
Fuzzing JavaScript Environment APIs
with Interdependent Function Calls

Renáta Hodován , Dániel Vince, and Ákos Kiss(B)

Department of Software Engineering, University of Szeged,
Dugonics tér 13., Szeged 6720, Hungary

{hodovan,vinced,akiss}@inf.u-szeged.hu

Abstract. The prevalence of the JavaScript programming language ma-
kes the correctness and security of its execution environments highly
important. The most exposed and vulnerable parts of these environments
are the APIs published to the executed untrusted JavaScript programs.
This paper revisits the fuzzing technique that generates JavaScript envi-
ronment API calls using random walks on so-called prototype graphs to
uncover potentially security-related failures. We show the limits of gener-
ating independent call expressions, the approach of prior work, and give
an extension to enable the generation of interdependent API calls that
re-use each other’s results. We demonstrate with an experiment that
this enhancement allows our approach to exercise JavaScript environ-
ment APIs in ways that were not possible with the previous approach,
and that it can also trigger more issues in a real target.

1 Introduction

“For the seventh year in a row,
JavaScript is the most commonly
used programming language”

—Stack Overflow Developer
Survey Results 2019

The popularity of JavaScript (standardized as ECMAScript [4]) has been steadily
growing over the past few years until it became the most commonly used pro-
gramming language. Not only is it enabling the client-side execution of web
applications in browsers but it is also driving the server-side [21]. Moreover, even
resource-constrained IoT devices have become programmable using JavaScript,
thanks to memory-aware execution engines [14,26] and application environments
built on top of them [23].

Having an easy to learn, well-supported, and flexible language available on
all our computing devices opens up great possibilities but it also makes the
correctness and security of its execution environments highly important. This is
especially true when untrusted code can be executed in these environments, e.g.,
in web browsers, on modular platforms with a community-maintained package
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registry, or on devices with JavaScript-based open application models [5]. In
these scenarios, those parts of the execution environments are the most exposed
and the most vulnerable, which publish such APIs to the executed JavaScript
programs that cross the so-called trust boundary, i.e., which allow calling and
passing parameter data from untrusted JavaScript programs into the trusted
code of the environment that is typically compiled to machine code and running
at elevated privileges.

Random or fuzz testing is a popular automatic technique for uncovering
bugs with potential security implications [25]. Fuzzers generate totally or par-
tially random test cases and feed them to their target (a.k.a. system-under-test
or SUT) hoping that some of these inputs cause the SUT to malfunction, e.g.,
lead to an exploitable crash. In the context of JavaScript execution environ-
ments (engines, platforms) this means that fuzzers have to generate executable
JavaScript programs as test inputs.

In previous work [9], we introduced a graph representation modelling the
objects and types of JavaScript engine APIs, and a fuzzing approach for gen-
erating test cases consisting of call expressions to those APIs by performing
random walks on such graphs. In this paper, we show the limits of generating
independent call expressions and extend the previous work to enable the genera-
tion of interdependent API calls that re-use each other’s results. We demonstrate
that this extension can better exercise APIs in a JavaScript environment and
trigger more issues in a real project than the original variant.

The rest of the paper is organized as follows: first, in Sect. 2, we give a brief
overview of the used graph representation and we also give an algorithm for
generating (independent) call expressions from the graph, then in Sect. 3 we
describe how to allow the calls to be interdependent. In Sect. 4, we present the
results of our experiment with the proposed approach. In Sect. 5, we discuss
related work. Finally, in Sect. 6, we give a summary of our work and conclude
the paper.

2 Prototype Graphs

In our previous paper [9], we introduced a graph representation for the weak type
system of JavaScript, called the Prototype Graph. The graph balances between
the theoretical possibility that each object in a JavaScript program can have
completely different prototype and members, and the observation that in practice
they tend to fall into similarity categories in an actual execution environment. As
the rest of this paper builds on this representation, for the sake of completeness,
we give the original definition of prototype graphs below.

Definition 1 (Prototype Graph). Let a Prototype Graph be a labeled
directed multigraph (a graph allowing parallel edges with own identity)

G = 〈V,E, s, t, lprop, lparam〉
such that
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– V = Vtype ∪ Vsig, set of vertices, where the subsets are disjoint,
• Vtype vertices represent ‘types’, i.e., categories of similar objects,
• Vsig vertices represent ‘signatures’ of callable types, i.e., functions,

– E = Eproto∪Eprop∪Ecstr∪Ecall∪Eparam∪Eret, set of edges, where all subsets
are mutually disjoint,

• Eproto edges represent prototype relation (‘inheritance’) between types,
• Eprop edges represent the properties (‘members’) of types,
• Ecstr and Ecall edges connect callable types to their signatures and rep-

resent the two ways they can be invoked, i.e., the construct and call
semantics,

• Eparam edges represent type information on parameters of callable types,
• Eret edges represent return types of callable types,

– s : E → V assigns to each edge its source vertex, under the constraint that
∀e ∈ Eproto ∪ Eprop ∪ Ecstr ∪ Ecall ∪ Eparam : s(e) ∈ Vtype and ∀e ∈ Eret :
s(e) ∈ Vsig,

– t : E → V assigns to each edge its target vertex, under the constraint that
∀e ∈ Eproto ∪Eprop ∪Eret : t(e) ∈ Vtype and ∀e ∈ Ecstr ∪Ecall ∪Eparam : t(e) ∈
Vsig,

– the
〈
V,Eproto, s|Eproto , t|Eproto

〉
directed sub-multigraph is acyclic,

– lprop : Eprop → Σ labeling function assigns arbitrary symbols (‘names’) to
property edges, under the constraint that ∀e1, e2 ∈ Eprop : s(e1) = s(e2) ⇒
lprop(e1) = lprop(e2) ⇐⇒ e1 = e2,

– lparam : Eparam → N0 labeling function assigns numeric indices to param-
eter edges, under the constraint that ∀e1, e2 ∈ Eparam : t(e1) = t(e2) ⇒
lparam(e1) = lparam(e2) ⇐⇒ e1 = e2.

Informally, a prototype graph is a collection of type and sig vertices connected
by six different kind of edges (and multiple edges can run between two vertices).
Proto and prop edges connect type vertices, while the others connect type and
sig vertices in one direction or the other. And finally, member (property) name
information and function argument order is encoded in edge labels. Vertices have
no labeling as all relevant information is encoded in the existence of and labels
of edges.

How such a graph can be built automatically is described both in our
previous paper and will also be discussed later in Sect. 4. But Fig. 1 already
shows an example prototype graph of 7 type and 4 sig vertices, manually con-
structed based on a portion of the ECMAScript 5.1 standard [4, Sections 15.2,
15.3]. The graph contains the types of Object, Object.prototype, Function, and
Function.prototype objects, the global object, two constructor signatures for
Object, and also the types and call signatures for two additional functions
(Object.create and Object.valueOf).

In our previous work, we have shown how this graph representation encodes
property accesses, type-correct parametrization of function and constructor calls,
and also how the expressive power of the graph can be extended to deal with
literals; and we have formally defined a set of function call expressions that
can be generated from a graph. Now, we rephrase our original formal defini-
tions into an algorithm to show how to generate a single function call instead
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Fig. 1. Example prototype graph manually constructed based on a portion of the
ECMAScript 5.1 standard. Large and small nodes represent type and sig vertices
respectively. The single black node on the left represents the type of the global object.
(Both colors and vertex labels are for identification and presentation purposes only.)
Thick lines with labels represent prop edges, thin lines with hollow arrows represent
proto edges, while dashed lines with double-bracketed labels represent cstr, call, param,
and ret edges.

of all possible functions function call expressions. The random and recursive
graph walking algorithm that collects the labels of visited edges thus generat-
ing a test case is named randomCall and is given in Listing 1. The infor-
mal concept behind the formal definition is to first walk forward on proto,
prop, cstr, call, and ret edges to a sig vertex, then walk backward on param
and proto edges, and so on... For the sake of brevity, G is always an alias to
〈Vtype ∪ Vsig, Eproto ∪ Eprop ∪ Ecstr ∪ Ecall ∪ Eparam ∪ Eret, s, t, lprop, lparam〉 in
the algorithm, as in Definition 1; Λ is a function from type vertices to a set
of literals (i.e., valid JavaScript expressions lying outside the expressiveness of
the graph); and v0 is a designated starting vertex in Vtype, usually the type of the
global object of the JavaScript language. The algorithm is also relying on some
helper functions: randomPath finds a random finite path in a graph between
two vertices on proto, prop, cstr, call, and ret edges and returns the list of edges
on the found path; parameters enumerates the sources of all incoming param
edges in ascending order of the edge labels (and returns them together with the
edge labels); descendants returns all vertices transitively available backwards
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Listing 1. Algorithm for generating random function call expressions from a prototype
graph.

1 procedure randomExpr(G, Λ, vfrom, vto)
2 expr := random(Λ(vfrom))
3 forall estep in randomPath(G, vfrom, vto) do
4 if estep ∈ Eprop then
5 expr += '.' + lprop(estep)
6 elif estep ∈ Ecall ∪ Ecstr then
7 if estep ∈ Ecstr then
8 expr := 'new (' + expr + ')'
9 end if

10 expr += '('
11 forall n, vparam in parameters(G, t(estep)) do
12 vparam := random(descendants(G, vparam))
13 if |Λ(vparam)| > 0 and random({true,false}) then
14 expr += random(Λ(vparam))
15 else
16 expr += randomExpr(G, Λ, vfrom, vparam)
17 end if
18 expr += not last iteration ? ',' : ''
19 end forall
20 expr += ')'
21 end if
22 end forall
23 return expr
24 end procedure

26 procedure randomCall(G, Λ, v0)
27 return randomExpr(G, Λ, v0, random(Vsig))
28 end procedure

from a starting point (including the starting vertex); and random randomly
selects one element from its parameter set. Finally, + and += stand for string
concatenation.

As an example, below we give some test cases that can be generated with
randomCall(Gex, Λex, v0), where Gex is the graph shown in Fig. 1, v0 is the
type of the global object in that graph (i.e., the this of the current lexical scope,
marked with black), and Λex = {v0 
→ {’this’}, v1 
→ {’{}’}}:

– this.Function.valueOf(),
– new (this.Object)(this.Function.valueOf()),
– this.Object.valueOf().create(this.Object.prototype.valueOf(),{}).
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Listing 2. Datagram sending example.

1 var c l i e n t = r equ i r e ( 'dgram' ) . c r ea t eSocke t ( 'udp4' ) ;
2 c l i e n t . send ( Buf f e r . from ( 'Some bytes' ) , 41234 ,

'localhost' , function ( e r r ) { c l i e n t . c l o s e ( ) ; }) ;

3 Interdependent Function Calls

The above described prototype graph representation and its use to generate test
cases for JavaScript engines showed promising results as they had triggered real
failures [9]. However, the previous paper has only shown the results of generating
expressions that are independent of each other. As it is also shown by the exam-
ples at the end of the previous section, even if such expressions were executed
in sequence in the same execution context, there was very little possibility for
them to have an effect on each other (a notable exception is if an expression
changes the properties of a prototype object, as that may have an overarching
effect even on future descendants of the prototype).

The fact that the expressions are mostly independent is no shortcoming if
the types or objects of the API-under-test can be exercised that way, i.e., with-
out a state carried across multiple expressions. This turns out to be mostly
the case for the standard built-in ECMAScript objects [4, Section 15], i.e., if a
JavaScript engine is only tested in its purest form (like the jsc, d8, jerry, or
duk command line utilities of the WebKit/JavaScriptCore, V8, JerryScript, or
Duktape projects, respectively). However, JavaScript engines are rarely used on
their own, they are usually embedded in some bigger application. To make the
embedding useful, the environments or platforms that build on top of JavaScript
engines extend the standard ECMAScript API with custom types and objects
and functions; and we have found that independent function call expressions are
insufficient for the testing of many of these APIs.

For example, both Node.js [21] and IoT.js [23] are JavaScript application
environments that allow the extension of the execution context with various
modules. Both environments support UDP datagrams via the dgram module
(as the resource-constrained IoT.js aims at being upward compatible with the
desktop and server-targeted Node.js platform), where the proper sending of a
datagram requires four steps: the loading of the module, the creation of a socket,
the sending of the message, and the closing of the socket. As the example in
Listing 2 shows, the established API of the dgram module does not allow to
express all these steps as a single expression. In this example, the result of the
expression that created the socket object needs to be carried over to and reused
in the next expression: the same object must be used to send the message as
well as to close the socket. However, if expressions are generated independently,
there is no way for an object that was created in one expression to be further
accessed in another. This means that the randomCall algorithm has no chance
to generate test cases like Listing 2.
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Listing 3. Algorithm for generating lists of interdependent random function call
expressions from a prototype graph.

1 randomExpr′ := randomExpr
2 procedure randomExpr(G, Λ, vfrom, vto)
3 return randomExpr′(G, Λ, random(domain(Λ)), vto)
4 end procedure

6 procedure randomCallList(G, Λ, n)
7 list := ''
8 forall i in 1..n do
9 uid := uniqueID()

10 vfrom := random(domain(Λ))
11 vto := random(Vsig)
12 list += 'var ' + uid + '=' + randomExpr′(G, Λ, vfrom, vto) + ';'
13 Λ(ret(G, vto)) ∪= {uid}
14 end forall
15 return list
16 end procedure

The dgram module is not the only one with an API that needs objects kept
across functions calls, and Node.js or IoT.js are not the only platforms that host
such APIs. The classic embedders of JavaScript engines, i.e., browsers, and their
web API also show similar patterns. Rendering context objects of the DOM
interface of HTML canvas elements [29] are also typical examples of objects that
have to be reused in multiple function calls.

Therefore, we propose to enhance the prototype graph-based fuzzing app-
roach shown in the previous section by generating multiple expressions for a
single test case, capturing the results of the individual expressions, and re-using
them in following generations. Fortunately, the prototype graph-based formalism
and algorithm have an ‘extension point’, the Λ function, that allows the gener-
ation of expressions that lay outside the expressiveness of the graph. So, we
propose to generate variable statements with the graph-generated expressions
being the initialisers (and with unique identifiers as variable names), and to
change (update) the Λ function after the generation of every variable statement
so that it extends the set, which is associated with the type of the variable, with
the identifier of the variable. This way the Λ function (and the fuzzing technique)
becomes capable of generating not only literals as starting points and parame-
ters of call expressions but also variable references, thus opening the possibility
for interdependent API function calls that reuse the result of each other.

The above outlined idea is formalized by the randomCallList algorithm
in Listing 3. The algorithm is using some further helper functions in addition
to those already introduced: uniqueID returns a valid unique JavaScript iden-
tifier on every call, and ret returns the target vertex of an outgoing ret edge.
Additionally, domain returns the set for which its parameter function is defined,
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Fig. 2. Architecture overview of the prototype implementation of the JavaScript API
fuzzing approach. The white elements are part of the implementation, while the black
boxes stand for the SUT. The dark and light gray elements are inputs used and outputs
generated during their execution.

while the Λ(.) ∪= notation stands for the update of the Λ function, extending
its result set (as well as its domain, potentially). (The redefinition or wrapping
of randomExpr at lines 1–4 ensures that the recursion at line 16 of Listing 1,
which generates parameters for function calls, can also make use of the updated
Λ function.)

To follow up on the example of the previous section, the following code snip-
pets are test cases that can be generated with randomCallList on Gex and
Λex (with various n inputs):

– var v0=this.Object.valueOf();
var v1=this.Object.prototype.valueOf();
var v2=v0.create(v1,{});

– var v0=this.Object.valueOf();
var v1=v0.create(v0,v0);

4 Experimental Results

To experiment with prototype graph-based fuzzing and with the approaches that
generate independent and interdependent function calls, we have created a pro-
totype implementation that is able to build prototype graphs by automatically
discovering the API of its SUT and to generate test cases from the built graph
using the algorithms shown above. The architecture overview of the prototype
implementation is shown in Fig. 2.
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The top part of the architecture overview outlines the automatic graph
building steps. To get information about the basic structure of the API of
the SUT, the implementation makes use of the introspecting capabilities of the
JavaScript language. It uses a carefully crafted engine-agnostic JavaScript pro-
gram, which – when executed once by the target environment – looks at the
global object of the SUT (the this of the current lexical scope), retrieves its
prototype object (using Object.getPrototypeOf) as well as its properties (using
Object.getOwnPropertyNames), and does so to all found objects transitively, thus
discovering the target’s API. Moreover, the program can also distinguish between
regular and callable objects (i.e., functions) and can record the length of the
argument list of the visited functions (as given by their length property).

The so-retrieved information is still vague about the signatures of the discov-
ered API functions because it finds only the number of arguments without any
type details. Therefore, the prototype implementation contains another specif-
ically crafted script that can be loaded into the target environment before the
execution of other programs, and wraps all API functions discovered in the
previous step to record the types of parameters and return values of actual
invocations. With sufficiently many and diverse executions, the result of this
signature collection step can be used to gather information about possible valid
parametrizations of the API.

As the final phase in the graph building process, the implementation links
together the information provided by the structure discovery and signature col-
lection steps and builds the data structure that conforms to Definition 1. (Fig. 2
also discloses the implementation detail that those parts of the prototype tool
that are executed in the SUT – i.e., discovery and signature collection – are
written in JavaScript, while the rest of the steps – like linking the results of the
previous steps and building the actual graph, as well as the test case generation
from the graph – are written in Python.)

As environment-under-test, we have chosen the IoT.js project [23], a modular
application platform for embedded IoT devices built on top of the JerryScript [14]
execution engine. We have executed both the discovery script in the environment
and signature collection, using the project’s own test suite to ensure that the
discovered API functions are called diversely enough. Table 1 informs about the
size of the so-built graphs (the numbers are given after both the discovery and
signature collection steps), while Fig. 3 visualizes them. (Due to their size, the
graph plots are not as clean as the manually created one in Fig. 1, but the graph
resulting from the discovery step still shows some of the structure of the modular
system of the IoT.js API. The graph extended with all the collected signature
information is admittedly more entangled.)

The graph built as above (the one extended with all collected signature infor-
mation) was used to generate test cases for IoT.js (outlined in the lower part
of Fig. 2). Each generated test case contained either 20 independent API call
expressions or 20 interdependent ones. The fuzzing session ran for 5 days and
was driven by the Fuzzinator framework [11], which channelled the generated
test cases to the SUT, monitored the execution, and collected unique failures
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Table 1. Size metrics of prototype graphs built for IoT.js.

After discovery step Extended with collected signatures

|Vtype| 576 1045
|Vsig| 8 425
|Eproto| 575 1044
|Eprop| 1569 2706
|Ecall| 267 626
|Ecstr| 46 58
|Eparam| 28 692
|Eret| 8 425

Fig. 3. Prototype graphs built for the JavaScript API exposed by IoT.js (a) using
discovery only and (b) after extending discovery results with signatures seen in executed
test cases.

(i.e., determined if multiple test cases triggered the same issue and kept only
one of them).

By the end of the fuzzing session, the two test case generation variants have
induced 14 different failures altogether in IoT.js. The test cases that contained
independent function calls triggered 9 of the issues, while the test cases with
interdependent function calls could trigger all of them. Manual investigation has
revealed that two failures not found by the original approach could have been
potentially triggered by test cases with independent function calls; it is due to
the random nature of fuzz testing that they were not hit during our experiment.
However, the manual investigation has also revealed that the other three test
cases have actually made use of the interdependency of the generated function
calls and thus could not have been generated by the original algorithm variant.
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Table 2. Issues found in IoT.js by prototype graph-based fuzzing technique generating
independent and interdependent function calls.

Issue ID Independent calls Interdependent calls

#1904 (✗) ✓

#1905 ✓ ✓

#1906 ✓ ✓

#1907 (✗) ✓

#1908 ✗ ✓

#1909 ✓ ✓

#1910 ✗ ✓

#1911 ✗ ✓

#1912 ✓ ✓

#1913 ✓ ✓

#1914 ✓ ✓

#1915 ✓ ✓

#1916 ✓ ✓

#1917 ✓ ✓

Listing 4. Issue #1908 of IoT.js.

1 var net = r equ i r e ( 'net' )
2 var v0 = new ( net . connect (1 ) . c on s t ruc to r ) ( )
3 t ry { v0 . connect ( ) } catch ( $ ) { }
4 try { v0 . _handle . r eadStar t ( ) } catch ( $ ) { }

Listing 5. Issue #1910 of IoT.js.

1 var http_common = requ i r e ( 'http_common' )
2 var v0 = http_common . createHTTPParser (1 )
3 v0 . execute ( Buf f e r (6083374109688862375) )
4 v0 . resume ( )

The found failure-inducing test cases were reduced by the automatic test case
reducer tool Picireny [10,12,15] and further beautified by hand, and the so-
minimized inputs were reported to the issue tracker of IoT.js. Table 2 sums up
these results, showing the public issue IDs of the found problems, and whether
a test case generation technique has found it or not. (Check marks show issues
found, crosses signal issues not found, while crosses in parentheses mark failures
that could have been found, potentially.)
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Listing 6. Issue #1911 of IoT.js.

1 var dgram = requ i r e ( 'dgram' )
2 var v0 = dgram . c r ea t eSocke t ( 'udp4' )
3 v0 . addMembership ( decodeURIComponent ( ) , v0 )

To highlight the results, we also show the test cases of those three issues
that were found only by the algorithm that generated interdependent function
calls (see Listings 4, 5, and 6). These examples demonstrate that the technique
presented in this paper was able to exercise three separate parts of the API of
its target environment in a way that was not possible with a previous approach.

5 Related Work

With the growing influence of the JavaScript language, its execution engines are
also getting more attention security-wise.

Godefroid et al. published a grammar-based white-box methodology to test
the JavaScript engine of Internet Explorer 7 [6]. They exploited the informa-
tion gathered from symbolic execution of existing test cases and a context-free
grammar definition of the input format, and created new test cases to exercise
different control paths.

Ruderman created jsfunfuzz [20], a JavaScript fuzzer that manually defined
generator rules to create syntactically and semantically correct test cases. This
approach also took advantage of the introspection possibility of the language to
extract field and method names but it did not try to build a complex model nor
to infer function parametrization.

Holler et al. presented LangFuzz [13], a language-independent mutational
approach that consists of two steps. First, it parses existing test cases and builds
a so-called fragment pool from the created parse trees. After this preprocess step,
LangFuzz creates new test cases from the extracted fragments by random recom-
binations. Although the idea is language-independent, the authors applied it to
test SpiderMonkey, the JavaScript engine of the Firefox web browser where they
found hundreds of bugs. IFuzzer [27] is an evolutionary approach built upon the
idea of LangFuzz. It defines a fitness function using information about the gen-
erated test (like complexity metrics) and the feedback of the SUT (like crashes,
exceptions, timeouts, etc.) to choose the elements of the next population. Sim-
ilarly to LangFuzz, IFuzzer was applied to generate JavaScript sources and it
exercised the SpiderMonkey engine. BlendFuzz [30] is also a similar solution to
LangFuzz as it processes existing sources with ANTLR grammars, which also
improves the mutation phase by collecting additional information from parse
trees. SkyFire [28] is a tool aiming to generate valuable input seeds for other
fuzzing strategies. It infers probabilistic context-sensitive grammars from exam-
ples to specify both syntax features and semantic rules and it uses this infor-
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mation for seed generation. SkyFire was used to test the JavaScript engine of
Internet Explorer 11.

Guiding random test generation by the SUT’s coverage information has
gained popularity recently. American Fuzzy Lop [31] (or AFL for short) is one of
the most well-known example. It was used, adapted, and improved by many [1–
3,16–18,22,24]. AFL is a language-independent mutation-based fuzzing app-
roach. It usually starts with an initial test population and iteratively applies var-
ious atomic mutation operators (bit/byte insertion/deletion/replacement, etc.)
on its elements. If a mutant covers new edges in the SUT then it will be kept for
further iterations, otherwise it will be removed from the population. The main
strength of this approach is that it is fast and it can be applied to any file-based
SUT without being acquainted with the input format requirements. However,
this can be a drawback, too, if the SUT has complex syntax requirements, like
JavaScript engines, since it will generate many useless, syntactically incorrect
test cases.

Honggfuzz [7] and libFuzzer [19] are also coverage-guided fuzzers that improve
the fuzzing performance by running it in-process and by focusing only on some
selected methods. Google’s OSS-Fuzz [8] platform uses both AFL and libFuzzer
to test open-source projects with a large user base.

6 Summary

In this paper, we have revisited a fuzzing (or random testing) technique that used
prototype graphs to model the weak type system of the JavaScript programming
language and generated function call expressions from such graphs to exercise the
APIs of JavaScript execution engines. We have observed that JavaScript-based
execution environments (built on top of execution engines) often exposed APIs
that had parts which required multiple separate but not independent function
calls to be reachable. As the original technique could not generate test cases
for those parts of APIs, we have given an extension to the original graph-based
approach so that it can generate a series of API calls which can re-use the results
of each other.

We have created a prototype tool based on the here-presented algorithms and
used it to fuzz test the IoT.js platform. The generated test cases have caused
numerous issues in the platform-under-test: we have found 9 unique failures that
were triggered by both algorithm variants (showing that the original approach
is still a valid fuzzing technique), but there were also 5 unique failures that were
caused by test cases generated by the new approach only. Manual investigation
showed that at least 3 of these failure-inducing test cases indeed made use of
interdependencies between multiple function calls and could not be merged into
a single expression. All failures have been reported to the public issue tracker of
the tested project along with the issue-triggering test cases.
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Since the prototype implementation has already found real issues in a real
project, we plan to further experiment with the technique. As a natural con-
tinuation of the current work, we plan to target the Node.js platform with this
technique, as well as the JavaScript APIs of current web browsers. We foresee
that these new targets may impose new requirements both on the implemen-
tation and on the formalism of the prototype graph (e.g., because of language
constructs introduced by newer JavaScript specification versions they support).
We also plan to adapt techniques that can guide prototype graph-based fuzzing
– i.e., influence its randomness – as greybox techniques have been proved bene-
ficial in other fuzzing approaches as well. Finally, although JavaScript is one of
the most widespread programming languages these days, we would like to inves-
tigate the adaptability of the (proto)type graph-based API fuzzing technique to
other languages as well.
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