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Preface

The 19th International Symposium on Scientific Computing, Computer Arithmetic and Ver-
ified Numerical Computation was planned to be organized in Szeged, Hungary in the year
2020. Due to the pandemic situation the Scientific Committee of SCAN decided to have the
meeting in fully online version. More than 50 submissions arrived for the call, out of which 45
regular talks will be held and 4 plenary presentation. The plenary speakers will be Jay Mireles
James, Fabienne Jézéquel and Kazuaki Tanaka, together with the Moore Prize winners Marko
Lange and Siegfried Rump. The papers emerging from the talks can be submitted to the special
issues of the journals Acta Cybernetica and Reliable Computing.

The Organizing Committee: Balázs Bánhelyi (chair), Tibor Csendes, Boglárka G.-Tóth, and
Tamás Vinkó wishes a fruitful meeting and a memorable event for all participants.
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PLENARY TALKS

PLENARY TALKS

Benefits of stochastic arithmetic in high performance simulations
and arbitrary precision codes

Fabienne Jézéquel
Sorbonne University, CNRS, Paris, France
Université Panthéon-Assas, Paris, France

Keywords: approximate GCD, BLAS, Discrete Stochastic Arithmetic, floating-point arithmetic,
Newton method, numerical validation, polynomial roots, rounding errors

DSA (Discrete Stochastic Arithmetic) [Vig04] enables one to estimate the rounding error prop-
agation which occurs with floating-point arithmetic. This probabilistic method uses a random
rounding mode: at each elementary operation, the result is rounded up or down with the
same probability. Therefore, the computer’s deterministic arithmetic is replaced by a stochastic
arithmetic, where each arithmetic operation is performed several times before the next one is
executed. With DSA, temporary results that are actually numerical noise can be discarded and
iterative algorithms can be stopped in an optimal way that does not rely on any parameter.
DSA can be used to control the accuracy of programs in half, single, double and/or quadru-
ple precision via the CADNA library [CAD, EBFJ15, GJP+18, JSHH21], and also in arbitrary
precision via the SAM library [SAM, GJWZ11].

We present an algorithm that takes benefits of DSA to efficiently and accurately compute
polynomial roots, in particular multiple roots. Thanks to a stochastic version of the polynomial
GCD algorithm and the polynomial Euclidean division, the proposed algorithm provides a
low-degree polynomial with single roots. Then Newton method can be applied to get fast and
accurate approximations of the roots in arbitrary precision [GJQMS21].

Thanks to DSA, the accuracy estimation and the detection of numerical instabilities can be
performed in parallel codes on CPU and on GPU [EBFJ15, EBFJ16, ELB+18]. However its per-
formance overhead may be large compared with the standard floating-point operations. We
show that with perturbed data it is possible to use standard floating-point arithmetic instead
of DSA for the purpose of numerical validation. For instance, for codes including matrix mul-
tiplications, we can directly utilize the matrix multiplication routine (GEMM) of level-3 BLAS
that is performed with standard floating-point arithmetic. Consequently, we can achieve a sig-
nificant performance improvement by avoiding the performance overhead of DSA operations
as well as by exploiting the speed of highly-optimized BLAS implementations [JGM+20].
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PLENARY TALKS

Verified inclusions of a nearest matrix of specified rank via a
generalization of Wedin’s sin(θ) theorem

Marko Lange and Siegfried M. Rump
Hamburg University of Technology, Hamburg, Germany

Keywords: verified error bounds, rank deficiency, sin(θ) theorem, separation of singular vector
subspaces, unitarily invariant norms, ill-posedness, INTLAB

In the scientific computing community it is well know that proving singularity of a matrix
A is an ill-posed problem. Naturally, this implies that validating a certain rank deficiency
of a matrix is out of the scope of verification methods. But where is the boundary between
these ill-posed problems and closely related but well-posed problems? In this talk we im-
merse ourselves in this question. We present verification methods to solve two closely related
problems. In this context, we further prove a generalization of Wedin’s sin(θ) theorem [1]. The
corresponding result is the singular vector space counterpart to Davis and Kahan’s generalized
sin(θ) theorem [2] for eigenspaces.
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Connecting orbits occupy a special place in dynamical systems theory, appearing as hy-
potheses in theorems forcing the existence of complex behavior. Important examples date back
to the work of Poincare, who used a transverse connecting orbit to show the non-existence
of conserved quantities in the gravitational three body problem. The homoclinic tangency of
Shilnikov, and the Smale tangle theorem provide further illustrations of this principle. In infi-
nite dimensions, recall that the proof of the Feigenbaum conjectures studies the intersection of
invariant manifolds attached to fixed points of certain renormalization operators [1, 2].

In a given example problem it may be difficult to establish the existence of a connecting or-
bit using classical pen and paper techniques, and numerical simulations provide much needed
insights into the dynamics of strongly nonlinear systems. Moreover, a number of researchers
have devoted substantial energy into developing constructive, mathematically rigorous nu-
merical techniques for proving the existence of connecting orbits. This is a fascinating area of
research which involves invariant manifold theory, boundary value problems, implicit function
theory, and computational mathematics.

In a typical problem, proving the existence of a connecting orbit involves a “tower” of argu-
ments. One recipe is as follows.

• Step 1: Prove the existence of the underlying fixed point.

• Step 2: Prove theorems about the stability the fixed point: hyperbolicity, validated morse
index, etcetera.

• Step 3: Obtain validated bounds on the stable/unstable manifolds attached to the fixed
point.

• Step 4: Prove the existence of an orbit which starts on the unstable, and ends on the stable
manifold.

• Step 5: (If possible) establish transversality of the connection.

Completing this outline for a finite dimensional problem is already a challenge, and a large
number of works are devoted to this topic. A few examples include [3, 4, 5]. One could give a
similar outline for connecting orbits in finite dimensional ordinary differential equations, and
again many authors have worked on this problem. See for example the works of [6, 7, 8].

Applying an outline like the one above to an infinite dimensional problem, where even steps
one and two are nontrivial, presents substantial challenges. In this talk I will focus on some
infinite dimensional problems where the outline has been successfully implemented in full. I’ll
highlight infinite dimensional obstacles, and indicate how they are overcome using validated
numerical methods. I’ll focus on ideas for compact infinite dimensional discrete time dynamics
developed in [9, 10], and discuss some recent applications to delay differential equations as in
[11, 12, 13]. Time permitting, I will make some comments about how these ideas extend to
partial differential equations.
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[6] Gianni Arioli and Piotr Zgliczyński. The Hénon-Heiles Hamiltonian near the critical en-
ergy level—some rigorous results. Nonlinearity, 16(5):1833–1852, 2003.

[7] Daniel Wilczak and Piotr Zgliczy´nski. Heteroclinic connections between periodic orbits
in planar restricted circular three-body problem—a computer assisted proof. Comm. Math.
Phys., 234(1):37–75, 2003.

[8] Gianni Arioli and Hans Koch. Existence and stability of traveling pulse solutions of the
FitzHugh-Nagumo equation. Nonlinear Anal., 113:51–70, 2015.

[9] J. D. Mireles James. Fourier-Taylor approximation of unstable manifolds for compact
maps: numerical implementation and computer-assisted error bounds. Found. Comput.
Math., 17(6):1467–1523, 2017.

[10] R. de la Llave and J. D. Mireles James. Connecting orbits for compact infinite dimensional
maps: computer assisted proofs of existence. SIAM J. Appl. Dyn. Syst., 15(2):1268–1323,
2016.

[11] J. P. Lessard and J. D. Mireles James. A functional analytic approach to validated numerics
for eigenvalues of delay equations. J. Comput. Dyn., 7(1):123–158, 2020.

[12] Olivier Hénot, J.P. Lessard, and J. D. Mireles James. Parameterization of unstable mani-
folds for ddes: Formal series solutions and validated error bounds. Journal of Dynamics
and Differential Equations, 2021.

[13] J.P. Lessard and J.D. Mireles James. A rigorous implicit C1 chebyshev integrator for delay
equations. Journal of Dynamics and Differential Equations, pages 1–30, 2020.

5



Verification of the sign of solutions to elliptic partial differential
equations

Kazuaki Tanaka
Institute for Mathematical Science
Waseda University, Tokyo, Japan

Keywords: Computer-assisted proof, Numerical verification, Elliptic differential equations, Sign-change
structure, Positive solutions

The objective of this talk is the elliptic differential equation

−∆u(x) = f(u(x)), x ∈ Ω, (1)

where Ω ⊂ RN (N = 1, 2, 3, · · · ) is a bounded domain, and f : R→ R is a given nonlinear map.
We consider solutions of (1) with one of the three types of homogeneous boundary conditions:
Dirichlet, Neumann, and mixed.

This talk surveys the methods proposed in [1, 2] that verify the information on the sign of
solutions to (1). In [1], we proposed a method for verifying the positivity of a weak solution
u of (1) with the Dirichlet boundary condition assuming H1

0 -error estimation ‖u− û‖H1
0
≤ ρ

given some numerical approximation û and an explicit error bound ρ. Subsequently, in [2], we
rigorously analyzed the sign-change structure of solutions to (1) with one of the three boundary
conditions and applying this to the Dirichlet problem of the Allen–Cahn equation.

Recent developments on this topic will be introduced.
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We consider the one-dimensional Hénon equation which is the two-point boundary value
problem {

−u′′ = |x|lup, x ∈ (−1, 1),

u(−1) = u(1) = 0,
(1)

where l ≥ 0, 2 ≤ p < ∞. The parameter l is the potential index, and the parameter p is
the polytropic index. It is known that if l = 0, then there is no asymmetric positive solution,
and if l > 0 is sufficiently large, then there are some asymmetric solutions. The importance
of the Hénon equation has led to an active mathematical study on it over the last decade. In
particular, its symmetry-breaking phenomena are attracting a lot of attention. S. Tanaka [1]
proved that if l(p − 1) ≥ 4, the Morse index of the positive least energy solution equals 1
and the Morse index of the positive symmetric solution equals 2, and hence the positive least
energy solution is asymmetric and symmetry-breaking phenomena occur. It is also shown that
if l and p are sufficiently small, then there is no positive asymmetric solution and the Morse
index of the symmetric positive solution equals 1. However, still only sufficient conditions
for symmetry–breaking bifurcation have been clarified, and the existence of multiple solutions
near the bifurcation point and the structure of the bifurcation are not known completely.

The purpose of our study is to verify the existence of multiple solutions of (1) near the
bifurcation point, and tracking the bifurcation diagrams by computer assistance.

Due to the variable coefficient |x|l in the problem (1), the solution u has a singularity at
x = 0. We will show the numerical verification method that follows such a singularity. In
addition, the bifurcation structure with respect to l will be discussed. Numerical examples of
some symmrtric or asymmetric solutions and solution curves will be presented as follows.
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Figure 1: Solution curves (p = 3).

8



VERICOMP 2.0: Comparing and Recommending Verified IVP
Solvers in a Flexible Way

Ekaterina Auer1, Lorenz Gillner1, Wolfram Luther2, and Andreas Rauh3

1 University of Applied Sciences Wismar, Wismar, Germany
2 University of Duisburg-Essen, Duisburg, Germany

3 Lab-STICC, ENSTA Bretagne, Brest, France
ekaterina.auer@hs-wismar.de

Keywords: verified IVP solvers, VERICOMP, recommender systems

Methods with result verification, for example, interval analysis [1], have been applied in engi-
neering since the 1970s at the latest. They help not only to prove automatically that computer-
obtained results are correct, but also to represent bounded uncertainty and propagate it through
system models in an easy-to-understand, deterministic manner. After over half a century of re-
search, many up-to-date libraries are available (and still emerging), implementing the concepts
for a variety of programming languages and computer algebra systems such as C++, Python,
Matlab, Julia. Regardless of the merits of such methods and their general accessibility, they are
rarely used outside of the university context or cooperations.

Aside from the necessity to learn new material, an impediment on the way of a larger appli-
cation of verified techniques in industrial engineering practice is the lack of information which
of the available tools to choose for a given task. Sometimes, making an inappropriate choice for
a program or approach can lead to too conservative results discouraging the use of the whole
branch of methods. To improve the situation at least in one area, we have been working on
a web-based platform VERICOMP [2] for promoting, comparing and recommending verified
initial value problem software for ordinary differential equations (IVPS) for over a decade. Al-
most as a by-product, VERICOMP offers developers of new IVPS a possibility to compare their
solvers with the established ones. Here, VERICOMP can be of use for facilitating such projects
as ARCH-COMP (cps-vo.org/group/ARCH/FriendlyCompetition), a competition on
verifying continuous and hybrid systems.

Differential equations are fundamental in many applied areas of science as a mathemati-
cal model for dynamic systems or processes, with techniques for comparing traditional, non-
verified software available since the seventies [3] (archimede.dm.uniba.it/~testset/
testsetivpsolvers/). Some of the challenging tasks on the way to highlight advantages of
various tools are to develop

• a standard set of problems,

• a set of fair criteria and testing conditions,

• a means to easily incorporate new software into the comparison, and,

• last but not least, a means to present and visualize the gathered information.

The goal is to allow a user to obtain knowledge easily and to grasp it immediately. Moreover,
the maintenance of these sets and means should be as flexible as possible facilitating, for ex-
ample, entry of new (specialized or standard) problems or replacement of criteria if the need
arises.

In this talk, we focus on the current version of VERICOMP available at vericomp.fiw.
hs-wismar.de that enhances the previous one especially from the point of view of flexibility.
Additionally, we demonstrate how ideas from the area of recommender systems can be em-
ployed to produce an automatic suggestion about the right tool to use for a given application
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(cf. [4]). Moreover, we discuss in general what kind of metadata, data, quality criteria, metrics,
and visualization are required to be able to compare and recommend IVPS. Finally, we give an
outlook on the possibility of easier management and comparability of different solvers inside
VERICOMP based on containerization. This task requires standardisation of data flow and
IVPS interfaces (which are quite non-uniform at the moment).
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Public websites making general recommendations about preventive services for major diseases
are becoming increasingly important in the healthcare area. Government agencies, leading
universities, and independent foundations [1, 2] provide them nationally or internationally for
the purpose of informing the population about the available possibilities. Additionally, such
websites allow individuals and their families to assess their risk of contracting a particular
disease based on various factors such as their age, origin, or genetic predisposition. With the
help of this risk assessment, concrete recommendations can be made for individual prevention
and risk mitigation.

In this contribution, we focus on BRCA1/2 related cancer. Complex prediction software
relying on various kinds of mathematical stochastic models plays an essential role in the pro-
cess of genetic counseling with the goal of determining either the gene mutation probability
of a patient or their lifetime risk of cancer. Using personal information about individuals and
their relatives as well as standardized case data from medical databases, a recommendation
can be calculated and communicated via a suitable output interface (e.g., as a graph or a re-
port) [3, 4, 5, 6]. Often, such recommendations can be augmented based on opinions of a mul-
tidisciplinary team of experts who collaborate in a final meta-study on issues concerning, for
example, benefits/harms of counseling or clinical treatment for specific disease patterns [7].
Among the questions most meta-studies are raising is the issue of reliability of the generated
recommendations, since they are considerably influenced by uncertainty. It is noted that exist-
ing verification and validation approaches usually account only for aleatory uncertainty and
tend to disregard other kinds.

We consider genetic risk assessment and genetic counseling for BRCA1/2 related breast can-
cer from the point of view of reliable uncertainty handling. First, we provide a short overview
of existing risk models, software tools as well as family history interfaces and repositories. We
show how missing or conflicting information on mutation probabilities can be improved using
Dempster-Shafer theory. Based on multi-criteria binary decision trees and interval analysis,
we combine the referral screening tool RST [8] designed to determine patients at risk of breast
cancer with three further widely spread risk assessment tools for this purpose. The combined
method has the advantage of assigning individuals to appropriate risk classes depending on
their family history, taking into account epistemic uncertainty in the information about such
factors as the age of onset in a relative, the degree of kinship or the relative’s origin.
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Over the last decade, using graphic processing units (GPUs) for scientific computations has
given a significant boost to such varied fields as neural networks, bioinformatics, medical imag-
ing, or cryptography. Especially in control engineering, this paradigm can open up possibilities
which remained unexplored because of the lack of cheap computing power.

One of such fields is modeling, parameter identification, simulation, and control of solid
oxide fuel cells (SOFCs). Models for SOFC temperature are based on partial-differential equa-
tions, which are usually discretized wrt. space and time into algebraic equations. A disad-
vantage of this technique is the lack of flexibility: Only stationary states of SOFC systems can
be simulated this way, which is unsuitable for control. Using the same finite volume method
without discretization in time, it is possible to arrive at dynamic system models consisting of a
set of ordinary differential equations which can be shown to be cooperative [2]. A challenge
here is to identify a large number of parameters based on uncertain measured values from the
SOFC test rig.

Our special focus is on the property of cooperativity [3]. For a cooperative system with
uncertain but bounded parameters, two bracketing systems with crisp parameters can be de-
fined to catch the bulk of uncertainty. (These bounding systems might be coupled with each
other if lower and upper interval bounds for the system parameters to be identified appear
simultaneously in an equation.) A brute force approach using the GPU would be to partition
the parameter search space and evaluate the system over the subintervals in parallel, elimi-
nating the regions inconsistent with available measurements. To avoid a prohibitively large
number of system evaluations due to naive interval multi-sectioning schemes, we propose to
employ a set of additional simple consistency tests. They represent knowledge from physics
such as non-negativity and strict monotonicity of heat capacities and reaction enthalpies that
occur multiple times in the dynamic SOFC model (common subexpressions). Such constraints
in combination with inequalities reflecting physically meaningful temporal variation rates of
the measured SOFC stack temperature help to reduce the number of parameter subintervals.
This preprocessing stage is carried out prior to the parallelized evaluation of the system model.

In this contribution, we extend the GPU-based technique described in [1] to deal with the
reaction phase of a dynamic SOFC model. Considering this phase separately from the elec-
trochemically idle heating phase represents a further possibility to cope with the high dimen-
sionality of the parameter space. Finally, we show how using Bernstein polynomials helps to
reduce the amount of data for controlled and measured system inputs and outputs.
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We study the classical Mackey–Glass delay differential equation

x′(t) = −ax(t) + bfn(x(t− 1))

where a, b, n are positive reals, and fn(ξ) = ξ/[1 + ξn] for ξ ≥ 0. As a limiting (n→∞) case we
also consider the discontinuous equation

x′(t) = −ax(t) + bf(x(t− 1))

where f(ξ) = ξ for ξ ∈ [0, 1), f(1) = 1/2, and f(ξ) = 0 for ξ > 1. First, for certain parameter
values b > a > 0, an orbitally asymptotically stable periodic orbit is constructed for the discon-
tinuous equation. Then it is shown that for large values of n, and with the same parameters
a, b, the Mackey–Glass equation also has an orbitally asymptotically stable periodic orbit near
to the periodic orbit of the discontinuous equation.

Although the obtained periodic orbits are stable, their projections IR 3 t 7→ (x(t), (x(t−1))) ∈
IR2 can be complicated.
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When navigating in an unstructured environment a robot may not be able to geolocalize due
to the absence of marks or to the fact that it has no access to the GPS. Now, using ancestral nav-
igation methods, it is possible to move without getting lost. The principle is to find a discrete
sequence of control such that the robot converges to a limit cycle [2]. The transition from one
discrete state to another is triggered by an event such as a timer has reached a given time value
or the robot has crossed an isobath line. Consider for instance the robot described by the state
equations 

ẋ1 = cosx3
ẋ2 = sinx3
ẋ3 = u,

where (x1, x2) is the position of the robot and x3 is its heading. The heading control has the
form u = sin(ψ̄ − x3), where the desired heading ψ̄ obeys to the automaton (or Petri net) of
Figure 1. The variable q ∈ {0, 1, 2} is discrete and c is a continuous clock initialized to 0 each
time q changes.

Figure 1: Automaton deciding the desired heading

Using a simulation, we observe (see Figure 2) that the state x(t) converges to a stable limit
cycle. The left figure is a simulation for t ∈ [0, 18], and x(0) = (−3, 1,−1). The figure in the
center shows the same simulation with t ∈ [0,∞]. In the right, the robot is now represented
by points in order to see the cycle. The colors blue, red, greed are associated to q = 0, 1, 2,
respectively.

The goal of this paper is to provide a rigorous method to show that such a cycle is stable. It
will combine interval analysis [1] and Poincaré section concepts [3].
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Figure 2: The robot converges to a stable limit cycle in the (x1, x2, x3) space. The frame box is
[−4, 4]× [−1, 7]
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The concept of monotonicity tests and dimension reduction to a facet of an interval partition
set are well elaborated concepts in IA branch and bound algorithms. The extension of those
concepts to simplicial branch and bound implies several challenges.

• For a simplicial feasible set, it is much harder to verify a face of the partition set is on the
boundary of the feasible set.

• For a simplicial feasible set, when dealing with reduced dimension partition sets, the
monotonicity test relies on directional derivative bounds.

• The border faces to reduce to, depend on directions that are more or less perpendicular
to facets.

We consider the minimization of a continuously differential function f : Rn → R. Initially,
the partition sets may consist of n−simplices, so they have n+ 1 affinely independent vertices
V := {v0, . . . , vn} ⊂ Rn. However, after dimension reduction due to a monotonicity test, we are
dealing with m−simplices on the boundary of the feasible set. Given a simplicial partition set
S, a facet F of S is called border if there exists a face F of the feasible set of the same dimension,
such that F ⊆ F.

Given a simplicial subset S, its centroid c = 1
n

∑n
i=0 vi, f the interval extension of f , f ′ the

interval extension of its gradient, �S the interval hull of a simplex S, and a facet Fj obtained
by removing vertex vj , we define the directional vector dj = (vj − c) from the centroid of S to
vj and gj = dTj f

′(�S) the directional interval gradient from c to vj . Basically, if g
j
> 0, the

minimum over S is on Fj as depicted in blue arrow in Figure 1.
As example, consider f = x21 + x22 on simplex conv({v0, v1, v2}) with v0 = (0.1, 0.9), v1 =

(0.8, 0.2) and v2 = (1, 1) where the minimum point can be found in (0.5, 0.5). Blue, red, and
black arrows correspond to g

j
> 0, gj < 0 and 0 ∈ gj , respectively. In a dimension reduction,

we can drop vertex v1 and go further with facet F1 as partition set. From there we proceed with
bisection combined with rejection due to monotonicity when the reached line segment partition
sets have not border facets. Notice that a red arrow in one direction has a blue counterpart in
the opposite direction and vice versa.

In the presentation and paper, we will discuss the complete algorithm and all variants re-
lated to implement the monotonicity tests and border checking for simplicial partition sets.
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Figure 1: Example minimizing f = x21 + x22 over a simplicial feasible set
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for simplicial branch and bound. RAIRO-Operations Research, vol 55, n.3, pp. 2023-2034,
DOI: https://doi.org/10.1051/ro/2021081.

Algorithm 1 Monotonicity-Reduction test (S, 0 ∈ f ′(�S))
1: if S is non-reduced then
2: if S has not border facets then
3: return Reject S
4: end if
5: Evaluate gj for border facets Fj

6: if ∃ g
j
> 0 then

7: return Reduce S to just one face by removing all vj at once
8: end if
9: if ∃ 0 ∈ gj then

10: return Reduce S to each facet Fj

11: end if
12: return Error . All g

j
> 0 is not possible

13: end if
14: Evaluate gj for all facets Fj . S is a reduced simplex
15: if S has not border facets then
16: if ∃ gj < 0 Or ∃ gj > 0 then
17: return Reject S
18: end if
19: Return Divide S . Only 0 ∈ gj occurs
20: end if
21: if ∃ gj < 0 and Fj is (are) border then
22: return Reduce S to just one face by removing all vj at once
23: end if
24: if ∃ gj < 0 then
25: if ∃ 0 ∈ gk then
26: return Reduce S to each border facet Fk

27: end if
28: return Error . All gj > 0 is not possible
29: end if
30: return Divide S . Only 0 ∈ gj occurs
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The paper develops the results of [1] for the case of mixed uncertainty with not only interval
assigned variables but also random inputs. We use the method of model predictive control to
derive the control strategy. This method is widely applied in the practice of control and allows
solving complex control problems (for example, [2]). To handle with interval uncertainty we
use the interval analysis tools and operate according to the interval analysis theory.

We consider a dynamic inventory control system with a network structure (supply chain).
The evolution of the network is described by the equation:

x(k + 1) = x(k) +Bu(k) + C(d(k) + w(k)), k = 0, 1, 2, . . . . (1)

Here x(k) ∈ Rn is the system state whose components represent storage levels in the network
nodes at the moment k; u(k) ∈ Rm means control representing controllable resource flows
between the network nodes at the moment k; d(k), w(k) ∈ Rl are uncertain noncontrollable
flows at the moment k describing demand in the network nodes; the matrices B ∈ Rn×m and
C ∈ Rn×l describe the network structure.

Interval uncertainty in the system is represented by the vector d(k). We only know that d(k)
takes its values within an assigned interval but otherwise unknown:

d(k) ∈ D, k = 0, 1, 2, . . . ,

where D ∈ IRl, D ≥ 0, IR is the set of the real intervals x = [x, x], x ≤ x, x, x ∈ R. The
uncertain vector w(k) is the vector of white noises with zero mean and covariance matrix
E{w(k)wT (k)} = W . This is a stochastic uncertainty.

We assume as well, that both expected storage levels and controls must be nonnegative and
bounded

E{x(k + 1)|x(k)} ∈ X, k = 0, 1, 2, . . . , (2)
u(k) ∈ U, k = 0, 1, 2, . . . , (3)

where E {·|·} denotes the conditional expectation; X ∈ IRn, X =
[
0, X

]
; U ∈ IRq, U =

[
0, U

]
(X = 0 means that backlogged demand is not desirable in the system).

For the system (1) we synthesize the strategies with a predictive model according to the
following rule. At each time k we minimize the criterion with a sliding control horizon:

J(k + p|k) = E

{ p∑
i=1

(
(x(k + i|k)− x0)TQ(x(k + i|k)− x0)−

−Q1(x(k + i|k)− x0) + u(k + i− 1|k)TRu(k + i− 1|k)

) ∣∣∣∣ x(k)

}
.
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on the trajectories of the system (1) over a sequence of predictive controls u(k|k), u(k + 1|k),
. . . , u(k + p − 1|k), which depend on system state at moment k, under the constraints (2), (3),
where Q ∈ Rn×n, Q = QT , Q1 ∈ R1×n, R ∈ Rm×m, R = RT , are the given weight matrices;
x(k + i|k) is the state of the system at time k + i derived at time k by applying the sequence of
predictive controls u(k|k), u(k + 1|k), . . . , u(k + i − 1|k) on the system (1), and x(k|k) = x(k)
is the state of the system measured at time k; x0 is the target storage level; p is the prediction
horizon. We reduce the problem to a quadratic programming problem with constraints for
whose solution the efficient techniques exist.

Although more than one control move is calculated, only the first one is used. So, we get the
feedback control u(k) = u(k|k) as a function of state x(k). Then the state x(k + 1) is measured
and the optimization is repeated at the next sampling time k + 1, etc. As a result, we have the
feedback inventory control strategy with high service level.

The developed results are illustrated with a numerical example.

References

[1] E. V. CHAUSOVA: Dynamic Network Inventory Control Model with Interval Nonstationary
Demand Uncertainty // Numerical Algorithms, 37 (2004), 71–84.

[2] V. V. DOMBROVSKII, E. V. CHAUSOVA: Model Predictive Control for Linear Systems with
Interval and Stochastic Uncertainties // Reliable computing, 19 (2014), 351–360.

21



Why rectified linear neurons: a possible interval-based explanation

Jonatan Contreras, Martine Ceberio, and Vladik Kreinovich

University of Texas at El Paso, USA
jmcontreras2@utep.edu, mceberio@utep.edu, vladik@utep.edu

Keywords: neural networks, rectified linear neurons, interval uncertainty

What are rectified linear neurons. At present, the most efficient machine learning techniques
are deep neural networks; see, e.g., [1]. In general, in a neural network, a signal repeatedly
undergoes two types of transformations: linear combination, and a non-linear transformation
of each value v → s(v). The corresponding nonlinear function s(v) is called an activation func-
tion. In deep neural networks, most nonlinear layers use the function s(v) = max(0, v) which
is called the rectified linear (ReLU) activation function.

Comment. Taking into account that we also have linear layers, what can be represented by the
ReLU function can also be represented if we use any piece-wise linear activation function.

Why rectified linear neurons? Empirically, rectified linear activation functions work the best.
There are some partial explanations for this empirical success (see, e.g., [2]), but none of them
is fully convincing, so yet another explanation is always welcome.

What we do. In this paper, we analyze this why-question from the viewpoint of uncertainty
propagation, and we show that some reasonable uncertainty-related arguments indeed lead to
a possible (partial) explanation.

Need to take interval uncertainty into account. The activation function transforms the input
v into the output y = s(v). The input v comes either directly from measurements, or from
processing measurement results. Measurements are never absolutely accurate: the measure-
ment result ṽ is, in general, different from the actual (unknown) value of the quantity v. In

many practical situations, all we know about the measurement error ∆v
def
= ṽ − v is the upper

bound ∆ on its absolute value: |ṽ − v| ≤ ∆. In this case, possible values of v form an interval
[ṽ −∆, ṽ + ∆].

First natural requirement. A first natural requirement is that the output y should not be too
much affected by inaccuracy with which we know the input. Ideally, this inaccuracy should
not increases after data processing, i.e., we should have |s(ṽ)− s(v)| ≤ |ṽ− v|. In mathematical
terms, this means that the function s(v) should be 1-Lipschitz – so its derivative (or generalized
derivative) should be limited by 1: |s′(v)| ≤ 1.

Second natural requirement: first try. On the other hand, we do not want to lose information
about the signal, so we must be able to reconstruct the input signal from the output as accu-
rately as possible. This idea can be naturally described as |ṽ − v| ≤ |s(ṽ)− s(v)|. Together with
the first requirement, this means that |ṽ − v| = |s(ṽ)− s(v)|. Taking into account that we want
to uniquely reconstruct v from s(v), this implies that either s(v) = v or s(v) = −v. However,
we wanted the function s(v) to be nonlinear, since otherwise we will only be able to represent
linear dependencies.

Second natural requirement made realistic. Since we cannot accurately reconstruct the input
v from s(v), a natural idea is to use two activation functions s1(v) and s2(v) so that for each v,
we can accurately reconstruct the signal from at least one of the two outputs si(v).

What we can conclude. A natural conclusion is that for (almost) all values v, we must have
either |s′1(v)| = 1 or |s′2(v)| = 1. In other words, the real line – the set of all possible values v –
is divided into two subsets: on one of them s1(v) = ±v, on another one s2(v) = ±v.
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Third natural requitement. Since many real-life dependencies are linear, it is desirable to re-
quire that a linear function – e.g., the function f(v) = v – can be represented as a linear combi-
nation of the two activation functions, i.e., that v = c0 + c1 · s1(v) + c2 · s2(v).

What we can now conclude. For values v for which s1(v) = ±v, we conclude that s2(v) =
c−12 · (v − c0 − c1 · s1(v)) is linear. Similarly, for remaining values v – for which s2(v) = ±v – we
can conclude that the function s1(v) is linear. Thus, both activation functions s1(v) and s2(v)
are piecewise linear – which is exactly what we wanted to explain.
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Recent machine learning models are highly sensitive to adversarial input perturbation. That
is, an attacker may easily mislead a well-performing image classification system by altering
some pixels. However, proving that a network will have correct output when changing some
regions of the images, is quite challenging – mostly due to the high dimensionality and/or
the nonlinearity of the problem. Because of this, only a few works targeted this problem, and
some of these verification tools are not reliable [4]. Although there are an increasing number
of studies on this field, reliable robustness evaluation is still an open issue. We will present
interval arithmetic based algorithms to provide adversarial example free image patches for
trained artificial neural networks [2]. The method is based on an earlier interval technique to
bound level sets of parameter estimation problems [1].

The obtained results are illustrated on Figure 1 for some of the studied images from the
MNIST dataset. The calculated number of pixels to be changed arbitrarily were between 88
and 190 (compare it with the 28 × 28 = 784 pixels in the images). The combined running time
for the second round of 10 test images was 1971.87 second, i.e. closely half an hour.

Figure 1: Original pictures and proven rectangles where we can change everything without
having an adversarial example.
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We are still in the phase when we explore the capabilities of interval arithmetic based al-
gorithms for describing the sensitivity of trained natural neural networks to changes in object
to be classified, but we find our present results encouraging enough to continue our research
project.
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EFOP3.6.2-16-2017-00015, and 2018-1.3.1-VKE-2018-00033.
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The use of the Fourier transform in practical applications is nearly ubiquitous. Noisy signals
can be decomposed into simple harmonics to filter them, compress them or further study their
features. However, real data is often subject to uncertainties due to various reasons, such as
sensor inaccuracy or measurement errors. When only error bounds can be known, no assump-
tions on dependency nor on the error distribution should be made.

In [1] the authors have developed an algorithm to propagate interval uncertainty through
the discrete Fourier transform to obtain the exact bounds on the amplitude spectrum in poly-
nomial time O(n2 log n). In this paper we show that it is possible to obtain the same results
but in linear time O(n). In [1] , it has been shown that the interval propagation has to map the
boundary of the united set onto the Fourier domain in order for the dependency to be fully
tracked. It has also been shown that the united set that encodes the functional dependence
between interval real and imaginary components of the Fourier signal is always a disk. Fur-
thermore, the boundary of this disk is always inscribed in the box arising from the transform’s
natural extension. This is because such natural extension is also the optimal one, due to the ab-
sence of repeating variables. With this premise, the linear time algorithm follows immediately;
from the box that results from evaluating the natural extension, the united set can be derived
by computing the disk inscribed in the obtained box.

This result can have a significant impact on applications as measurement error can be propa-
gated through the Fourier transform with nearly no additional computational cost and without
artificial distributional assumptions.
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In this presentation we consider numerical methods to produce the global inverses of analytic
functions on the closed disk. The inverses coincide with the solutions z of the implicit equation

f(z) = w = Reiα, (z ∈ D, R ∈ R, α ∈ [−π, π]). (1)

The investigated problem relates closely to the identification of transfer functions [1, 4], the
construction of discrete orthogonal and biorthogonal rational systems [3] and the description
of electrostatic equilibrium [5].

We begin by restricting the rational function f to the Torus, (or in other words considering
its Nyquist-diagram) and determining the z = eitj , (j = 1, . . . , N ∈ N) solutions of (1). The
number of solutions N depends on the number of zeros and poles of f .

We refer to the zeros of f ′ and their image eastablished by f as critical points and critical
values, respectively. One can prove that if the line segment Sα := {reiα : 0 ≤ r ≤ R} does
not contain any critical values, then a continuous solution curve zj : [0, R]→ D (j = 1, . . . , N),
for which f(zj(r)) = r · eiα and zj(R) = zj = eitj (tj ∈ [−π, π]) exists uniquely. Furthermore
once zj = eitj is known, any inverse point zj(r) on this curve can be found by applying a finite
number of Newton-iterations.

In the presentation we pay special attention to the cases when f is a polynomial or a Blaschke-
product. We give several variations of the proposed algorithm including ones which do not
depend explicitly on the derivatives of f . In addition, we aim to make the proposed algorithms
more robust by the introduction of adaptive step sizes. We also discuss previous results such
as the interpretation of the inverse branches of Blaschke-products, which can be regarded as a
generalization of the n-th root function, as well as considering possible physical interpretations
of the inverses [2]. As a potential new application, we show how the results can be used to find
and interpret the roots of classical orthogonal polynomials.
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For the delayed logistic equation xn+1 = axn(1−xn−2) it is well known that the nontrivial fixed
point is locally stable for 1 < a ≤

(√
5 + 1

)
/2, and unstable for a >

(√
5 + 1

)
/2. We prove that

for 1 < a ≤
(√

5 + 1
)
/2 the fixed point is globally stable, in the sense that it is locally stable and

attracts all points of S, where S contains those (x0, x1, x2) ∈ R3
+ for which the sequence (xn)∞n=0

remains in R+. The proof is a combination of analytical and reliable numerical methods. The
novelty is an explicit construction of a relatively large attracting neighborhood of the nontrivial
fixed point of the 3-dimensional logistic map by using center manifold techniques and the
Neimark–Sacker bifurcational normal form. The results appeared in [1].
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From a software perspective, it is straightforward to simulate a given floating-point format on a
machine whose hardware supports a format with a larger exponent range and more bits of pre-
cision: one can perform each arithmetic operation in hardware, using the available precision,
and then round the result to the desired number of significant binary digits.

If the underlying floating-point arithmetic is IEEE compliant, rounding can be performed by
using only the definition of floating-point numbers and a few standard mathematical library
functions. This approach, however, is not necessarily robust: handling subnormals, underflow,
and overflow requires special attention, and numerical errors can creep in and cause a math-
ematically correct formula to perform incorrectly in finite arithmetic. Moreover, the ensuing
implementations are not necessarily efficient, as the library functions these techniques build
upon are typically designed to handle a broad range of cases and may not be optimised for the
specific needs of floating-point rounding algorithms.

CPFloat [1] is a header-only C library that offers efficient routines for rounding arrays of
binary32 or binary64 numbers to lower precision. The library is distributed as free software,
is fully documented, is accompanied by a comprehensive test suite, and is hosted on GitHub.1

The repository also contains a MEX interface for MATLAB and Octave, and an object-oriented
interface for C++. The library implements a variety of rounding modes: round-to-nearest with
several tie-breaking rules, directed rounding, two variants of stochastic rounding, and round-
to-odd. Any format that can fit into binary64 is supported, but if round-to-nearest is used then
only formats with up to 26 digits of precision are recommended, as these are immune from
double rounding [4]. The underlying techniques exploit the bit level representation of these
formats, and perform only low-level bit manipulations and integer arithmetic without relying
on costly library calls.

In numerical experiments the new techniques bring a considerable speedup (typically one
order of magnitude or more) over existing C/C++ alternatives, such as GNU MPFR [3] and
the FloatX library [2]. To the best of our knowledge, CPFloat is currently the most efficient and
complete library for rounding floating-point numbers to a custom low-precision format.
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The talk is based on the recently published open access paper [1].

In a k-step adaptive linear multistep methods the coefficients depend on the k − 1 most recent
step size ratios. In a similar way, both the actual and the estimated local error will depend on
these step ratios.

The classical error model has been the asymptotic model, chp+1y(p+1)(t), based on the constant
step size analysis, where all past step sizes simultaneously go to zero. This does not reflect
actual computations with multistep methods, where the step size control selects the next step,
based on error information from previously accepted steps and the recent step size history. In
variable step size implementations the error model must therefore be dynamic and include past
step ratios, even in the asymptotic regime.

In this talk we derive dynamic asymptotic models of the local error and its estimator, and show
how to use dynamically compensated step size controllers that keep the asymptotic local error
near a prescribed tolerance TOL. The new error models enable the use of controllers with enhanced
stability, producing more regular step size sequences. Numerical examples illustrate the impact of dy-
namically compensated control, and that the proper choice of error estimator affects efficiency.
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The Sharkovskii Theorem [1] is a powerful tool for proving the existence of periodic orbits and chaotic
phenomena in discrete one-dimensional dynamical systems:

Theorem 1 (Sharkovskii). Define an ordering ‘/’ of natural numbers:

3 / 5 / 7 / · · · / 2 · 3 / 2 · 5 / · · · / 22 · 3 / 22 · 5 / · · · / 2k / 2k−1 / · · · / 22 / 2 / 1. (1)

Let f : I → R be a continuous map of an interval. If f has an n-periodic point and n / m, then f also has an
m-periodic point.

In general, the above Theorem is not valid for multidimensional maps. However, we show that the
methods used by Burns and Hasselblatt [2] to prove Sharkovskii’s Theorem can be generalized to the
case of higher-dimensional maps with an attracting periodic orbit. One can find a connection between
the one-dimensional covering of intervals and the multidimensional covering of h-sets, which is a well-
known tool in computer-assisted proofs in dynamics. The result is [4]:

Theorem 2. Consider a continuous map F : I×B(0, R)→ int
(
I ×B(0, R)

)
, where I ⊂ R is a closed interval

and B(0, R) ⊂ Rn−1 a closed ball of radius R. Let us denote by (x, y) points in I ×B(0, R).
Suppose that F has an n-periodic point (x0, y0) ∈ R × Rn−1 with least period n and denote its orbit by

{(x0, y0), (x1, y1) = F (x0, y0), . . . , (xn−1, yn−1) = Fn−1(x0, y0), (xn, yn) = (x0, y0)} ⊂ int I ×B(0, R).
Suppose that there exist δ0, δ1, . . . , δn−1 > 0 such that

∀ i ∈ {0, . . . , n− 1} F
(

[xi ± δi]×B(0, R)
)
⊂ (xi+1 ± δi+1)×B(0, R).

Then for every natural number m succeeding n in the Sharkovskii order (1), F has a point with the least period m.

As an application, we prove the existence of n-periodic orbits for almost all n ∈ N in the Rössler
system with an attracting periodic orbit, for four sets of parameters. The proof is computer-assisted
with the use of CAPD library for C++ [3].
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toolbox for rigorous numerical analysis of dynamical systems, Communications in Nonlinear Science
and Numerical Simulation, 101 (2021), 105578.
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My talk is concerned with special blow-up solutions for ordinary differential equations (ODEs) sepa-
rating sets of initial points into two regions, one of which admits solutions global in time, and another
admits blow-up solutions. There are several examples of differential equations such that the amplitude
of initial points is not essential to determine asymptotic behavior of solutions including blow-ups. The
present topic addresses such a dynamical nature with computer-assisted proof. Our approach used here
is based on the combination of machineries in dynamical systems (e.g. phase space compactifications,
time-scale desingularizations of vector fields) and computer-assisted proofs (e.g. rigorous integrators,
local Lyapunov functions and parameterization method for invariant manifolds), which enables us to
characterize blow-up solutions by means of (un)stable manifolds of “invariant sets at infinity". In par-
ticular, (un)stable manifolds of saddle-type invariant sets at infinity can characterize blow-up solutions
which are unstable under small perturbations of initial points and separations of phase spaces men-
tioned above. The above invariant manifolds, which we shall call blow-up separatrices, provide singular
behavior of trajectories from the viewpoints of not only asymptotic behavior but also maximal existence
times (blow-up times) of trajectories. One example of such a singular nature in an autonomous ODE
is exhibited with various concretely enclosed results. The present talk is based on the joint work with
Jean-Philippe Lessard and Akitoshi Takayasu [1].
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Multi-precision computations are used if a numerical result of standard floating-point (FP) arithmetic
is inaccurate. GMP [1], MPFR [2], and exflib [3] are examples of multi-precision arithmetic libraries.
Hardware-supported FP arithmetic, such as binary32 and binary64 in IEEE 754, can be performed
rapidly in modern computers. However, the performance of software-emulated multi-precision arith-
metic is slow compared with binary32 and binary64. This study emulates and accelerates multi-precision
computations for numerical linear algebra problems using only FP arithmetic.

Ozaki et al. proposed an error-free transformation (EFT) of matrix multiplication [4]. For FP matrices
A and B, EFT algorithm splits A and B into

A = A(1) +A(2) + · · ·+A(k),

B = B(1) +B(2) + · · ·+B(`),

to avoid a rounding error in the FP evaluation ofA(i)B(j) for all (i, j) pairs. Then,AB can be transformed
into an unevaluated sum of k` FP matrices using only FP arithmetic. If we employ accurate summation
algorithms, an accurate numerical result can be obtained. Mukunoki et al. [5] applied the EFT into the
emulation of binary128.

We employ this technique for multi-precision computations in numerical linear algebra, especially,
focusing on matrix multiplication and Cholesky decomposition. Using diagonal scaling, we exploit
the EFT of matrix multiplication with binary64. In addition, we employ the EFT for block Cholesky
decomposition. The block Cholesky decomposition consists of (i) Cholesky decomposition for diago-
nal blocks, (ii) solving triangular systems, and (iii) block matrix multiplications. For (i) and (ii), we
straightforwardly use multi-precision computations. For (iii), we use the EFT. Because (iii) is the most
computational-intensive, using EFT for matrix multiplication accelerates the performance of the block
Cholesky decomposition.

Finally, numerical examples were used to illustrate the efficiency of the proposed method. We com-
pared the computation times and accuracy of numerical results of the proposed method and Advanpix
Multiprecision Computing Toolbox for MATLAB (MCT) [6], a user-friendly and well-turned toolbox.
We used Core i7-86665U and MATLAB2020a as the computational environment. We set 34 as digits
(comparable to binary128) in MCT. As a result, the proposed method for matrix multiplication is about
8–20 times faster than MCT’s matrix multiplication in the best case. In addition, the EFT-based block
Cholesky decomposition was approximately 1.5–2.5 times faster than the MCT’s Cholesky decompo-
sition. More detailed numerical examples, including results from other CPUs and precision, will be
shown in the presentation.
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This talks deals with convergence theorems of the Galerkin finite element approximation for the second
order elliptic boundary value problems. Under some quite general setting, we show not only the point-
wise convergence but also prove that the norm of approximate operator converges to the corresponding
norm for the inverse of linear elliptic operator. Since the approximate norm estimates of linearized in-
verse operator plays an essential role in the numerical verification method of solutions for nonlinear
elliptic problems, our result is also important in terms of guaranteeing its validity.
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What is a kinematic metric: physical introduction. In the physical space, we can define the distance
d(a, b) between two points as the length of the shortest possible path between them. Thus defined
distance is symmetric (d(a, b) = d(b, a)) and satisfies the usual triangle inequality d(a, c) ≤ d(a, b) +
d(b, c). The mathematical notion of a metric is a natural generalization of this physical notion.

From the viewpoint of space-time, physical space corresponds to the situation when we take space-
time points (“events”) (a, t0), (b, t0), etc. corresponding to the same moment of time t0. In relativity
theory, such events cannot causally influence each other.

When an event a can causally influence an event b (we will denote this strict order – i.e., irreflexive
transitive – relation by a < b), this influence is implemented by a particle or particles whose trajectories
start at a and end up at b. For each such trajectory, we can measure the proper time of the correspond-
ing particle. In principle, particles can travel as close to the speed of light as possible, in which case
the proper time can be as close to 0 as possible – so the smallest proper time over all trajectories is al-
ways 0. Interestingly, there is the largest proper time τ(a, b) – which corresponds to inertial motion.
The corresponding function τ(a, b) – defined only when a < b – satisfies the “anti-triangle” inequality
τ(a, c) ≥ τ(a, b) + τ(b, c).

This inequality describes the known twins paradox of relativity theory: when a twin brother who
traveled to the stars comes back to Earth, he will be younger than his twin who stayed on Earth: the
biological age of the stay-home brother is τ(a, c), while the biological age of the astronaut brother is
τ(a, c) + τ(c, b), where c is the moment when the brother reached a faraway star.

A natural generalization of this function is a notion of kinematic metric.

Kinematic metric: definition. Let (X,<) be an ordered set. A function τ(a, b) – defined for all pairs for
which a < b – is called a kinematic metric if all its values are non–negative and it satisfies the anti-triangle
inequality.

Need for interval uncertainty. All information about the values of a physical quantity v – including
the values of the kinematic metric – comes from measurements. Measurements are never absolutely
accurate, so the measurement result ṽ is, in general, different from the actual (unknown) value v: there

is a measurement error ∆v
def
= ṽ − v. Often, the only information that we have about the measurement

error is an upper bound ∆ on its absolute value. In this case, the only information that we have about

the actual value v is that this value belongs to the interval [v, v]
def
= [ṽ −∆, ṽ + ∆].

Natural question. Suppose that we have, for all pairs a < b, intervals [τ(a, b), τ(a, b)], wth τ(a, b) ≥ 0,
obtained from measurement. If all the upper bounds ∆(a, b) are correct, then there is a kinematic metric
τ(a, b) for which τ(a, b) ∈ [τ(a, b), τ(a, b)] for all a < b. However, if we – as happens – underestimated
the measurement errors, we may not have such a function.

So, a natural question is: what is the condition on the intervals
[τ(a, b), τ(a, b)] under which such a function τ(a, b) exists?

A seemingly natural idea does not work. Anti-triangle inequality implies that τ(a, c) ≥ τ(a, b) + τ(b, c)
for all a < b < c. So, it may seem that this inequality is the right condition for the existence of the
desired kinematic metric τ(a, b). However, this inequality does not guarantee the existence of τ(a, b):
e.g., for X = {a1 < a2 < a3 < a4} and [τ(ai, aj), τ(ai, aj)] = [1, 2] for all i < j, this inequality is satisfied,
but the desired function τ(a, b) is not possible: indeed, if it existed, we would have 2 ≥ τ(a1, a4) ≥
τ(a1, a2) + τ(a2, a3) + τ(a3, a4) ≥ 3, i.e., 2 ≥ 3.
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Main result. For an interval-valued function [τ(a, b), τ(a, b)] defined for all a < b, the existence of the
kinematic metric τ(a, b) for which always τ(a, b) ∈ [τ(a, b), τ(a, b)] is equivalent to the condition that

τ(a1, an) ≥
n−1∑
i=1

τ(ai, ai+1) for all sequences a1 < . . . < an.

Proof: main idea. If τ(a, b) exists, then this inequality is clearly satisfied. Vice versa, if the above

condition is satisfied, then we can take τ(a, b) = sup

{
n−1∑
i=1

τ(ai, ai+1)

}
, where the supremum is taken

overall all the chains a = a1 < a2 < . . . < an = b that connect a and b.

Comment. We need the above condition for all natural numbers n: if we only require it only for n ≤ n0,
this does not guarantee the existence of τ(a, b).

this may not guarantee the existence of a kinematic metric: example is X = {a1 < . . . < n0 + 2} and
[τ(ai, aj), τ(ai, aj)] = [1, n0] for all i < j.
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General motivation. When processing data, most practitioners use probabilistic methods. It is there-
fore desirable to study how, for the case of interval uncertainty, these methods compare with interval
techniques.

Data fiting problem. In many situations, we know the general form y = F (x, c) of the dependence
of a quantity y on quantities x = (x1, . . . , xn), but we do not know the exact values of the parameters
c = (c1, . . . , cm). These values must be determined from the measurement results. For this purpose,
several (K) times, we measure xi and y. Based on the measurement results x̃k = (x̃k1, . . . , x̃kn) and
ỹk, we need to estimate the values of the parameters. This problem is also called problem of parameter
estimation.

Measurements are never absolutely accurate. Because of this, we need to take into account that the
measurement results ṽ are, in general, different from the actual (unknown) values of the corresponding
quantity v, i.e., that there is a non-zero measurement error ∆v := ṽ − v.

Known probability distributions. In many cases, we know the probability distributions fi(∆xi) and
f(∆y) of the measurement errors. In this case, we can use the Maximum Likelihood (ML) approach —

i.e., select the most probable values c (and xki) for which the product
K∏
k=1

(
f(ỹk − F (xk, c)) ·

n∏
i=1

fi(x̃ki −

xki)
)

is the largest. Usually, the logarithm of this product, known as log-likelihood, is maximized for
computational convenience.

Interval uncertainty. In many practical situations, we do not know the probability distributions, all we
know is that the measurement errors ∆v are located on the given interval [−∆v,∆v]. In such situations, a
usual probabilistic approach is to select, on this interval, the distribution with maximal entropy – which
turns out to be the uniform distribution.

Simplest case. The simplest – and rather frequent – case is when the values xi are measured very
accurately, so we can safely ignore the corresponding measurement errors and conclude that x̃ik = xik
for all i and k. In this case, the ML approach selects all possible values c for which, for all k, we have
F (xk, c) ∈ [ỹk −∆y, ỹk + ∆y]; see, e.g., [1]. Interestingly, in this case, the probabilistic approach leads to
the same answer as the interval techniques.

General case. If we also know the values xki with interval uncertainty, then the ML approach selects
the set of all the values c for which F (xk, c) ∈ yk = [ỹk − ∆y, ỹk + ∆y] for some values xki ∈ xki =
[x̃ki −∆xi

, x̃ki + ∆xi
]. This is exactly the united solution set to the interval equation system constructed

from interval data [1, 2]. Thus, the united solution set has a natural probabilistic meaning.

A more realistic description of the practical problem. Often, when we get a measurement result, this
does not mean that there was only one measurement: it means that there were several different mea-
surements leading to the same result – e.g., same intervals.

How probabilistic techniques deal with this situation. For each k, instead of a single combination
xk, we have several xk` for different `. For each combination of values xk`i ∈ xki, we can form the

log-likelihood
K∑
k=1

∑̀ n∑
i=1

ln(fi(ỹk − F (xk`, c))). We do not know the actual values xk`i; following the

maximum entropy idea, we assume that they are uniformly distributed on the corresponding intervals
xki. For a large number of constituent measurement `, the sum over ` is proportional to the expected
value. Thus, a reasonable idea is to maximize the expected value of the log-likelihood over this uniform
distribution.
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What is the resulting estimate. We show that, as a result, we return all values of c for which f(xk, c) ∈ yk
for all xki ∈ xki — which is exactly the tolerable solution set to the interval equation system constructed
from data, a solution set that has many useful properties; see, e.g., [2]. So, the tolerable solution set also
makes sense in the probabilistic setting.
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Problems of classification and regression are ubiquitous in several branches of science, technology, and
economy. They can both be formulated in a similar manner: We have a training set of pairs (xi, yi),
i = 1, . . . , N , where xi’s are some attribute vectors and yi’s are their labels – either from a discrete
(classification) or continuous (regressions) space.

Provided this training set, we want to parameterize some model, i.e., a function f(x, p), by providing
the value of p such that: f(xi, p) ≈ yi for all (or sometimes most) i = 1, . . . , N .

By obtaining the proper value of p, we shall be able to predict/assign the labels y also to arguments
x from outside of the training set.

The above formulation refers, in particular, to several kinds of regression (linear, logistic, and more
advanced ones), but also to many machine learning tools: support vector machines, and various kinds
of neural networks, including deep neural networks.

It is worth noting that, in many practical situations, the training set is not faultless. It can have two
kinds of mistakes:

• inaccuracies: values of xi or yi may be somewhat noisy,

• outliers: examples that are completely wrong and should be ignored, when identified.

Interval methods are usually well at bounding noisy values, using intervals: xi = [xi, xi], and yi =
[y
i
, yi].
How to formulate the above problem in precise terms, i.e., how to express the relation ≈? As indi-

cated in [1], we can do it in two manners: either as an optimization problem or a constraint satisfaction
problem (CSP).

The optimization problem can look as follows:

min
p
||y − f(x, p)|| , (1)

where the minimized norm is usually the least-squares:
∑N
i=1

(
yi − f(xi, p)

)2, but other norms can be
used as well; in deep learning applications, the Kullback-Leibler divergence [2] has been recognized as
particularly useful.

The CSP can be formulated like:

Find the set {p | f(xi, p) ⊆ yi i = 1, . . . , n} . (2)

Both approaches have their advantages and drawbacks. Formulation (1) may be more familiar to re-
searchers from outside of the interval community. Also, this formulation allows us to find a solution,
even if the model is not strictly correct, or if there are some outliers. Unfortunately, its main advantage
is also the main drawback: it does not allow us to check whether the model is correct, hence the results
might be considered non-reliable (they are verified solutions to a non-precisely formulated problem!).

On the other hand, using (2), we can verify if the model is correct, i.e., if it is consistent with all the
measurements. But in the presence of outliers, the solution to (2) will often be the empty set.

Fortunately, this formulation (2) can be enhanced to take the possible outliers into account. Firstly,
we can assume a priori a number τ of faulty examples in the training set and seek the set:{

p | f(xi, p) ⊆ yi for at least (N − τ) of i ∈ {1, . . . , n}
}

, (3)
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instead of (2).
A more advanced, but also more computationally intensive approach, would be to find the fuzzy set

of solutions. Its membership function at p would be the percentage of equations that are satisfied for p:
from zero to (possibly) one, although all equations are likely not to be satisfied anywhere (this would
correspond to a situation with no outliers).

These approaches are going to be presented in the paper.
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An experimental process sample is investigated that contains 10 “heavy” noised measurements with
two-dimensional measuring errors (Fig. 1). The function approximating the process is F (t) = At + B
, where t > 0 is the argument, A > 0 and B > 0 are the parameters (as in the middle part of the
complete sample from [1]). Uncertainty box of each measurement is constrained by errors of large
values |et| ≤ et,max ≤ 0.42 and |eF | ≤ eF,max ≤ 0.3, correspondingly. Note interesting aspect: step in
t is 0.04, but the constraint on it exceeds the step and is et,max = 0.042. As a result, uncertainty boxes
(Fig. 1) overlap each other. Probability characteristics of both errors are unknown.

Figure 1: Noised measurements (crosses) and their uncertainty boxes (rectangles); for illustra-
tion, the least squares mean line is shown in dots.

Problem: it is necessary to build and compare the information sets of compatible values of parame-
ters A,B for two compatibility criteria — weak and strong [2].

Due to simple form of the approximating function and using the Partial Information Sets approach
[3], it was succeeded to build exact information set for the strong compatibility criterion.

But for the weak compatibility criterion, corresponding information set was peeled (as described in
[4]) by small boxes, satisfying the experimentalist (Fig. 2).

Obviously, the second information set is significantly larger than the first one and completely con-
tains the latter inside.

Conclusion

The shown fact is very important for choosing the criterion of processing the noised experimental infor-
mation with interval uncertainty.
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Figure 2: a) Exact information set (for strong compatibility) and b) peeled set (for weak com-
patibility); minimal outer box-estimates of both sets are marked in dots.
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Several papers from the early-2000’s to the present have considered the standard quadratic optimiza-
tion problem, which can be defined as

min φ(x) = xTCx

subject to x ∈ S,
(1)

where C ∈ Rn+1×n+1, and S is the standard simplex defined by S = {x = (x1, . . . , xn+1)|∑n+1
i=1 xi =

1, xi ≥ 0}, see [3, 2, 4, 1]. In these works, the concept of convexity density is proposed, which is defined
as the ratio of the number of convex edges to the total number of edges of the simplex thereof. In
particular, some of these works can be construed as generalizations of theory of linear programming
based on a measure of the “amount" of convexity on the boundary of the simplex, while other results
seem to indicate that, the more circumstantial evidence of convexity there is on the boundary, the more
difficult the problem can be; this second type of result possibly leads to an a-priori way of detecting the
difficulty of global optimization problems. We will briefly review the results.

Based on the preliminary works, we generalized the concept of convexity density to more general
objective functions using interval arithmetic. Finally, we test the power of the generalized concept to
predict difficulty by running test sets on various significantly different branch-and-bound solvers.
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The maximum norm estimation for general functions is not an easy task, even in the sense of an approx-
imate estimation. The developing team of the popular finite element method library FEniCS discussed
whether to provide the maximum norm estimation for finite element solutions, but gave up the idea to
provide such a feature due to the problem of complexity and trustability of computed results [1].

In this research, a new idea is proposed to utilize the convex hull property for Bernstein polynomials
(see, e.g., [2]) to evaluate the maximum norm of polynomial systems, including the function of finite el-
ement solutions, which is usually represented by piecewise polynomials over triangulation of domains.
The convex hull property says that for a Bernstein polynomial function of degree n over interval [0, 1],

f(x) =

n∑
i=0

ci

(
n

i

)
xi(1− x)(n−i) ,

the following inequality holds
‖f‖∞ ≤ max |ci|.

Since a direct application of the convex hull property will lead to a raw estimation of the range of func-
tion f , we apply De Casteljau’s algorithm (see, e.g., [2]) to recursively subdivide the objective domain
to have piecewise and exact representation of the objective polynomial function. The application of the
convex hull property for subdivided polynomial over small sub-interval will have a sharp estimation of
the maximum norm of the function.

In the Verified Finite Element Method (VFEM) library for function over 2D and 3D domains, the
above idea has been successfully implemented to provide efficient and sharp maximum norm estimation
for functions from FEM function spaces [3].

The new efficient algorithm for maximum norm estimation has also been applied to the rigorous root
computation for nonlinear polynomial systems. Compared with the existing approaches which estimate
the polynomial function range by naive interval arithmetic over sub-domains, the newly proposed al-
gorithm demonstrates dramastically improved efficiency in rigorous solution estimation.
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In 1968 mathematicians Cottle and Dantzig proposed the linear complementarity problem, denoted
LCP (M, q), where M is a matrix and q a vector. It was shown that LCP (M, q) has a unique solution
for every vector q if and only if M is a P-matrix, i.e. all its principal minors are positive. However, this
class of matrices is computationally complex to recognize, the task of verifying given matrix on being
a P-matrix is co-NP-complete. This leads us to try and define several classes of P-matrices that are easily
recognizable. Such classes are e.g. B-matrices (introduced by Peña in [1]), doubly B-matrices (introduced
also by Peña in [2]) or BRπ -matrices (introduced by Neumann, Peña and Pryporova in [3]). The B-matrices
and doubly B-matrices found their use in localization of eigenvalues, as shown by Peña in [1] and [2].

Ever since the beginning of rigorous measurements, mathematicians had to deal with inaccuracy in
data or any form of uncetainty they may encounter. And one of the answers to this problem is interval
analysis, sometimes called interval computing or interval mathematics as well.

In our work we generalize our special subclasses of P-matrices, those being B-matrices, doubly B-
matrices and BRπ -matrices, into interval settings, thus interconnecting these two topics. We lay grounds
to recognizing the interval variants through characterizations, both through some property they posses
or via reduction to finite number of real instances (n real matrices for B-matrices, n3 instances for dou-
bly B-matrices and n matrices for BRπ -matrices), and we derive necessary conditions and sufficient ones.
Also we take a closer look at some of their properties, be it some fundamental ones (e.g. some conditions
that the matrix entries must fulfill), or closure properties. What is interesting is that whereas the com-
plexity of characterizations of interval B-matrices and interval BRπ -matrices is the same as that of the real
cases, in this case O(n2), for interval doubly B-matrices it is O(n4) compared to O(n2) for the real case.
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The subject of the talk is the development of computer-assisted proofs for solving optimal point packing
problems on the sphere. During the last two decades we established numerous tools for solving point
packing problems in two dimensions [1, 2]. Although some of these tools can be generalized to three
dimensions, the development of the basic interval data structures and the key algorithmic components
requires a whole new way of thinking.

In the talk a proposed interval representation of the subsets of the search space is introduced. These
sets will be called spherical intervals. Then a new method for eliminating suboptimal regions from these
spherical intervals will be given. This method is actually a constraint propagation technique applied to
the distance constraints written for the pairs of spherical intervals.

The power of the new methodology is demonstrated by solving the famous 3-dimensional kissing
number problem (also known as the 13 spheres problem) on a computer. During the solution process an
important symmetry breaking idea, known from two-dimensional packing methods, is applied, which
divides the original search space into regions such that each region can contain at most one point of an
optimal configuration.

The developed methods provide a good starting point for solving instances of various related opti-
mization problems. These include the Tammes problems (maximizing the minimal pairwise distance of
n points on the sphere), the Fekete point problems (minimizing a potential energy function computed
from the pairs of points on the sphere), the ‘double kissing’ problem (a generalization of the original
kissing number problem, involving two touching, identical spheres), and even various atom cluster and
molecular modeling problems (involving multiple, not necessarily identical spheres).

References

[1] M. C. MARKÓT AND T. CSENDES: A New Verified Optimization Technique for the “Packing Circles
in a Unit Square” Problems, SIAM J. Optimization, 16 (2005), 193–219.

[2] M. C. MARKÓT: Improved Interval Methods for Solving Circle Packing Problems in the Unit Square,
to appear in J. Global Optimization.

48



A Trick for an Accurate e−|x| Function in Fixed-Point Arithmetics

Mantas Mikaitis
Department of Mathematics, University of Manchester, Manchester, UK

mantas.mikaitis@manchester.ac.uk

Keywords: exponential function, exponential decay, fixed-point arithmetic

We demonstrate a method of improving the accuracy of the exponential decay function in fixed-point
arithmetic.

Consider two standard fixed-point number formats from the ISO/IEC 18037:2008 embedded C stan-
dard2: s16.15 (sign, 16 integer bits, 15 fractional bits) and s0.31 (sign, zero integer bits, 31 fractional
bits—maximized accuracy of values in (−1, 1)). Assume we have a standard implementation of y = ex

where x and y are s16.15. The input domain is x ∈ (loge(2−15) = −10.397..., loge(216−2−15) = 11.09...).
Outside of this range the output underflows or overflows. If we take x to be s16.15 but y s0.31, the
input domain changes to x ∈ (loge(2−31) = −21.487..., 0).

Consider implementing the exponential decay which requires the computation of e−|x|. Since inputs
are always negative, excluding zero as a special case, the output domain of the function will be [0, 1)
(including zero produced on underflow). We noticed that no integer bits are required for representing
this range of values and thus in the s16.15 outputs from the exponential function the top 16 bits after
the binary point are not used. In this case it would be better to have inputs as s16.15 and outputs
as s0.31. This can be achieved by a new implementation of ex. However, in some cases it might
not be possible, for example if it is already a hardware routine that outputs s16.15. The following
method allows to generate more accurate s0.31 outputs with the s16.15 exponential function without
modifying it.

To obtain the exponential decay output ex as s0.31, we need to arrive at 216ex (exponential in
s16.15 shifted 16 places left, which gives the same value when the bits are interpreted as s0.31). How-
ever, this cannot be done by simply running the arithmetic algorithm for calculating ex and then shifting
the output as that will place 0’s at the bottom part and no accuracy improvement will be achieved. The
following exponential function property is of interest: 216ex = eloge(216)ex = e16×loge(2)+x. Now we have
216ex as s16.15 or ex as s0.31 when the binary point location is interpreted to be located at 16 bits to
the left. Note that this is achieved not by shifting but by manipulating the exponent x (add the constant
loge(2)× 16) to get the same effect as first calculating ex and then shifting 16 places left, without propa-
gating 0’s at the bottom end but letting the exponential algorithm fill in the bottom bits as best as it can.3

This method is illustrated in Figure 1.

s16.15
exp

𝑥 (s16.15) 𝑒! (s16.15)

Add
ln	(2)×
16

𝑥 (s16.15) 2"#×𝑒! (s16.15)s16.15
exp

Binary 
point 
left

𝑒! (s0.31)

Figure 1: Illustration of the standard one precision use of s16.15 exponential (top) and the
required input transformation for obtaining s0.31 exp decay using the s16.15 exponential
function (bottom).

We have implemented this method in MATLAB and measured errors (compared with MATLAB’s
exp) of both the s16.15 exponential decay and the method of obtaining a s0.31 decay with the same
s16.15 function. (Figure 2). The results show that in the original input domain the exponential function

2https://www.iso.org/standard/51126.html
3Note that the format u0.32was not chosen because 17×loge(2)+x term would cause saturation in the s16.15

exponential function when x ≥ loge(0.5).
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Figure 2: Errors of s16.15 ex (black) and the mixed-precision method introduced here (blue).

output is more accurate. Furthermore, the input domain in which the outputs do not suffer underflow is
wider. As per Figure 1, this is achieved by adding a constant to the input, using the s16.15 exponential
function unchanged, and interpreting the s16.15 output as s0.31.
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For z ∈ C with positive real part, the gamma function is defined by

Γ(z) :=

∫ ∞
0

e−ttz−1dt,

and otherwise by analytic continuation. It is well known that Γ(z) is analytic everywhere in C, with the
exception of non-positive integer numbers Z−. Therefore, the general theory of primary matrix functions
ensures that the matrix gamma function Γ(A) is well defined for A ∈ Cn×n having no eigenvalues on
Z−. If all eigenvalues of A have positive real parts, then we have the representation

Γ(A) =

∫ ∞
0

e−ttA−Indt,

where tA−In := e(A−In) log(t) and In denotes the n× n identity matrix.
The function Γ(A) has connections with other special functions, which play an important role in

solving certain matrix differential equations [1]. Two of these special functions are the matrix beta and
Bessel functions. In [1], mathematical properties of Γ(A) are elegantly clarified, and fast and accurate
algorithms for computing Γ(A) are proposed.

The work presented in this talk addresses the problem of verified computations for Γ(A), specifically,
numerically computing interval matrices which are guaranteed to contain Γ(A). There are many sophis-
ticated verification algorithms for matrix functions. To the author’s best knowledge, on the other hand,
a verification algorithm designed specifically for Γ(A) has not yet appeared in the literature. A possible
method is to use the VERSOFT routine vermatfun. This routine is applicable not only to the matrix
gamma function but also to other matrix functions, and computes the interval matrices by enclosing all
the eigenvalues and eigenvectors of A via the INTLAB routine verifyeig. The routine vermatfun
fails when A is defective or close to defective, and requires O(n4) operations.

The purpose of this talk is to propose two verification algorithms for Γ(A). In [2], algorithms for en-
closing all the eigenvalues and basis of invariant subspaces of A are presented. As byproducts of these
algorithms, we can obtain interval matrices containing blocks whose spectrums are included in that of
A. Moreover, the spectrum ofA is also contained in the union of the spectrums of the blocks. In this talk,
we interpret the interval matrices containing the basis and blocks as a result of verified block diagonal-
ization (VBD), and develop the verification algorithms. To achieve enclosure for the gamma function
of the blocks, we derive normwise computable perturbation bounds. Here, the word “computable”
means that we can numerically obtain a rigorous upper bound which takes rounding and truncation
errors into account. We can apply the derived perturbation bounds if disks containing the spectrums
of input matrices lie in the open right half plane. We incorporate matrix argument reductions (ARs) to
force the input matrices to have this property, and develop theories for accelerating the ARs. The first
algorithm uses the VBD based on a numerical spectral decomposition, and involves only O(n3) opera-
tions if the total computational cost of the accelerated ARs is O(n3). The second algorithm adopts the
VBD based on a numerical Jordan decomposition, is applicable even when A is defective, and requires
O(n4) operations. We present a theory for verifying that A has no eigenvalues on Z−. By the aid of this
theory, these algorithms do not assume but prove that A has no eigenvalues on Z−. The first and second
algorithms require intervals containing Γ(0)(z)/0!, . . . ,Γ(`)(z)/`!, where ` is a non-negative integer and
z ∈ C. To the author’s best knowledge, an algorithm for computing such intervals is not available in
literature, whereas there are well-established algorithms for computing intervals containing real scalar
gamma functions. We thus present a way for computing such intervals, which is based on the Spouge
approximation. Numerical results show efficiency and robustness of the algorithms.
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Let αIR, and A ∈ Cn×n have no non-positive real eigenvalues. In this talk, we are concerned with
accuracy of numerically computed result for Aα, which is uniquely defined as follows:

Definition 1 (Higham and Lin [1, Definition 1.1]). Let αIR, and A ∈ Cn×n have no non-positive real eigen-
values. Then, Aα = eα log(A), where log(A) is the principal logarithm of A.

If α = 1/d, with d a positive integer, then Aα reduces to the principal dth root of A. If A has no
non-positive real eigenvalues and α ∈ (0, 1), then we have the representation

Aα =
sin(απ)

απ
A

∫ ∞
0

(t1/αIn +A)−1dt,

where In denotes the n× n identity matrix.
Computing Aα has many applications such as Markov chain models in health-care and finance, frac-

tional partial differential equations, discrete representations of norms corresponding to finite element
discretization of fractional Sobolev spaces, and the computation of geodesic-midpoints in neural net-
works. Efficient numerical algorithms for computing Aα are proposed (see [1], e.g.).

In this talk, we consider verified computations for Aα, specifically, numerically computing interval
matrices which are guaranteed to contain Aα. Although there are many well-established verification
algorithms for matrix functions, a verification algorithm designed specifically for Aα seems to be un-
available in the literature. If α is rational, then α can be written as α = c/d, where c, d ∈ Z and d > 0, so
that Aα = (A1/d)c. Therefore, the verification algorithm for the matrix principal dth root is applicable.
However, we cannot adopt this approach when α is irrational. One of possible methods is to use the
VERSOFT routine vermatfun. This routine is applicable not only to the matrix real power but also to
other matrix functions, and computes the interval matrices by enclosing all the eigenvalues and eigen-
vectors of A via the INTLAB routine verifyeig. The routine vermatfun fails when A is defective
or close to defective, and requires O(n4) operations. Since Aα = eα log(A), we can compute the interval
matrices by combining the algorithm for enclosing the matrix exponentials and principal logarithms.
On the other hand, this combination tends to give interval matrices whose radii are not small. This
seems to be because an interval matrix containing α log(A) is computed in the first stage, and its radius
is enlarged in the process of enclosing the matrix exponential.

The purpose of this talk is to propose two verification algorithms for Aα. In [2], algorithms for en-
closing all the eigenvalues and basis of invariant subspaces of A are presented. As byproducts of these
algorithms, we can obtain interval matrices containing blocks whose spectrums are included in that of
A. Moreover, the spectrum of A is also contained in the union of the spectrums of the blocks. In this
talk, we interpret the interval matrices containing the basis and blocks as a result of verified block diag-
onalization (VBD), and develop the verification algorithms. To achieve enclosure for the real power of
the blocks, we derive componentwise computable perturbation bounds. Here, the word “computable”
means that we can numerically obtain a rigorous upper bound which takes all possible errors into ac-
count. The first algorithm uses the VBD based on a numerical spectral decomposition, and involves
only O(n3) operations if |α| is not too large. The second algorithm adopts the VBD based on a numer-
ical Jordan decomposition, is applicable even when A is defective, and requires O(n4) operations. We
present a theory for verifying that A has no non-positive real eigenvalues, which is based on checking
nonsingularity of a matrix. By the aid of this theory, these algorithms do not assume but prove that A
has no non-positive real eigenvalues. Numerical results show effectiveness of the algorithms.
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When solving applied and research problems, there often arise situations when certain parameters
are not exactly known, but there is information about their ranges [1]. For such problems, it is necessary
to obtain an interval estimate of the solution based on interval values of parameters. For dynamic sys-
tems such problems are formulated in the form of a Cauchy problem for a system of ordinary differential
equations (ODEs) with interval initial conditions or interval parameters [2]. There are many works de-
voted to the interval methods. Some methods are based on the representation of the set of solutions
through geometric primitives, for example, parallelepipeds and ellipses; there are also methods based
on interval arithmetic; methods based on symbolic calculations; stochastic methods such as the Monte
Carlo method. The adaptive interpolation algorithm [3, 4] is an alternative to existing methods. Though
it lacks the guarantee property inherent in interval methods it obtains the boundaries of solutions with
a given accuracy, has a high degree of parallelization and works faster than most of other methods.

The main idea of the algorithm is to build a dynamic structured grid based on kd-tree over the set
formed by the interval parameters. Each vertex of the tree is a regular interpolation grid corresponding
to a given degree of interpolation polynomial. A solution that is found using the parameters determined
by the position of the node in the parametric space, is associated with the node. In the computational
process, at each step of the ODE system integration, a piecewise polynomial function that interpolates
the dependence of the solution on the interval parameters is constructed. The calculation of the interval
estimation of the solution comes down to computation of the range of interpolating function values.

One iteration of the algorithm consists of two stages. At the first stage, all solutions associated with
nodes are recalculated to the next “temporary” layer using some numerical integration method. At the
second stage, the kd-tree is rebuilt according to the principle of minimizing the interpolation error. The
interpolation error of the solution is estimated for each vertex. If at some leaf vertex the interpolation
error exceeds some given value, then the vertex is divided into two ones. In this case, the construction
of a new partition is carried out at the previous step, and the integration step is repeated. This is due
to the fact that when a new vertex is formed, the values associated with the nodes of the new grids are
interpolated, and they need to be calculated at time when the error is still valid. If the error becomes
acceptable for the vertex and all its descendants, then the descendants are deleted, and the vertex itself
becomes a leaf.

Statements regarding the adaptive interpolation algorithm properties are formulated and proved.
It is shown that the global error estimate is directly proportional to the height of the kd-tree. Testing
the algorithm on a representative series of problems of different dimensions with a different number of
interval parameters (including problems of chemical kinetics, gas dynamics, problems with bifurcations
and dynamic chaos) demonstrates its effectiveness.
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In 1988, Suarez and Schopf [1] have introduced a delayed action oscillator equation

dx(t)

dt
− x(t) + x3(t) + αx(t− τ) = 0 (1)

as a simple model of El Niño. This paper proposes to add a seasonal forcing term to SS equation and
consider the following forced delay action oscillator equation

dx(t)

dt
− x(t) + x3(t) + αx(t− τ)− β cosωt = 0, (2)

which we will call forced Suarez and Schopf’s equation, or fSS equation in short. The variable x repre-
sent a deviation of a sea surface temperature near Peru from average. The term f(x) = −x(t) + x3(t)
represents an effect of energy exchange between sea surface and atmosphere. The term αx(t− τ) repre-
sents an effect of delay by wave propagation on the equator from this area to the east end of Asia (the
eastward Kelvin wave), reflected at there, and reflecting back to near Peru (the westward Rossby wave).
The parameter τ(> 0) expresses a turn around time of these Kelvin and Rossby waves propagation.
Here, the parameters β (= 0) and ω (> 0) express the strength of the effect of the seasonal force, and the
angular frequency of the seasonal force, respectively.

One of the main purpose of this paper is to show that fSS equation exhibits various complicated
dynamics. Fig. 1 shows a stroboscopic bifurcation diagram obtained by numerical integration. We
consider a problem of finding what kind of solutions generate such a bifurcation diagram. We will
call this problem as an inverse bifurcation diagram problem. The 1st, the 4th and 5th figures of Fig.
1 display a solution of this problem, which we will call an inverse bifurcation diagram. This diagram
mainly consists of Galerkin’s approximate solution branches of periodic solutions. Throughout this paper,
in the inverse bifurcation diagram, the odd symmetric 1-periodic solution4 branch is labeled by ‘s’ or ‘1s’. On
the other hand, the branch consisting of asymmetric 1-periodic solutions is labeled by ‘a’ or ‘1a’. The label ‘1/n’,
or simply ‘n’ indicates an 1/n subharmonic solution. If further the symbol ‘s’ or ‘a’ is concatenated, such a
periodic solution is odd-symmetric or not odd-symmetric, respectively. We choose a representative from each
solution branch and prove the existence of exact periodic solutions nearby such representatives via the
method of computer assisted existence proof of periodic solutions proposed in Ref [2]. The red line of
the 2nd and 4th figures represent time average l2 norm of solutions. The final two figures in Fig. 1 show
Galerkin’s approximations of almost periodic solutions of fSS equation. In these cases, the red lines
represent Poincaré plots.
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The Sinc approximation is based on Shannon’s sampling formula

F (x) ≈
∞∑

k=−∞

F (kh) sinc

(
x− kh
h

)
, (1)

where sincx = sin(πx)/(πx), and h is a mesh size. If F is analytic and absolutely integrable on Dd = {z ∈
C : | Im z| < d} (d > 0), this approximation achieves exponential convergence: O(e−πd/h). Furthermore,
if |F (x)| decays exponentially as x → ±∞, i.e., |F (x)| = O(e−α|x|) (α > 0), the infinite sum in (1) may
be truncated at some truncation number N as

∞∑
k=−∞

F (kh) sinc

(
x− kh
h

)
≈

N∑
k=−N

F (kh) sinc

(
x− kh
h

)
, (2)

where its error rate is O(e−αNh). In view of the approximation error in (1) (called discretization error)
and that in (2) (called truncation error), the optimal formula of the mesh size h with respect to the
truncation number N is given by

e−πd/h = e−αNh ⇐⇒ h =

√
πd

αN
,

which gives O(e−
√
πdαN ) as a final (overall) error rate. The Sinc approximation for exponentially decay-

ing functions is called the SE-Sinc approximation, which has extensively been developed and analyzed
by Stenger [1].

Recently, it has been reported [2] that if |F (x)| decays double-exponentially as x→ ±∞, i.e., |F (x)| =
O(e−(π/2)α exp(|x|)), the approximation error in (2) is O(e−(π/2)α exp(Nh)), which is far smaller than that in
Stenger’s results. The Sinc approximation for double-exponentially decaying functions is called the DE-
Sinc approximation. In this case, the optimal formula of the mesh size h with respect to the truncation
number N should be given by the equation

e−πd/h = e−(π/2)α exp(Nh), (3)

but the solution h cannot be expressed in terms of elementary functions of N . Instead, several authors
have employed a near-optimal formula

h =
log(2dN/α)

N
.

By the formula, the left-hand side in (3) becomes e−πdN/ log(2dN/α), and the right-hand side in (3) becomes
e−πdN . Although those two rates are approximately equal, the former rate is a bit lower than the latter
rate, which gives O(e−πdN/ log(2dN/α)) as a final error rate of the DE-Sinc approximation. Furthermore,
aiming for a computation with guaranteed accuracy, computable error bounds for both SE- and DE-Sinc
approximations has been already given [3].

The main contribution of this study is to propose the optimal formulas of h and N for the DE-Sinc
approximation, and to give its computable error bound. We introduce an integer n as a parameter, and
select h and N as

h =
arcsinh(dn/α)

n
, N =

⌈
n · arcsinh(q(dn/α))

arcsinh(dn/α)

⌉
,

where q(x) = x/ arcsinhx. Then, both discretization and truncation errors become exactly the same rate:
O(e−πdn/ arcsinh(dn/α)). Numerical comparison with the existing formulas will also be given in this talk.

59



References

[1] F. STENGER: Handbook of Sinc Numerical Methods, CRC Press, Boca Raton, FL, 2011.

[2] M. SUGIHARA, T. MATSUO: Recent developments of the Sinc numerical methods, Journal of Compu-
tational and Applied Mathematics, 164/165 (2004), 673–689.

[3] T. OKAYAMA, T. MATSUO, M. SUGIHARA: Error estimates with explicit constants for Sinc approxi-
mation, Sinc quadrature and Sinc indefinite integration, Numerische Mathematik, 124 (2013), 361–394.

60



Quantification of Time-Domain Truncation Errors for the
Reinitialization of Fractional Integrators

Andreas Rauh1 and Rachid Malti2

1 ENSTA Bretagne, Lab-STICC, 29806 Brest, France
2 IMS Laboratory, University of Bordeaux, 33405 Talence, France

Andreas.Rauh@interval-methods.de, rachid.malti@ims-bordeaux.fr

Keywords: Fractional differential equations (FDEs), Observer design, Uncertain cooperative dynamics,
Temporal truncation errors, State estimation

FDEs are powerful modeling tools in many engineering applications in which non-standard dynamics,
characterized by infinite horizon states, can be observed. An example for such applications is modeling
the charging and discharging dynamics of batteries [1]. Previous work for an interval-based state esti-
mation of such systems has accounted for a cooperativity preserving or cooperativity enforcing design of
observers [1, 3]. These interval observers exploit specific monotonicity properties of positive dynamic
systems and provide lower and upper bounding trajectories for all pseudo-state variables as soon as
suitable initialization functions are specified. Moreover, interval-valued iteration procedures have been
developed [5] for a verified simulation of such systems. The latter, based on Mittag-Leffer function pa-
rameterizations of the pseudo-state enclosures, are not a priori restricted to cooperative models but are
applicable also to nonlinear systems with interval parameters.

However, the evaluation of observer-based pseudo-state estimation procedures for continuous-time
fractional models supposes that measurements are also available in a continuous-time form or at least at
each sampling period [3]. For many practical applications, this is not the case, so that continuous-time
pseudo-state predictions need to be performed between the discrete time instants at which measure-
ments are available. Then, the measured pseudo-state information (described by intervals to represent
bounded measurement errors) can be intersected with the predicted state information to enhance the
knowledge of the actual system dynamics. However, this intersection demands reinitializing the inte-
gration of the fractional model. Similar requirements are discussed in [5], where temporal sub-slices
were considered to reduce the overestimation of interval-based simulation approaches.

Due to the infinite horizon memory property of fractional systems, the reinitialization of time-domain
simulations requires a rigorous consideration of the arising truncation errors. Guaranteed outer bounds
for these errors were derived in [4]. These bounds are the basis for a novel error refinement strategy
between discrete reinitialization points in an observer-based setting. In this contribution, we discuss the
following aspects:

1. Expressing non-constant pseudo-state initializations from a bounded past time window in terms
of uncertain initial conditions at a single point with a conservative interval-valued correction of
the FDE model;

2. Implementation of an observer-based quantification of truncation errors for simulations with pe-
riodic reinitialization (e.g. based on the floating point MATLAB routines from [2]);

3. Performing an interval contractor-based state estimation of a continuous-time battery model [1]
with discrete-time measurements;

4. Describing possible interfaces with the verified simulation routines
from [5] as an outlook for future work.
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In control theory, as well as in other fields, one regularly encounters iterated powers of a given matrix
A. The precise definition of the problem we study is given by Mayer and Warnke in [2]. While these
iterations converge, when exact arithmetic over the reals is considered, that is, Ak → 0 as k → +∞,
divergence may occur when floating-point or interval arithmetic is used. This phenomenon and some
ways to circumvent it are described by Lohner in [1]. We will explore, experiment and as much as
possible revisit some of the solutions proposed in [1]. More precisely, we will explore the use of a
preconditioner based on an approximate SVD of A, and the use of a step k0 such that the iterations
using Ak0 converge, even when floating-point or interval arithmetic is employed.
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In this talk, we are concerned with the bifurcation problem of the delay van der Pol-Duffiing equation

d2x(t)

dt2
+ k(x2(t)− 1)

dx(t)

dt
+ µx(t) + γx3(t)− αx(t− τ)− β cosωt = 0, (1)

where k > 0, τ ≥ 0, µ ≥ 0, γ > 0, α > 0 and β > 0 are parameters. It is known that subharmonic
solutions and chaotic aperiodic solutions have been observed numerically for the equation (1) (see, e.g.,
[1]).

Fig. 1 shows a stroboscopic bifurcation diagram obtained by numerical integration. We consider a

Figure 1: Bifurcation diagram

problem of finding what kind of solutions generate such a bifurcation diagram. We will call this problem
as an inverse bifurcation diagram problem.

Figure 1 exhibits complicated dynamics, i.e., we can observe 2π-periodic solutions branches, sub-
harmonic solution branches, and aperiodic solution branches. To solve the inverse bifurcation prob-
lem, in the first place, we have calculated approximate 2π-periodic and subharmonic solutions using
Galerkin’s method. Then, using the continuation method, we have calculated approximate periodic
solution branches. For each approximate periodic solution branch we have picked upped a subhar-
monic solution. Then, extending a verification method presented in Ref [2], the existence of an exact
subharmonic solution is verified nearby the approximated subharmonic solution via verified numerical
computations. Fig.2 is a solution of the inverse bifurcation diagram problem associated with the bi-
furcation diagram shown in Fig.1. In this figure, the label ‘1/n’ indicates an 1/n subharmonic solution
(branch). If further the symbol ‘s’ or ‘a’ is concatenated, such a periodic solution is odd-symmetric or
not odd-symmetric, respectively.
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Figure 2: Inverse bifurcation diagram
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IntervalArithmetic.jl [3] is a library for interval arithmetic written entirely in the Julia lan-
guage [6]. As such it is both usable interactively, while still being competitive in performance with
state-of-the-art C++ libraries. The JuliaIntervals suite of libraries [2] contains implementations of
branch-and-bound-type algorithms built on IntervalArithmetic.jl, including IntervalRoot-
Finding.jl and constraint propagation in IntervalConstraintProgramming.jl [4].

These libraries were originally designed to be run on a single core of the CPU. However, over the
last few years the parallel programming capabilities available within Julia have significantly improved.
They are designed so that the same code may be run on different platforms, including multi-threading
with shared memory, on distributed processors, and on the GPU (Graphics Processing Unit).

In this talk we will focus on GPUs, which offer the tantalising possibility of large performance gains
for those algorithms that can take advantage of their highly-parallel design. For example, the latest
NVIDIA CPUs, such as the V100 that we use, have over 5,000 cores on a single code. The ideal paradigm
is to run the same program on multiple data (SPMD) where each "thread" (piece of work) carries out the
same instructions on their own piece of data. Branch-and-bound-type methods are clearly a fruitful
playground for applying GPUs – although with some caveats.

The CUDA.jl library [5, 1] provides facilities for automatically compiling to the GPU functions that
are written in Julia code. But it is also possible to run vectorised computations on vectors of objects
living on the GPU without writing a single line of GPU-specific code, using broadcasting. We will
demonstrate vectorised implementations of branch-and-bound-type methods, such as root finding and
global optimisation, that are generic, i.e. they are able to run on either the CPU or the GPU, with no
change in code.

As an application, we introduce a new benchmark of computing and verifying 106 roots of the 2D
Griewank function in one second, representing a 240x speed-up over a single CPU core, with room for
further code optimisation by writing GPU kernels by hand. We also show significant speed-ups for the
standard benchmark problem of computing the ground state of a 5-atom Lennard-Jones cluster.

Finally, we will demonstrate what we believe to be the first implementation of the forward-backward
(HC4revise) interval constraint propagation algorithm running on the GPU, achieved using a code-
generation approach.
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We consider the following data fitting problem: given results of measurements or observations, it is
required to construct a functional dependence of a fixed type that “best fit” these data. Specifically, we
need to determine the parameters β1, β2, . . . , βn of a linear function

y = β1x1 + β2x2 + . . .+ βnxn (1)

from a number of values of the independent variables x1, x2, . . . , xn (also called predictor or input vari-
ables), and the corresponding values of the dependent variable y (also called criterion or output variable).
Both x1, x2, . . . , xn and y are not known precisely, and, in the i-th measurement, we only know intervals
of their possible values, that is, x1 ∈ xi1, x2 ∈ xi2, . . . , xn ∈ xin and y ∈ yi, i = 1, 2, . . . ,m. Overall,
the data of our data fitting problem form an interval m × n-matrix X = (xij) and an interval m-vector
y = (yi).

To find estimates of the coefficients β1, β2, . . . , βn, several techniques have been developed. We focus
on the so-called maximum compatibility method elaborated in [1] and other works. After the estimates
for all βi are found, we need to somehow evaluate their possible variability and non-uniqueness. Our
work presents the construction of two quantitative measures of variability for parameter estimates in
the data fitting problem under interval uncertainty. They show the degree of variability and ambiguity
of the estimate, and the need for their introduction is dictated by the fact that the results of processing
interval data are typically non-unique. These measures can serve, in a certain sense, as an analog of the
variance of the estimate in traditional probabilistic statistics.

In the maximum compatibility method, the estimate β̂ = (β̂1, β̂2, . . . , β̂n) of the parameters β1, β2,
. . . , βn is taken as the argument of the maximum of a special “recognizing functional”, a function Tol :
Rn → R, constructed from the interval data of the problem (see [1]. In other words,

β̂ = (β̂1, β̂2, . . . , β̂n) = arg max
x∈Rn

Tol (x).

To quantitatively characterize the variability of the estimate of the parameter vector β = (β1, β2, . . . , βn)
in the linear function (1), which is obtained by the maximum compatibility method from the data X , y,
we propose the values

IVE (X,y) =
√
n max

Rn
Tol ·

(
min

X∈vertX
cond2X

)
·

∥∥ arg max
Rn

Tol
∥∥

2

‖ŷ‖2

and

IDE (X,y) =
√
n max

Rn
Tol · cond2 X ·

∥∥ arg max
Rn

Tol
∥∥

2

‖ŷ‖2
,

where

n is the dimension of the parameter vector of function (1);

‖ · ‖2 is the Euclidean norm (2-norm) of vectors from Rn;

vertX is the set of corner matrices for the interval matrix X , i. e., the set of such point matrices X =
(xij) that xij ∈ {xij , 1lvxij} for every i and j;

X is a special matrix, called endpoint combination matrix, of the size N × n with N ≤ m · 2n, made up of
combinations of endpoints of the interval elements along each row of the data matrix X ;



cond2 means the spectral condition number of the matrix, defined as

cond2A = σmax(A) / σmin(A),

the ratio of its maximal (σmax) and minimal (σmin) singular values;

ŷ is a certain “most representative” point from the interval vector y, which is taken as

ŷ = 1
2 (|midy + rady|+ |midy − rady|)

and the operations “mid” and “rad” are applied componentwise.

The rationale for new variability measures is given, their motivation and applications are discussed.
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We are concerned with a problem of numerical verification of the existence for solutions to the delayed
van der Pol-Duffing equation

d2x(t)

dt2
+ k(x2(t)− 1)

dx(t)

dt
+ µx(t) + γx3(t)− αx(t− τ) = β cos t, (1)

where k > 0, τ ≥ 0, µ ≥ 0, γ > 0, and β > 0. It is known that subharmonic solutions and chaotic
aperiodic solutions have been observed numerically for the equation (1) (see, e.g., [1]). In this paper, we
present an algorithm for proving the existence of 1/n subharmonic solutions with the periods n times
than that of the external forcing term. Via the time scaling, we reduce the problem to a problem of
seeking 2π periodic solutions of the following equation:

d

dt

(
x(t)
y(t)

)
+n

 −y(t)

k(x(t)2−1)y(t)+µx(t)+γx3(t)−αx
(
t− τ

n

)
−β cosnt

 = 0. (2)

We first compute a Galerkin approximate solution of (2) using the truncated Fourier series

x0(t) =
a0

2
+

m∑
i=1

(ai cos it+ bi sin it) .

We then prove the existence of an exact subharmonic solution close to the approximate solution x0 using
the extended Newton-Kantorovich theorem. For the evaluation of the norm of the inverse operator of
the Fréchet derivative, we have used the theory of asymptotic diagonally dominant matrix developed
in Ref. [2].

As an example, Figure 1 shows an approximate 1/9 subharmonic solution obtained for (2) via Galerkin’s
method. The numerical verification result of the existence of the exact solution around this approximate
solution is shown in Table 1. The verification theory of Ref. [2] declares that b(r0) < 1 implies the
existence of a 1/9 subharmonic solution nearby the approximate solution x0. Here, Mn, M , η, r0 and
‖x0‖∞ are bounds for the norm of the inverse of Jacobian matrix of the Galerkin’s equation at x0, the
norm of the inverse of the Frechét derivative at x0, the residual, the radius of the ball in H1-Sobolev
space centered at x0 including an exact solution, and the maximum norm of the approximate solution,
respectively. For detail, we will explain in the presentation.

Table 1: Result for verification of the existence

m Mn M η r0 b(r0) ‖x0‖∞
500 372 9782 3.28e−7 6.57e−7 8.42e−2 2.57



a) x0(t) b) Phase diagram

Figure 1: Approximate solution (1/9 subharmonic)
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This talk provides a numerical method of rigorous integration in forward time for a class of time-
dependent partial differential equations. Our tool of rigorous integration is based on a fixed point
form via semigroup theory (the evolution operator generated on a Banach space). A uniform bound
of the evolution operator, which is a solution map of the linearized problem at an approximate solution,
provides the existence of such evolution operator. Checking the hypothesis of local inclusion theorem,
we obtain rigorous error bounds of the solution in a time interval. The proof of local inclusion theo-
rem is based on Banach’s fixed-point theorem. Furthermore, a time stepping scheme extends the local
inclusion of the solution, which is designed to avoid the propagation of errors. As applications of this
method, we introduce results of computer-assisted proofs for complex-valued nonlinear heat equation
[1], nonlinear Schrödinger equation [2], and Swift-Hohenberg equation.
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The incompressible stationary 2D Navier-Stokes equations

−∆v +Re
[
(v · ∇)v +∇q

]
div v

= f

= 0

}
in Ω

v = 0 on ∂Ω

are considered on an unbounded strip domain Ω ⊆ R2 perturbed by a compact obstacle D, i.e., Ω =
R× (0, 1) \D. Here, Re denotes the Reynolds number and f models external forces acting on the fluid.

With U denoting the Poiseuille flow and P its associated pressure we are interested in solutions of
the form v = U + ū where ū(x, y)→ 0 as |x| → ∞ and q = P + p.

Since such functions ū do not satisfy the Dirichlet boundary conditions anymore we perform a second
transformation using a solenoidal vector field V with

V = 0 on ∂Ω \ ∂D, V = U on ∂D and V (x, y)→ 0 as |x| → ∞

which finally leads to the transformed Navier-Stokes equations

−∆u+Re
[
(u · ∇)u+ (u · ∇)(U − V ) + ((U − V ) · ∇)u+∇p

]
div u

= g

= 0

}
in Ω

u = 0 on ∂Ω

with the right-hand side g = f −∆V −Re
[
(V · ∇)V − (V · ∇)U − (U · ∇)V

]
.

Modeling the divergence free condition in the solution space

H(Ω) :=
{
u ∈ H1

0 (Ω,R2) : div u = 0
}

we can eliminate the pressure from the first equation which leads to the following weak formulation for
the velocity:

Find u ∈ H(Ω) such that∫
Ω

(
∇u · ∇ϕ+Re

[
(u · ∇)u+ (u · ∇)(U + V ) + ((U + V ) · ∇)u

]
· ϕ
)
d(x, y)

=

∫
Ω

g · ϕd(x, y) (ϕ ∈ H(Ω)).

Applying computer-assisted techniques to this problem, we are able to prove existence of a (non-
trivial) solution u∗ ∈ H(Ω) to the weak formulation (with f ≡ 0) for different Reynolds numbers and
several domains Ω. We point out that our methods do not use a stream function formulation which
allows us to handle domains which are not simply connected as well.

Starting from an approximate solution (computed with divergence-free finite elements), we deter-
mine a bound for its defect, and a norm bound for the inverse of the linearization at the approximate
solution. For the latter, bounds for the essential spectrum and for eigenvalues play a crucial role, es-
pecially for the eigenvalues “close to” zero. Therefor we use the Rayleigh-Ritz method, a corollary of



the Temple-Lehmann theorem and a homotopy method to get enclosures of the eigenvalues below the
essential spectrum.

With these data at hand, we can use a fixed-point argument to obtain the existence of a solution
“nearby“ the approximate one as well as an error bound (in the Sobolev space H(Ω)).

Finally, if our computer-assisted proof provides the existence of a solution u∗ to the weak formulation
for the velocity we additionally prove existence of a corresponding pressure p∗ such that the pair (u∗, p∗)
is a weak solution to the transformed Navier-Stokes equations. The existence result is obtained by
purely analytical techniques, nevertheless, for a given approximate solution to the pressure our methods
provide an error bound (in a dual norm) as well.
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We propose a numerical verification method to prove existence of time-global solutions. Our problems
are autonomous ODEs on a complex plane with analytic functions in the right-hand sides:

ż = f(z),

z(0) = z0 ∈ D ⊂ C.

The method is based on the features of analytic functions and can be applied to the cases where Lya-
punov functions are hardly constructed. Moreover we mention a numerical verification method to
prove existence of closed orbits distributing continuously. An example problem derived from nonlinear
Schrödinger equation is treated: {

ȧ0 = i(a2
0 + a2

1),
ȧ1 = i(−1 + 2a0)a1,

a0(0), a1(0) ∈ D ⊂ C.

We apply our method to the above system and prove that it has a time-global solution within a bounded
region D and that there are periodic solutions which distribute continuously in a subset of D.
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A verified algorithm for higher order derivatives using several features of nilpotent matrix is pro-
posed. Since the calculations of derivatives are used in many applications, there are many previous
studies. For example, the automatic differentiation (AD) algorithm is well known as an accurate and
efficient algorithm for lower order derivatives, however, for arbitrarily higher order derivatives the AD
algorithm quickly grow very complicated.

Recently, hyper-dual numbers are proposed by Fike and Alonso. The numbers are an extension of
dual numbers, which are based on the non-real term

ε2 = 0 where ε 6= 0.

Similar to this features, hyper-dual numbers are based on the non-real term

ε2i = 0 (1 5 i 5 n) where εi 6= 0, εi 6= εj , εiεj = εjεi 6= 0 (i 6= j).

These numbers enable us to get accurate results of second or higher derivatives. In addition to that,
the matrix representation of hyper-dual numbers, which consists of the nilpotent matrix, is very useful
for calculation of high order derivatives. In the AD algorithm, every operation needs to be made for
calculation, however, the matrix representation of hyper-dual numbers enable us to avoid it.

In this talk, we propose verification algorithm using features of the nilpotent matrix. Numerical
examples are presented for illustrating effectiveness of the proposed algorithm.
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Currently, neural networks are used in many fields. Whether we just think of the face recognition
in mobile phones or self-driving cars, they have become more and more a part of our everyday life. A
lot has happened in the last decades, newer and newer methods have been invented. Their robustness
is usually checked by random testing, i.e. by looking for examples that are close to known examples
and for which the neural network gives no longer the desired result. These cases are called adversarial
examples. A more sophisticated method than random testing is currently not widely used according
to the literature. Most of the verification techniques are based either on optimization problems [3], on
simple linear [1] or affine [2] approximations.

Our goal is to develop a method to improve the procedures based on this linear approach and control
the robustness of different artificial neural networks with greater efficiency. This system is based on
Taylor polynomials. Another drawback of the current systems is that while they attempt to provide
a guarantee of neural network robustness, the systems themselves are not reliable against adversarial
examples. Such examples can now be found in the literature. There are many cases in the literature
where a neural network that is considered to be good can easily be "cheated". For example, for number
recognition systems (MNIST), the neural network can be completely diverted from the correct answer
[4]. This behavior is highly undesirable in such systems.

Currently, neural network robustness control systems are basically optimized for fast execution,
which leads to rounding errors that can mask potentially hostile examples. The approach we have taken
has not really appeared in this field before, so it may be an interesting direction and it can provide novel
results if implemented successfully. Moreover, a proper implementation can address the reliability gaps
of previous systems. It is expected that runtime will increase, but considering that this algorithm only
needs to be run once on the final neural network and since it can be well parallelized, to some degree
this is tolerable, for a possibly more reliable response. Especially for systems where this is desirable at a
higher level.

A MATLAB/INTLAB implementation of the Taylor model was used [3]. The variables of the Taylor
models are the inputs of the neural network. The initial Taylor models were defined in the first layer of
the neural network. The Taylor model is used in this paper for the Tanh, Sigmoid, and ReLu activation
functions. In the last case, the adoption is not trivial because the derivative of the ReLu function is
not continuous. In this case, we applied some tricks, for example, we used the soft-max function for
inclusion.

In the presentation, our MATLAB implementation is shown, and we measure the speed of the MAT-
LAB version of the Taylor model. We also present the advantages of our method with some examples.
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We have introduced the problem of adversarial examples in our other two talks: "Adversarial Exam-
ple Free Zones for Specific Inputs and Neural Networks" and "Verification of artificial neural networks
via Taylor models of INTLAB". Obviously, the verification of artificial neural networks is a challeng-
ing new field for the application of reliable computation techniques. The present talk summarizes the
results of our computational experiments with the neural network verification method MIPVerify [3]
when used together with the rational arithmetic based mixed integer optimizer SCIP [2]. The use of
the latter one was implied by the fact that MIPVerify proved to be unreliable with the suggested solver
Gurobi [1], see our recent paper [4].

In the presentation, our new implementation of MIPVerify and SCIP is shown, and we present the
measured speed of the procedure. Ten handwritten numbers were applied from the MNIST database,
and some artificial neural networks from the ERAN (ETH Robustness Analyzer for Neural Networks)
set were applied. We also present the advantages of the new method with some examples.
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