true value)			8 mm	
Precision (vs. repeated meas.)				5 mm
	Vertical		ł	Horizontal
Field of View	100°		360°	
Max scan speed	240 lines/sec		150°/sec	
Angle resol.	< 0.0015°		< 0.0005°	

Output: colored point cloud!

Main terrestrial scanner brands

Zoller + Fröhlich Imager 5010X

Trimble X130 3D

Leica ScanStation C5

Topcon GLS-2000

Scanning with Riegl VZ-400 in Budapest

вкк

Scanning with Riegl VZ-400 in Budapest

Scanning with Riegl VZ-400 in Budapest

Scanning with Riegl VZ-400

• Károlyi castle - Füzérradvány

Heritage Survey - Wartburg

Heritage Survey - ArcTron

ArcTron^{3D}

Expertise in Three Dimensions

Ghost of moving objects... Fővám tér Budapest

Various scanning positions Fővám tér Budapest

Various scanning positions Fővám tér Budapest

Removing ghost

3D inpainting

 3D inpainting: adaptive and automatic hole filling by local environmental information

http://www.djsscans.com/

Lincoln Memorial, Washington, DC

http://www.djsscans.com/

Mount Moriah Cemetery Gatehouse

http://www.djsscans.com/

Sons of Israel Synagogue, Cherry Hill, NJ

Mesh or point cloud rendering? Pros and cons... what is the future?

- Mesh
 - ^公 Compact 3D scene representation
 - ් Compact surfaces

 - All CAD & game engines can read and manage them
 - A Realistic colored surface illusion via texturing
 - ♀ Limited accuracy
 - polygon approx: smoothness vs. control point fitting
 - ♀ Limited details (size of polygons)

- Point cloud
 - Points are dump... no meaningful scene representation
 - ♀ Independent points holey surfaces
 - ♀ Couple of billion points → fast rendering is challenging
 - Limited management options in CAD& games engines
 - Realisitic color scenes by point cloud coloring with cameras
 - ් Very high accuracy
 - depends only on the accuracy of the scanner
 - ් Unlimited details

Future: We will need very high accuracy + unlimited details

Euclideon SolidScan

Video URL

MTA SZTAKI

Hungarian Academy of Sciences Institute for Computer Science and Control

Outline

Aerial Lidar

Velodyne HDL 64-E *Car-mounted laser scanner*

Lidar based terrestrial mapping

Multi-sensorial mobile mapping system

Mobile mapping system

- *Mobile mapping:* integrated array of time synchronised navigation sensors and imaging sensors mounted on a mobile platform.
 - typically photographic, radar, laser, LiDAR or any number of remote sensing systems.
- Output: GIS data, digital maps, and georeferenced images and video.

Mobile mapping: Topcon system

Vehicle trajectory Dots: Ladybug camera image shooting points

Ladybug panoramic image Is it appropriate for mesh texturing?

Image part perpendicularly visible from the shooting point

Topcon – facade reconstruction

Distance measurement on panoramic images

MTA SZTAKI

Mobile mapping: Riegl VMX-450 system

RODIS project © Budapest Közút Zrt. (weblink)

Parlament scanning: joint mobile + terrestrial

Video URL

Mobile mapping: only from vehicles?

Mobile mapping for pedestrians Microsoft UltraCam Panther Backpack (<u>link</u>)

RICOPTER

high-performance multirotor UAV
integrated LiDAR: RIEGL VUX-1
airborne laser scanning
overall weight of below 25kg
15-30 min. missions

Ο

Measurement Systems

http://www.arctron.de/en/gallery/

Vianden Castle (Luxembourg)

 \circ extremely high resolution 3D dataset from the castle

Cooperation of ArcTron 3D GmbH and RIEGL Laser

UAV-based 3D Laser Scanning Documentation of

- RiCOPTER flew three missions of approximately 15 minutes each, proving its flight stability even under very adverse wind conditions.
- Proof: "flying surveying robot" is able to conduct very complex
 3D inventories in an extremely short amount of time.

Scanning of Castle Vianden, Luxemburg (link)

i4D = dynamic 3D scenes

Moving avatar creation – 4D Studio

- A studio equipped with multiple calibrated video cameras
- Objectives
 - capture same scene from various viewpoints
 - $\circ~$ create dynamic 3D models of moving objects

Panorama of 4D studio at SZTAKI, Budapest

Acquisition of static objects

- One or two cameras sufficient, but more views \rightarrow higher accuracy
- Cameras (or scanner) can move around the object

Acquisition of dynamic objects

- Dynamic objects
 - o simultaneous images from multiple viewpoints → multi-camera system
 - \circ fixed cameras
 - \circ less views \rightarrow lower quality
 - o redundancy of sequence → higher accuracy

Hardware components

- Green box
 - cylinder with dodecagon base
 - o massive, firm steel cage
 - 12 cameras uniformly around scene + 1 camera on top
 - $\circ~$ green curtains and carpet \rightarrow homogeneous background

Hardware components

- Cameras
 - o wide-angle lenses
 - o 1624 x 1236 pixels
 - 25 fps, GigE (Gigabit Ethernet)
- Lighting
 - o light-emitting diodes (LEDs) set around each camera
 - $\circ~$ can be turned on/off with high frequency
- Micro-controller
 - synchronises cameras and lights
 - opposite light turned off when camera takes picture
 - allows for more flexible configuration of cameras
- Computing power
 - 7 conventional PCs \rightarrow 2 cameras per PC

Hardware components

Adjustable platform with video camera and LEDs mounted on cage

Software components

- Two main software blocks
- Studio
 - \circ $\,$ image acquisition software $\,$
 - $\circ \rightarrow$ video recording
- ModelMaker
 - 3D reconstruction software
 - ightarrow creation of dynamic 3D models
- Complete software system developed at SZTAKI
 - \circ uses elements from OpenCV

Software components

Selects cameras for acquisition

 \circ $\:$ user can use a subset of cameras

Configures cameras

o focus, gain, white balance, etc.

Calibrates camera system

- o intrinsic parameters of cameras (focus, lens distortion, etc.)
- o positions and orientations of cameras in joint coordinate system
- \rightarrow extrinsic parameters
- Synchronises cameras and lights
- Captures synchronised multi-video sequences

Interface of image acquisition software

Camera system calibration

- Based on OpenCV routines (using method by Z.Zhang)
- Operator moves and shows 7×6 flat calibrating chessboard pattern to each camera
 - o pictures taken for varying orientations of calibrating pattern
 - $\circ~$ corners detected and identified unambiguously
 - ightarrow intrinsic parameters of each camera
 - ightarrow lense distortion parameters of each camera
 - ightarrow relative positions and orientations (poses) of neighbouring cameras
- Chessboard pattern put on table and viewed by upper-row cameras
 - \rightarrow extrinsic parameters of upper-row cameras
 - $\circ~$ relative poses of bottom-row cameras already known
 - \rightarrow extrinsic parameters of all cameras

Camera system calibration

order of corners

showing chessboard

extrinsic calibration

- Asymmetric pattern is used to unambiguously identify corners under rotation
- Calibrating pattern is rotated to vary orientation
- Extrinsic parameters are defined in common coordinate system

Reconstruction software step-by-step

- 1. Extract colour images from raw data captured
- 2. Segment colour images to **foreground and background**
- 3. Create volumetric model by Visual hull algorithm
- 4. Create triangulated mesh from volumetric model
- 5. Add texture to model

Interface of reconstruction software

MTA SZTAKI

Reconstruction software step-by-step

- Basic configuration: each video frame is processed separately
 - o temporal coherence has been addressed later (not discussed here)
- Binarises colour input images
 - o assigns 0 to background, 255 to object
 - binary image provides **silhouette of object**
- Principles of segmentation
 - o assumes that background is larger than object
 - reference background image obtained in absence of objects
 - o input RGB image converted to spherical colour representation
 - \rightarrow improves robustness to illumination changes
 - o difference between image and reference background calculated
 - \circ object detected as outlier using robust outlier detection

Video illustration of segmentation

MTA SZTAKI

Creating volumetric model

- Apply shape-from-silhouettes to obtain Visual hull

 maximal volume consistent with given set of silhouettes
- Back-project silhouette images in 3D space
- Take intersection of generalized cones
 - $\circ~$ this gives bounding geometry of actual 3D object
 - ightarrow concave details may be lost
 - \circ more cameras \rightarrow better geometry

Triangulated mesh generation from volumetric data

- Use the standard Marching cubes algorithm
- For each voxel, take 8 neighbors \rightarrow cube
- Determine the polygon(s) needed to represent the part of the surface that passes through this cube
- Post-processing: smoothing, decimation

Texturing the triangulated surface

- For each triangle and camera, calculate measure of visibility
 - triangle is visible from camera
 - o triangle normal vector points towards camera
- Form cost function with visibility and regularisation terms

 regularise to reduce sharp texture edges between adjacent triangles
 → balance between visibility and smoothness
- Minimise the cost function using graph cuts
 → find best image for texturing the triangle
- Quality of texturing depends on precision of surface geometry
 Visual hull and Marching cube may yield imprecise normals
 - \rightarrow texture details may be lost or distorted

Virtual pedestrians - 4D studio

<u>Video online</u> available @ the i4D Projekt website

Output of the integrated model

Video online available from the i4D Project website

i4D workflow

<u>Video online</u> available from the i4D Project website

Mixed reality

<u>Video online</u> available from the i4D Project website

4D scenario in front of the Great Market Hall

Video online available from the i4D Project website

Introduction

The integrated4D (i4D) project encapsulates various R&D activities of the <u>Distributed Events Analysis Research</u> <u>Laboratory</u> (DEVA) of <u>MTA SETAKI</u>. The main objective of the project is to design and implement algorithms and system prototypes for the reconstruction and visualisation of complex spatio-temporal scenes by integrating various types of sensor measurements, including outdoor 4D point cloud sequences recorded by car-mounted <u>Velokyme HDL-64E</u> or <u>Rised</u> <u>VZ-400/VMX-450</u> LIDAR sensor, and 4D models of moving actors obtained in an indoor <u>4D Reconstruction Studio</u>. The main purpose of the integration is our desire to measure and represent the visual world at different levels of detail. In particular, we aim to achieve scientific contributions and provide innovative practical solutions in the following application fields:

Road scene understanding for driving assistance and autonomous driving: we are able to automatically interpret the LIDAR point cloud stream obtained from a moving platform, segment different point cloud classes, detect and recognize various field objects <u>Read more...</u>

4D virtual city reconstruction: based on our intelligent mobile mapping system, we are able to perceive a dynamic environment, create geometrically reconstructed and textured 3D scene models, meanwhile we detect and analyse various static and moving field objects which are replaced by fixed or animated studio objects in the systhetized 4D oby models. <u>Read more.</u>

4D video surveillance: we jointly exploit various depth sensors and optical cameras, to achieve high level object detection and classification, multiple people localization and tracking, event recognition a biometric identification tasks. <u>Read more...</u>

Processing fused data of mobile mapping systems: protecting collective properties in urban environment: we develop submated algoritms for monitoring various public premises, including road quality assessment, surveys of road marks and traffic signs, urban green area estimation, traffic analysis. <u>Read more...</u>

History

The I4D work project was launched in 2012 as a joint mission of the <u>Distributed Events Analysis Research Laboratory</u> (DEVA) and the <u>Geometric Modelling and Computer Vision Laboratory</u> (OMCV), and funded by the Internal RAD Grant of <u>MTA SZTAKI</u> between 2012 and 2014. That time, Prof. Tamás Szirányi (DEVA) and Prof. Dmitry Chetvenkov (GMCV) acted as research co-directors of the project, while Casba Benedek and Zsoti Jankö led the technical developments from the Lidar and 4D Studio sides, respectively. Since the GMCV was closed in 2015, currently the DEVA Lab. operates the project with supervising both the Lidar and 4D Studio developments. Late 2014, the scope of the project was extended with research activities on Lidar-based road scene understanding, and with intelligent GIS development for measurements from mobile megning systems (in collaboration with the Budgest Road Management Department)

Latest results

Like You and 24 others like this.

http://web.eee.sztaki.hu/i4d/

MTA

.inks

DEVA Laboratory

DEVA homepage

Lab's datasheet

i4D Demos:

Demo page

SZTAKI main page

SZTAK

Thank you for your attention

• i4D Project team

Attila Börcs

Zsolt Jankó

Bence Gálai

http://web.eee.sztaki.hu/i4d/contact.html

Related publications of the i4D project

Download: <u>http://web.eee.sztaki.hu/i4d/publications.html</u>

- Cs. Benedek, "3D People Surveillance on Range Data Sequences of a Rotating Lidar," **Pattern Recognition Letters**, Special Issue on Depth Image Analysis, vol. 50, pp. 149–158, 2014
- A. Börcs, B. Nagy and Cs. Benedek: "Dynamic Environment Perception and 4D reconstruction using a Mobile Rotating Multi-beam Lidar sensor," Book chapter in **Handling Uncertainty and Networked Structure in Robot Control**, Springer, to appear 2015
- Cs. Benedek, B. Nagy, B. Gálai and Z. Jankó: "Lidar-based Gait Analysis in People Tracking and 4D Visualization", European Signal Processing Conference (EUSIPCO), Nice, France, August 31-September 4, 2015
- A. Börcs, B. Nagy, M. Baticz and Cs. Benedek: "A Model-based Approach for Fast Vehicle Detection in Continuously Streamed Urban LIDAR Point Clouds," Workshop on Scene Understanding for Autonomous Systems at ACCV, Singapore, November 2014, vol. 9008 of Lecture Notes in Computer Science, Springer 2015
- A. Börcs, B. Nagy and Cs. Benedek: "Fast 3-D Urban Object Detection on Streaming Point Clouds," Workshop on Computer Vision for Road Scene Understanding and Autonomous Driving at ECCV, Zürich, Switzerland, September 2014, vol. 8926 of Lecture Notes in Computer Science, pp. 628-639, Springer 2015
- Cs. Benedek: "A Lidar-based 4D scene reconstruction system," (abstract & lecture) SPAR Europe and European LiDAR Mapping Forum (ELMF), Amsterdam, The Netherlands, 2013