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SZTE TTIK Műszaki Informatika Tanszék 

Bár az emberi dinamika skálafüggetlen jellege mind a térbeli mozgás, mind a motorikus 

aktivitás esetében tetten érhető, a különböző adathalmazok statisztikai eloszlásait vizsgálva a 

hatványtörvényen túl azonban számos egyéb egymásnak ellentmondó eredmény is született. Az 

emberi motorikus aktivitás mérését gyakran alkalmazzák orvosi célú (pl. alváskutatás, 

pszichiátria) kutatásokban is, amit egy ún. aktigráffal végeznek, mely a csukló gyorsulása 

alapján számszerűsíti az alany aktivitását. Ennek megvalósítása azonban gyártónkként eltérő és 

többnyire nem publikus, ami miatt sokszor eltérő módokon előállított aktivitásjeleket 

vizsgálnak a mögöttes módszertan kellő jellemzése nélkül. Továbbá, az aktivitásadatok 

statisztikai elemzési módszerei sem meghatározottak a szakirodalomban. Például eltérő lehet 

az, hogy az aktivitásjel aktív és passzív szakaszait milyen küszöbszinttel különítik el, ezek 

hosszait milyen, az eloszlást jellemző függvényen (valószínűségi sűrűségfüggvény, túlélési 

függvény) keresztül vizsgálják, arra hogyan (least squares, maximum likelihood), mekkora 

tartományon, milyen eloszlásokat illesztenek és miképp választják ki a legmegfelelőbbet. Ezzel 

szemben a kutatócsoport korábban megmutatta, hogy a csuklón mért gyorsulásjelek, és az 

azokból számolt aktivitásjelek spektruma is egy univerzális, spektrális skálafüggetlenséget 

jelentő, 1/f zaj alapú karakterisztikát követ az aktigráfiás módszertantól függetlenül. 

Ezek alapján célom a kutatócsoport korábban is vizsgált gyorsulásjeleiből az eltérő 

módszerekkel meghatározott aktivitásjelek statisztikai jellemzőinek összevetése és ezek alapján 

az okozott eltérések vizsgálata volt. Ezen felül pedig a legfontosabb kapcsolódó publikációk 

eltérő modellillesztési megközelítéseit összevetve is megmutatni, hogy azok milyen 

különbségeket okoznak. Eredményeim azt mutatják, hogy az azonos mérésekből eltérő, a 

szakirodalomban fellelhető feldolgozási módszerekkel meghatározott aktív és passzív 

szakaszok eloszlása nagymértékben különbözik. Továbbá, a különböző kutatások eltérő 

modellillesztési módszereit a saját adatsorainkon alkalmazva, a választott megközelítés és 

paraméterek függvényében is más-más eredményeket kaptunk, ami megerősíti azt, hogy az 

emberi aktivitás skálafüggetlensége robusztusabban vizsgálható frekvenciatartományban. 
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Although the scale-free nature of human dynamics is apparent in both spatial movement 

and locomotor activity, several contradictory models have emerged in addition to the power law 

from analysing the statistical distributions of different datasets The measurement of locomotor 

activity is often used in medical research (e. g. somnology, psychiatry), carried out with a so-

called actigraph, which quantifies the subject’s activity based on the acceleration of the wrist. 

However, its execution varies widely between manufacturers and is commonly unpublished, 

which is why differently produced activity signals are often analysed without giving a sufficient 

description of the underlying methodology. Furthermore, the statistical analytic methods of the 

activity data are also unstandardized in the literature. For example, differences may occur in the 

threshold, that is used for separating the active and passive periods, the distribution function 

(probability density function, complementary cumulative distribution function) used for 

examining their lengths, the fitting method (least squares, maximum likelihood) and its range, 

the kind of distributions fitted, and the method used for determining the most suitable one of 

them. In contrast, the research group showed previously, that the spectra of both acceleration 

signals, measured on the wrist, and activity signals derived from them follow universal 1/f 

noise-based characteristics, which represents the spectral scale-free property, regardless of the 

actigraphic methodology.  

On this basis, my goal was to compare the statistical characteristics of the activity 

signals calculated with different activity determination methods from the acceleration dataset, 

previously analysed by the research group to investigate differences they may cause. In 

addition, by comparing the different model-fitting approaches of the most important related 

works, I aimed to show their influence. My results show, that the distributions of the active and 

passive periods calculated with the processing methods prevalent in literature from the same 

measurements differ greatly. Furthermore, using the different model-fitting techniques of the 

related works on our datasets produced varying results, depending on the chosen approach and 

parameters. This reinforces us that the scale-free nature of human activity can be examined 

more robustly in the frequency domain. 
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1. Introduction 

Human dynamics exhibit scale-free characteristics in both spatial movement data and 

locomotor activity measurements. However, conflicting models have emerged from the 

statistical analyses of different datasets beyond the power law distribution. Locomotor activity 

is often measured with actigraphs in medical research, but the differences in their methods for 

quantifying activity from 3-axis acceleration is very inconsistent and often unpublished, making 

it hard to reproduce. This difference in method also seems to affect their statistical analyses. In 

addition, the other aspects of the examinations, done with statistical methods are also not 

standardized and this may be related to the varying results in the field. The threshold, which is 

used to distinguish between the active and passive periods, seems to be unstandardized, along 

with the type of distribution to be calculated from these periods, which is fitted with the heavy-

tailed models later in the analysis. The method and range of the fit also seems inconsistent. 

In contrast, the research group has shown that the spectra of both acceleration signals 

and activity signals derived from them follow universal 1/f noise-based characteristics, which 

represents the spectral scale-free property, regardless of the actigraphic methodology [1]. This 

raised the issue to find out what exactly caused the difference in the results of the studies, which 

used the statistical approach. Recently, we demonstrated the differences caused by the different 

methodologies of processing the data [2]. Since then, we also investigated the problem of 

commonly used model-fitting methods in the relevant literature. This study aims to show the 

effects of the different activity determination methods and statistical approaches by comparing 

the techniques prevalent in literature in a unified framework. The first section of the study 

contains the theoretical background of the topic, covering the related fields, the mathematical 

background of the methods and a review of the relevant literature. The next section contains the 

information about the data acquisition and the activity determination and statistical methods. 

The last section of the paper aims to demonstrate the acquired results and compare them with 

the relevant publications, drawing conclusions from them about the effect of the methodological 

differences. The results show that both the differences in the activity determination methods 

and the different statistical approaches in the analysis can cause the contradicting results, 

furthermore, suggest that examining the scale-free nature of human locomotor activity is more 

robust when analysed in the frequency domain. 
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2. Theoretical background 

2.1. Related fields of human dynamics 

2.1.1. Scale invariance 

The concept of scale invariance has been a prominent topic of discussion within the 

scientific community in the last few decades. First, the scale invariance of networks has been 

investigated. A scale-free networks degree distribution follows a power law, meaning that there 

are a lot of nodes with few connections, and very few nodes with a lot of connections. Fractals 

are good examples of scale invariance because they are infinitely complex patterns, that exhibit 

self-similarity across varying scales. After the examination of networks, the modelling of 

animal wandering was one of the next steps for the topic of scale invariance. Previously, their 

movement was described as Brownian motion, which can be imagined as the random movement 

of particles suspended in a medium, tracing out a trajectory. Regular Brownian motion is when 

the “jumps” taken by the particle are independent and Fractional Brownian motion is when the 

jumps are correlated in time, meaning that the next jump tends to be in the same direction as 

the previous one was. Brownian motion is a random walk model, as well as the Lévy flights 

model, where the step size is usually described by power law distributions, or more generally, 

heavy-tailed distributions. Studies have shown that these were better to model the foraging 

motion of many living organisms, thus indicating scale-free patterns [3]. This raised the 

question of whether human motion exhibits the same characteristics, and numerous studies have 

been conducted based on different approaches to the measured signals and obtained different 

results. [4] [5].  

In case of the frequency domain, the scale independence is addressed as 1/f noise, or 

pink noise, where the power spectral density is inversely proportional to the frequency of the 

signal. However, the exact mathematical relationship between scale-free characteristics in time 

and frequency domain is not clearly described yet. 

2.1.2. Actigraphy 

Human movement can be examined through its mobility and activity. Spatial mobility 

can be measured using GPS signals, while locomotor activity can be calculated from 

acceleration signals with the method of actigraphy. It is a non-invasive method often used both 

in medical research and everyday life. 
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Actigraphs record raw acceleration data, usually measured on the subject’s non-

dominant wrist, in up to three axes, then determine the activity from them, the method of which 

can vary significantly, as investigated by the research group previously [6]. This activity 

determining method consists of first preprocessing the data, that is essential to remove the 

Earth’s gravity by filtering it out or normalizing, which can be done on all three axes, or the 

magnitude of all acceleration. Then, an activity metric is used to calculate the activity values 

from the preprocessed data for every epoch, which are non-overlapping timeslots of equal 

length [6]. The most commonly used ones in the relevant literature are the Zero Crossing 

Method (ZCM), which determines the activity values from counting acceleration signal 

threshold crosses, and the Proportional Integration Method (PIM), which is based on the 

integration of the acceleration data. The activity values are then separated into active and 

passive periods using a threshold on the activity signal (which is not the same as the threshold 

used by the ZCM activity metric, which is used on the acceleration signals) to determine which 

is which, and then usually the length of these active or passive periods are examined. The 

process is shown in Figure 1 The other methods will be described in section 3.1. 

 

Figure 1. The process of determining the active and passive period lengths from the raw acceleration data. 

Actigraphic devices are often used in somnology to measure sleep-wake rhythms, 

because of their many advantages, namely that they provide objective information, document 

day-to-day variability and the recordings are not altered by laboratory environment compared 

to other investigation methods [7]. In the psychiatric field, actigraphs can aid in the diagnosis 

of mental disorders [8]. Both fields utilize statistical analysis in research to draw correlations 

between healthy and abnormal behaviour from activity recordings. In everyday life, a lot of 

people have their activity measurements taken by their smartphones or commercially available 

wearables. However, the exact procedure of quantifying activity based on acceleration varies 

widely between manufacturers, even in actigraphs used in research and is commonly 

unpublished, therefore the studies are not reproducible. Still, it is a widely used method where 

the power law scaling or other heavy-tailed distributions and the associated scale-free nature of 

human movement is apparent in the distribution of active and passive period lengths, as various 

studies have investigated it using statistical approaches, with varying results [9 -17]. 

preprocessing 

activity metrics 

raw 3-axis 
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2.2. Mathematical background 

2.2.1. Distribution functions 

For the model-fitting, the datasets’ Probability Density Function (PDF) and 

Complementary Cumulative Distribution Function (CCDF) has been calculated, since both are 

common in the relevant literature. The PDF is a function of a random variable and the relative 

likelihood of measuring the particular values. We can obtain the PDF if we derivate the 

Cumulative Distribution Function (CDF), as it can be seen in Eq. 1 and Eq. 2.  

 𝐹𝑋(𝑥) =  𝑃 (𝑋 < 𝑥) (1) 

 𝑓(𝑥) = 𝐹′(𝑥) (2) 

The properties of the PDF are:  

 𝑓(𝑥) ≥ 0 (3) 

 𝑃(𝑎 < 𝑋 < 𝑏) =  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 (4) 

Therefore:  

 ∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

−∞
 (5) 

To determine the PDF in practice, first the histogram of the data is calculated, then each 

frequency is divided by the total number of data points, and the associated bin width. In the 

case of our data instead of linear binning, where each bin is the same width, we use logarithmic 

binning, which means that the bins will have the same width logarithmically. This is important, 

because the range of the values and their probabilities spread over a wide range, and the tail of 

the distribution would be noisy otherwise, which affects the results, because the distribution of 

passive periods is mainly fitted with heavy-tail distributions. The CCDF is determined by 

subtracting the CDF from 1 (Eq. 6).  

 �̅�𝑋 = 1 − 𝐹𝑋 (6) 

The CDF defines the probability that a random value will be less than x, while the CCDF 

describes the opposite, how often the variable is above or equal to a particular value. Both the 

PDF and the CCDF are used in analysing the scale-free nature of human motion. In our case, 

the human locomotor activity is scale-free, if the PDF or the CCDF of it follow a power law 

distribution, with the exponent of α in the case of the CCDF, and exponent of α+1 for the PDF. 
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2.2.2. Model-fitting 

The model-fitting methods mentioned in this study were the Maximum Likelihood 

Estimation (MLE) and the Least Squares method (LS). Maximum Likelihood Estimation is a 

statistical method used for estimating the parameters of a model by maximizing the likelihood 

that the assumed model results in the observed data. The Least Squares method is another 

statistical approach used for estimating the parameters of a model, but it operates by minimizing 

the total sum of squared error (SSE) between the observed and the fitted values. The squared 

difference is used since the deviation could be both negative and positive. Our data has a 

logarithmic scale, therefore when fitting with this method, the tail of the distribution of the data 

will not be taken into account with the same weight as the initial part of the range, because the 

values are much smaller there. To overcome this problem in Least Square fitting either different 

weights can be applied, or the log-transformed forms of the models can be fitted to the data 

(which is what we chose to follow in this study). 

When determining the best fitting models the following goodness of fit metrics found 

in the relevant literature can be used: Likelihood Ratio Test (LRT), Sum of Squared Error (SSE), 

Reduced χ2, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). It 

is important to choose a goodness of fit method that accounts for the logarithmic scale of the 

data, otherwise the determined best-fitting model may not fit the tail of the distribution that 

well. The LRT compares the goodness of fit of two models based on their likelihood ratio.  The 

SSE is calculated by subtracting the fitted y values from the original y values, squaring the 

differences and adding them together. This is the value that the LS fitting method minimizes.  

 𝑆𝑆𝐸 =  ∑ (𝑦𝑑𝑎𝑡𝑎(𝑖) − 𝑦𝑓𝑖𝑡(𝑖))2𝑁
𝑖=1  (7) 

The reduced chi square is calculated by dividing each squared errors with the sum of the 

fitted y and the original y values, then adding them together and divide the sum by the number 

of degrees of freedom. [16] 

 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝜒2 =  
1

𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚
∑ (𝑦𝑑𝑎𝑡𝑎(𝑖) − 𝑦𝑓𝑖𝑡(𝑖))2/(𝑦𝑑𝑎𝑡𝑎(𝑖) + 𝑦𝑓𝑖𝑡(𝑖))𝑁

𝑖=1  (8) 

The AIC is calculated by multiplying k (the number of parameters in the model) with 2 

and subtracting L (the loglikelihood function) multiplied by 2 from it. The BIC is calculated by 

multiplying k with the logarithm of N (the number of data points) and subtracting 2 times L 

from it. [16] 

 𝐴𝐼𝐶 = 2𝑘 − 2𝐿 (9) 

 𝐵𝐼𝐶 = 𝑘 ln 𝑁 − 2𝐿 (10) 
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The difference between AIC and BIC is that, while AIC balances between model fit and 

model complexity, BIC penalizes model complexity and prefers simpler models. The different 

results in determining the best fit may occur due to these differences. 

2.3. Literature review 

We collected 10 important publications in the field of statistical analyses of human 

actigraphy signals from the past 20 years and analysed their differences focusing on their 

activity determination methods and statistical approaches. This review will concentrate only on 

the model they fit to their data in the end, not all the models they tried to fit. 

From the five studies which examined activity determined with the previously 

mentioned ZCM activity metric, all but one fitted power law to the distribution of passive 

periods, the exception being the exponential function [13]. For the active periods three of them 

fitted stretched exponential [16] [14] [9] and the other two fitted a power law distribution [13] 

[17] (with one of them being the one that was also distinct from the rest when examining the 

passive periods). Four of the studies used the PIM activity metric, and to the passive periods 

they fit power law, power law for only the initial range and truncated power law while to the 

active periods, power law for only the initial range, truncated power law and lognormal, which 

suggests that it is not only the commonly used activity metrics that have a significant impact on 

the results of the fit. However, the different preprocessing pairings may also have an influence, 

but specific conclusions could not be drawn, because it was not possible to determine the 

preprocessing used in several of the studies, so only a general examination has been conducted. 

The activity values are separated with a threshold to determine the active and passive 

periods, as stated previously. The value of this threshold was also not consistent across the 

articles. Various threshold rules occurred, using the 1, 10, 70 or 100 percent of the mean activity 

value or the mean of the non-zero activity values. The three studies which used thresholds 

greater than the mean of the overall activity [9] [15] [14] fitted power law or truncated power 

law to the passive periods and stretched exponential or truncated power law to the active ones. 

The seven articles using thresholds smaller than or equal to the mean [13] [11] [12] [16] [10] 

[18] [17] fitted power law, power law for only the initial range, exponential or lognormal to the 

passive periods, which seems very diverse, and fitted power law, power law for only the initial 

range, truncated power law, lognormal or stretched exponential to the active periods, which 

seems even more contrasting. It can be seen that from the studies who fit distributions other 

than power law or truncated power law to passive periods all used thresholds less than or equal 

to the mean of the period lengths. In section 4.4 the change in the shape of the curve as a result 
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of modification of the threshold will be examined further. In the studies where the active periods 

were fitted with some kind of power law, the threshold also seems to be below the mean of the 

period lengths. 

The fitting to distributions of active and passive periods was determined individually in 

six articles, and on pooled data (which is concatenating every person’s period lengths together) 

in four of them. A conclusion could not be drawn about whether this affects the result of the 

fitting due to the conflicting results. The majority of the articles calculated the CCDF of the 

active and passive period lengths, but two of them seemed to only [12], or in addition [18] 

calculate the PDF too. 

For the model-fitting some articles used Maximum Likelihood Estimation (MLE), and 

some of them used the Least Square (LS) method. Setting xmin and in the case of LS, xmax 

values were also common, six of the articles used some kind of boundary for the range of the 

fit, but these were not uniform. There were also a lot of different approaches to determining the 

best of the fitted models, the most common were the χ2, AIC, BIC and LRT. However, some of 

the studies only fit one model, in their case the goodness of fit metric is sometimes used to 

determine the best threshold rule [16] or to determine the dependency of the distributions on 

the threshold or the data resolution (epoch length) [14]. 

It seems that while some conclusions can be drawn regarding the effect of the different 

methods, the problem seems to be too complex and there is not sufficient information given 

about the specifications of each method used. An attempt was made to reproduce the studies to 

further understand this problem. In the cases where the attempt was successful, my results 

coincided with the ones in the articles. A primitive reproduction of the articles can be found in 

section 4.7, where only the activity metric, the preprocessing method and the threshold rule is 

taken into consideration because a lot of the crucial steps were missing from the articles. 

2.4. Objective of research 

Our objective was to find the underlying rules behind the contradicting results and show 

that the results of the statistical approach to the analysis of human locomotor activity is very 

dependent on the methods, which are not standardized. 

The research group recently showed that the Power Spectral Density (PSD) of the 

activity signals, and even the raw activity signals follow universal 1/f noise-based characteristic. 

They demonstrated that this spectral scale-free nature is apparent, regardless of the activity 

determination method used. This suggests that the spectral analysis seems to be more robust in 
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examining scale independency than the statistical analysis mentioned above, because of its 

inconsistencies. 

Our objective was to show the differences the various activity determination methods 

and the different threshold rules made during the different statistical analyses. 

In addition, I intended to examine the effect of the different model-fitting methods, used 

by the mentioned articles, to get closer to how these methodological differences contribute to 

the aforementioned contradictions. 
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3. Materials and methods 

3.1. Data acquisiton, activity calculation 

For the analysis the research group’s data has been used, which consists of 10-day-long 

raw acceleration recordings of 42 healthy, free-living individuals, which they also used in their 

previous works [6] [1] [2]. The signals were measured at the sampling rate of 10 Hz in the ±8 

g range with an actigraphic device on their non-dominant wrist, that was specially developed 

to store raw triaxial acceleration data.  

The research group’s objective was to compare the different activity determination 

methods, which is why they measured raw acceleration data. Then they determined the different 

activity values from the acceleration data using different preprocessing methods and activity 

metrics. 

For determining the activity values, first the acceleration data was preprocessed to 

remove the gravity of Earth. This can be done in various ways, for example, by calculating the 

unfiltered magnitude of acceleration (UFM, i.e., the length of the acceleration vectors) from the 

unfiltered acceleration values of the x, y, and z axes (UFX, UFY, UFZ, respectively). Then, the 

effect of Earth’s gravity (g) can be eliminated by calculating the absolute distance of the 

magnitude values from 1 g, which results in the unfiltered normalised magnitude of acceleration 

(UFNM). The elimination of g can be achieved with a bandpass filter, too, which filters out low 

frequency components, and high-frequency noise, such as components related to involuntary 

movements. The filtering can be executed in two ways. Firstly, the filter can be applied on the 

magnitude of acceleration data (UFM), resulting in the postfiltered magnitude of acceleration 

(FMpost). Secondly, the filter can be applied to the per-axis acceleration (UFX, UFY, UFZ) 

prior to magnitude calculation, resulting in the filtered acceleration values along the x, y, and z 

axes (FX, FY, FZ), from which the prefiltered magnitude data can be calculated (FMpre) After 

preprocessing, the data was split into consecutive timeslots of equal length (epochs),which was 

60 seconds in our case (while the 60 second epochs are the most common in the literature, other 

values occur, which is also a difference in activity determination) and an activity value was 

determined for each epoch using an activity metric. The research group previously collected 7 

typical metrics that operate on significantly different principles. One of the simplest metrics, 

that I already mentioned in sections 2.1.2 and 2.3, (PIM – Proportional Integration Method) is 

based on the integration of the acceleration data. Other classical metrics rely on the threshold 

intersections of the acceleration data: whereas Zero Crossing Mode (ZCM), also mentioned 
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previously, counts the threshold crosses, Time Above Threshold (TAT) measures the time when 

the data exceeds the threshold. In addition, there are metrics that averages the acceleration data: 

while the Euclidean Norm Minus One (ENMO) utilizes a special averaging rule, the High-pass 

Filtered Euclidean Norm (HFEN) requires specially preprocessed acceleration data. Beyond 

these, metrics relying on the standard deviation (MAD – Mean Amplitude Deviation) of the 

magnitude of acceleration or variance (AI – Activity Index) of the per-axis data also exist. Thus, 

there are certain metrics that require acceleration data preprocessed in a strict way, while others 

can also be applied to differently preprocessed acceleration signals. The details about the 

limitations, compatibility, and proper combinations of preprocessing techniques and activity 

metrics can be found in the research group’s previous work [6]. To identify activity signals 

determined in a given way, I will use the following notation in line with the previous works of 

the research group: I denote the activity metric as an operation, and the preprocessing method 

as its argument (e.g., ZCM(FMpost). 

After the activity values were calculated, a threshold, which is usually defined as some 

percentage of the mean of the overall activity, as shown before in section 2.1.2, was used to 

define the active and passive period lengths. The activity values, calculated for every one-

minute epoch were considered as ones when above the threshold and as zeros when below. Then 

the length of the consecutive ones or zeros were considered the active and passive period 

lengths, respectively (in our case, the number of ones/zeros equal the length in minutes because 

of the 60 second epochs). A different theoretical approach is to consider consecutive non-zero 

activity values as events of a given duration and the time elapsed between them as waiting 

times; however, similar models could be fitted to the distributions in this sense, too [13]. 

Therefore, a technical analogy can be instituted between this and the former approach if the 

threshold level is chosen to be negligibly small (i.e., 1% of the mean(a)). 

3.2. Statistical methods 

Once the active and passive period lengths have been determined, the two numerical 

approaches for examining them that are covered in this study, because of how common they are 

in the relevant literature, are the estimation of their Probability Density Function (PDF) or their 

Complementary Cumulative Distribution Function (CCDF). It is not obvious which one is 

better to use, because both have various advantages and disadvantages. To determine the PDF, 

the data is split into bins, the number of which may be problematic to choose. If it is too high, 

there will be a lot of bins with a negligible number of samples, and the noise in the tail gets 

more defined, and if it is too low, the PDF will have low resolution. The bin widths can also be 
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linear or logarithmic, of which the latter can reduce noise in the tail, because there will be fewer 

bins on the end of the axis range. The problem of binning can be avoided if the CCDF is used, 

however, the power law scaling is more prominent in the PDF. The CCDF deviates from the 

ideal line of the power law scaling at longer periods. This truncation may be the result of the 

finite size of the sample, which is a known phenomenon [19] [20]. Both the PDF and the CCDF 

can be estimated individually or pooling the individuals’ data together, which is concatenating 

the active/passive period lengths of all individuals and calculating the distribution function from 

them. The mean activity value, used for the threshold can be calculated one by one for each 

measurement, or altogether. In the upcoming figures and tables, the approach of pooling the 

individual measurements together is used if not stated otherwise.  

Another considerable change is the rescaling of the distribution function, which means 

dividing the values with their mean, or some percent of the mean. It can come up when 

comparing the CCDFs of data covering different ranges, e.g., when comparing human and 

animal activity [14]. 

For the model-fitting two methods were used, the Maximum Likelihood Estimation and 

the Least Square Estimation, both were mentioned previously in sections 2.2 and 2.3. For MLE, 

a Python package was used [21], which is able to display the PDF and CCDF of the data, and 

fit power law, exponential, lognormal, truncated power law and stretched exponential models. 

It can also estimate the best fitting model by the Likelihood Ratio Test. The LS method is carried 

out with the SciPy curvefit function in Python and could fit power law, exponential, lognormal, 

truncated power law and Weibull (stretched exponential) models to the data with some 

restrictions applied to the parameters. The range of the fit in MLE could be modified with the 

xmin, and in case of the LS method both the xmin and xmax of the range could be set. This 

marks a time interval excluding the active/passive periods shorter than xmin or longer than xmax 

from the fit. The best fitted model can be calculated with various goodness of fit measures. The 

ones used in the study are sum of squared error, reduced chi square, Akaike Information 

Criterion, Bayesian Information Criterion and the Python package’s Likelihood Ratio Test.  
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4. Results 

The results of the analyses of the methodological differences in the activity determining 

methods and in the statistical analysis are shown in the next section. Since the problem is very 

complex, due to the many parameters that can vary, I will introduce a standard setting, based 

on the most common methods and only examine the effect of one variable at a time. This will 

be: 

preprocessing: FMpost,  

activity metric: ZCM,  

threshold: 100% of mean,  

PDF/CCDF CCDF,  

bin number (in case of the PDF): 100 bins, 

individual/pooled: pooled,  

rescaled/non-rescaled: non-rescaled,  

fitting range: xmin = 1, xmax = maximum of dataset,  

method of fit: MLE,  

goodness of fit metric: LRT. 

When using the MLE method, the fitted models are power law, truncated power law, 

exponential, stretched exponential and lognormal. When using the LS method, the fitted models 

in the case of the CCDF are power law, truncated power law, exponential, stretched exponential 

and lognormal, and in the case of the PDF, power law, truncated power law, exponential and 

lognormal. The effects are examined in the order in which the results rely on each other. 

4.1. Effect of activity determination 

The first step of analysing the scale-free nature of human locomotor activity is 

determining the activity from the raw acceleration data. There are numerous methods found in 

the literature, as shown in section 3.1. and their differences have been investigated by the 

research group in a previous study [6]. My results indicated that the preprocessing method and 

the activity metric affected the shape of the CCDF and PDF of the pooled passive periods, as 

shown on Figure 2a and 2b. I found that in the case of ZCM activity metric the preprocessing 

did not cause a major difference in the shape of the distribution, so only one preprocessing 

method can be seen on the figure. In the case of the different preprocessing methods used with 

TAT, there were only minor differences, the general shape was the same, so also only one of 

them is displayed on the figure. In the case of PIM and MAD activity metrics, only the 
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preprocessing pairings with the most extreme shapes are displayed on Figure 2a and 2b. It can 

be seen on Figure 2c and 2d that in the case of the PIM activity metric, those were the UFNM 

(but could have been the FMpost too, they seem very similar) and the FX. The most commonly 

used activity metrics in the literature were ZCM and PIM, in which case only the preprocessing 

of PIM could affects the shape minimally, but there is not as much of a difference as, for 

example with AI (which can be due to the difference in the purpose of the indicator [22]), or 

between the differently preprocessed MAD metrics. However, in the case of the active periods, 

the shape of the curves is roughly the same across all different activity determination methods, 

as shown on Figure 2e and 2d. This suggest that the activity determination method affects the 

distribution of the passive periods more, and in that case, the differences are significant. In 

section 4.5 in Figure 9, the effect of the different preproceccings can be seen, I discuss them 

there, because their differences come out more clearly when seeing the different models the 

MLE estimates as the best on them. 
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Figure 2. a, The pooled, non-rescaled CCDF of passive periods for different types of activity values, that represent 

the found differences, using a threshold value of average of length. b, the same for the PDF using 100 bins. 

c, The pooled, non-rescaled CCDF of passive periods for activity values determined with every preprocessing 

paired with the PIM metric, using a threshold value of average of length. d, the same for the PDF using 100 bins. 

e, The pooled, non-rescaled CCDF of active periods for every type of activity value, using a threshold value of 

average of length. f, the same for the PDF using 100 bins.  
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4.2. Effect of pooling 

The best fitting model’s parameters can be determined with calculating the average from 

the parameter fits based on the distribution function of data measured for each individual. It can 

also be obtained with fitting the distribution of the pooled active or passive periods. These two 

methods could affect the results, because as seen on Figure 3, the curves are different for the 

individual and the pooled data. The maximum x value of the pooled curve is the same as the 

longest individual curve’s maximum x value, while the minimum y value is smaller, because 

the pooled has various different period lengths. This effect can be avoided if the xmax of the 

fitting is smaller than or equal to the shortest individual curve’s maximal x value, because up to 

that value the pooled curve follows the individual ones, and only the tail is bending down, which 

can affect the fitting 

 

Figure 3. a, The non-rescaled CCDF of the pooled and individual passive periods determined by the 

ZCM(FMpost) activity metric, using a threshold value of average of length. b, the same for the PDF using 100 

bins. c, The non-rescaled CCDF of the pooled and individual active periods determined by the ZCM(FMpost) 

activity metric, using a threshold value of average of length. d, the same for the PDF using 100 bins 
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4.3. Effect of the number of bins 

When determining the PDF, the number of bins used when calculating the histogram 

can also affect the shape of the curve. As seen on Figure 4., where the more number of bins 

used, the bluer the curve is, the differences can be in the noisiness and the slope of the curve. 

The slope can get more steep at the smaller values as the number of bins increases, because the 

first few bins always have the same samples in them (the smallest periods are always 1, 2, 3, 

etc. minutes, while the longest ones are always different because of the logarithmic scale of the 

data), while the bin width is decreasing (by which the number of samples are getting divided), 

so their probability is increasing. The noisiness that comes with using more bins at the larger 

values may be caused by the tail being covered with more bins containing less and less samples. 

When fitting a power law model to the PDF, the α (parameter of the power law model, the slope 

of the distribution on log-transformed axes) may be affected by the number of bins used. 

 

Figure 4. The pooled PDF of passive periods for different numbers of bins, using a threshold value of average of 

length and determined with the ZCM(FMpost) activity metric 

4.4. Effect of the threshold 

The threshold used for determining the active and passive period lengths can also affect 

the shape of the PDF and CCDF. 

On Figure 5 the activity signals (ZCM(FMpost)) of an individual’s first 12 hours of the 

day can be seen. In their case, when the threshold is determined as the mean of their whole (10-

day-long) sample, short active periods can be seen from midnight to 6:30 AM, possibly when 

they were still asleep. However, with the threshold set to 150% of the overall mean, those short 

activity spikes while sleeping do not count as active. Therefore, when examining overall human 

activity, this threshold rule could be sensitive and needs to be adjusted according to what we 
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want to examine. However, in the model-fitting phase, the points belonging to short period 

lengths could be left out of the range of the fit. An other solution for this problem could be to 

analyse the sleeping and awake phases separately, determining different thresholds for each, as 

some studies have done [15] [17]. Figure 6 shows the effect of modifying the threshold on the 

CCDF and PDF of active and passive periods, the bigger it is, the more blue the curve becomes. 

The smaller it is, the more the longer passive periods (e.g., sleeping) will be divided by the 

previously mentioned short activity periods. This results in the passive curve getting shorter 

and the shape of it changing, while the active curve is getting a little longer. With the threshold 

set to 150% of the mean, which was approximately the mean of non-zero values regarding our 

datasets, the maximal length of the passive periods tops out at ~700 minutes, or 12 hours. 

 

Figure 5. The first 12 hours of an individual’s activity values, determined with the ZCM(FMpost) activity metric. 

The black horizontal line represents the 100% of the mean of the individual’s entire dataset, the grey horizontal 

lines represent the 1% and 150% of it. 

Figure 7 shows the effect the different threshold rules have paired with specific activity 

determination methods and xmins. As the threshold increases from relatively small to 

approximately the mean of non-zero passive periods, the best fit determined with MLE becomes 

the lognormal with almost every one of the various methods in the case of xmin = 1 minute. 

When xmin = 10 minutes, at the 10% of the mean value of the threshold, in the case of half of 

the different activity metrics the truncated power law wins, while in the other half, the stretched 

exponential seems the best. If the threshold is increased, the truncated power law wins in the 

majority of the cases. However, if the threshold is increased to the 150% of the mean, more of 

the best fits become lognormal, making the ratio of the three fits approximately 70-30-0 

(truncated power law – lognormal – stretched exponential). There is a significant difference in 

the composition of the table in the case of the different xmins, this means that the xmin also 

plays a role in the determination of the best fit.  
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Altogether, the threshold rule seems to affect the shape of the distribution, as well as the 

length of it. This result is consistent with what we have seen earlier, that the studies who 

determined the best fit as, or only fit a model other than power law or truncated power law used 

a threshold smaller than or equal to the mean of their dataset, because when a higher threshold 

is used in our case, the distribution seems more like the truncated power law. 

 

Figure 6. a, The pooled, non-rescaled CCDF of passive periods for different types of threshold rules, determined 

with the ZCM(FMpost) activity metric. b, the same for the PDF using 100 bins. c, The pooled, non-rescaled CCDF 

of active periods for different types of threshold rules, determined with the ZCM(FMpost) activity metric. d, the 

same for the PDF using 100 bins 
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xmin 1 10 

threshold = % of mean 10 70 150 10 70 150 

AI(FXYZ)          

AI(UFXYZ)          

ENMO(UFM)          

HFEN(HFMpre)          

MAD(FMpost)          
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MAD(FX)          

MAD(FY)          

MAD(FZ)          

MAD(UFM)          

MAD(UFNM)          

MAD(UFX)          
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MAD(UFZ)          

PIM(FMpost)          
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PIM(FX)          
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PIM(FZ)          

PIM(UFM)          

PIM(UFNM)          

TAT(FMpost)          

TAT(FMpre)          

TAT(FX)          
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ZCM(UFM)          

ZCM(UFNM)          

 Figure 7. The best fit determined by the MLE method and the LRT goodness of fit metric on the pooled, non-

rescaled CCDF of passive periods, in the case of the different activity determination methods, specific xmins  

(1 and 10), and specific threshold rules (10%, 70%, 150% of mean). The red cells represent lognormal, the blue 

cells truncated power law, and the yellow cells stretched exponential. In the case of white cells, a fit could not be 

determined because the distribution curve was too short and there was not enough data to determine it. 
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4.5. Effect of the xmin of the fit 

Once the PDF or the CCDF of the active/passive period lengths have been estimated, 

the results can still vary based on the way the fit is performed. Figure 9 contains the best fit 

according to the Likelihood Ratio Test calculated by the powerlaw package [21], determined 

for every activity determination method and specific xmins. It can be seen that when fitting to 

the whole range of the data the best model seems to be the lognormal, regardless of the activity 

determination method. However, as the xmin is increased, the prevalent model starts to become 

the truncated power law, as depicted on Figure 8, with the method seemingly affecting when it 

switches from one to the other. When only fitting the tail of the distribution, approximately half 

of the results are stretched exponential, the other half being truncated power law. The thickly 

framed parts of Figure 9 mark the groups of the activity determination methods where the 

preprocessing was the same. The table shows that the ones with the same preprocessing behave 

in roughly the same way when changing the xmin of the fit. This means that the preprocessing 

also has an effect on the results. The research group previously investigated the problem of the 

difference in the activity determination methods and found that the preprocessing has the more 

significant effect in it [6]. In conclusion, the xmin of the fit greatly affects the results, because 

when the fitting on the whole range, the predominantly obtained fit is the lognormal (with the 

standard settings that I introduced at the beginning of section 4.), while with increasing the 

xmin, thus fitting the tail of the curve more and more, the truncated power law takes its place. 

When fitting only the tail, half the results seem to be truncated power law still, however the 

other half seem to fit stretched exponential.  

 

Figure 8. The distribution of the estimated best fitting model in the case of varying xmins. The red colour represents 

the lognormal distribution, the blue the truncated power law distribution and the yellow the stretched exponential 

distribution. 
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xmin 1 2 3 4 5 10 15 100 
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Figure 9 The best fit determined by the MLE method and the LRT goodness of fit metric on the pooled, non-

rescaled CCDF of passive periods, in the case of specific activity determination methods and specific xmins. The 

activity determination methods are grouped together, indicated with thick black frames, based on their 

preprocessing methods. The red cells represent lognormal, the blue cells truncated power law, and the yellow cells 

stretched exponential. 
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4.6. Effect of the method of fit 

For exploring the differences made by the different fitting methods, the MLE and LS 

method have been utilized, since both are prevalent in the literature. With the LS method it was 

easier to account for the logarithmic range of the data, fitting the log transformation of the 

different models, thus obtaining better fitting on the tail of the curve. This difference can 

especially be seen on the power law and exponential models on Figure 10a and 10b. All of the 

fitting was done with xmin = 8 minutes, in the case of the MLE (Figure 10a) the fit was 

estimated on the data, while in the case of the LS, the fitting was done on the CCDF (Figure 

10b) or the PDF (Figure 10c) of the data. The MLE estimated the lognormal distribution as the 

best fit, while in the case of the LS method the truncated power law was the best, both when 

fitting to the PDF and the CCDF. However, when the xmin is modified the LS does not give the 

same result for the PDF and the CCDF, and the standard setting can also be modified, so that 

all three of them give different results. However, even if all three of them gave exactly the same 

fit to the results, when choosing the best of them we can apply different goodness of fit metrics, 

as seen on Figure 12. 

Figure 10. a,The pooled, non-rescaled CCDF of passive periods, calculated using 100% of the mean as the 

threshold and using the ZCM(FMpost) activity determination method, with the different models fitted using MLE 

and xmin=8 b, the same, but with the LS method c, the same, but on the PDF calculated with 100 bins and fitted 

with the LS method.  
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 The fitted models can be ranked based on their goodness of fit values. However, the 

different metrics can favour different properties of the fitted models. Figure 11 compares the 

best fit according to the goodness of fit metrics found in the reviewed studies. The LRT and the 

reduced chi-square metrics give approximately the same result, while the SSE, AIC and BIC 

metrics give different results from xmin = 6 or 7 minutes to xmin = 20 minutes. However, 

altogether the estimated best models seem to be somewhat consistent, lognormal when the 

whole range is fitted, and stretched exponential or exponential when only the tail is fitted, which 

undoubtedly is truncated in the case of the CCDF, as it was said in section 2.2.1.  

 xmin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30 40 50 60 70 80 90 100 

LRT                                                         

SSE                                                         

reduced 

χ2 
                                                        

AIC                                                         

BIC                                                         

Figure 11 The results of the estimation of the best models, calculated with different goodness of fit metrics as the 

different rows, and for different xmins (columns). The red cells represent lognormal, the blue cells truncated power 

law, the yellow cells stretched exponential, the pink cells power law and the orange cells exponential distributions. 

Altogether, both the estimation of the fitted models and choosing between them is 

affected by the different methods, therefore could lead to different results. However, sometimes 

only the power law is fitted to the passive periods, and only the lognormal to the active periods 

[12], in that case the goodness of fit metrics are not influencing the results. 

4.7. Case study 

To investigate the overall impact of the methodological differences in the statistical 

analysis of human activity I reproduced some of the different steps of several of the most 

important studies from the last 20 years using the same 10-day-long raw acceleration recordings 

of the research group. I attempted to use the same activity determination methods as the studies, 

however, in some cases the preprocessing method is only a guess or could not be determined at 

all, because it was not specified in the paper (for example, in the cases of [17] [9] [12]). The 

threshold rule of each study was also taken into account. My goal was to show that, while using 

the same dataset, the methodological differences heavily impact the estimated best fitting 

model.  
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On Figure 12 the CCDF and PDF of our data can be seen, calculated with the 

combination of the activity determination methods and threshold rules used in the studies. In 

Figure 13 each column represents a specific study’s settings, and the different rows are different 

xmins used for the fitting range. Figure 13a contains the fitting of the passive periods, and Figure 

13b contains the fitting of the active ones. The colours represent the model that the previously 

mentioned Python powerlaw package [21] determined as the best fit. It can be seen that just 

by changing one aspect of the method, various results could be obtained. Their shapes differ 

greatly already (without considering every methodological difference, e.g. pooling, rescaling, 

etc., thus their shapes becoming even more different), so it is no wonder that the model fitting 

(which also has different determining factors, as shown in the previous section (4.6)) gives 

varying results for them. 

 
Figure 12. a, The pooled, non-rescaled CCDF of passive periods for the different types of activity determination 

methods and threshold values found in the articles b, the same for PDF 
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Legend 
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 Figure 13. a, The difference in the best estimated model for the different methods the articles used (columns) and 

different xmins (rows) in the case of the passive periods. The red cells represent lognormal, the blue cells truncated 

power law, and the yellow cells stretched exponential. In the case of white cells, a fit could not be determined 

because the distribution curve was too short and there was not enough data to determine it 
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Figure 13. b, The difference in the best estimated model for the different methods the articles used (columns) and 

different xmins (rows) in the case of the active periods. The red cells represent lognormal, the blue cells truncated 

power law, and the yellow cells stretched exponential. 
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In contrast, the research group showed previously, that the spectra of both acceleration 

signals, and activity values derived from them follow universal 1/f noise-based characteristics, 

as shown on Figure 14 which represents the spectral scale-free property, regardless of the 

actigraphic methodology and the threshold rule. The only variable, that can slightly affect the 

results is what the exact value of the corner frequency in the PSD is, and what could be the 

range of the fit of the 1/fα function, but it does not have a significant effect on the α of the power 

law distribution. 

 

Figure 14. The PSD of the activity signals used in the articles. 
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5. Summary 

Human dynamics exhibit scale-free characteristics in locomotor activity measurements. 

However, conflicting models have emerged from the statistical analyses of different datasets 

beyond the power law distribution. We presumed that it could be because of the non-

standardized activity determination methods and statistical approaches. 

Our objective was to find the underlying rules behind the contradicting results and show 

that the results of the statistical approach to the analysis of human locomotor activity is very 

dependent on the fitting methods, which are not the same in the different studies. 

In the first part of the analysis of the activity values, we have shown that both the activity 

determination and the applied threshold rule affect the shape of the distribution, which we 

already published [2]. 

The next part of this study was to investigate the effect of the different statistical 

approaches, found in the relevant studies on the model-fitting. It was found that the bin number, 

the pooling, the method of fit and the used goodness of fit metrics all affect the results of the 

analysis. The threshold rule seems to affect the shape of the distribution, as well as the length 

of it. This result is consistent with what we have seen earlier, that the studies who determined 

the best fit as, or only fit a model other than power law or truncated power law used a threshold 

smaller than or equal to the mean of their dataset, because when a higher threshold is used in 

our case, the distribution seems more like the truncated power law. The xmin of the fit greatly 

affects the results, because when the fitting on the whole range, the predominantly obtained fit 

is the lognormal, while with increasing the xmin, thus fitting the tail of the curve more and 

more, first the truncated power law takes its place, and when only fitting the tail, the stretched 

exponential is the dominant fit. Ultimately, a case study was conducted, where we could see 

that these differences together greatly affect the results, while the spectra of the same activity 

values follow universal 1/f noise-based characteristics, which represents the spectral scale-free 

property. 

This reinforces us that the scale-free nature of human activity can be examined more 

robustly in the frequency domain. 
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