
A Memory-aware Performance Optimization of Tensor Programs for
Embedded Devices

Sunwoong Joo*, Attila Dusnoki#, Martyn Bliss+, Ben Duckworth+, Nicolas Scotto Di Perto+
Markó Fabó#, Gábor Lóki#, Dániel Vince#, Ákos Kiss# and Cheul-hee Hahm*

*Samsung Electronics, Visual Display Business Division, Suwon, South Korea

{sunwoong.joo, chhahm}@samsung.com
+Samsung Research United Kingdom, Staines-Upon-Thames, United Kingdom

{martyn.bliss, b.duckworth, n.perto}@samsung.com
#University of Szeged, Department of Software Engineering, Szeged, Hungary

{adusnoki, mfabo, loki, vinced, akiss}@inf.u-szeged.hu

Abstract

We present a performance optimization method of
tensor programs for embedded devices with memory
constraints. Based on the Tensor Virtual Machine, which
automatically optimizes tensor programs, we introduce
four techniques to reduce memory consumption. First, we
improve the search templates for convolution tensor
programs to reduce memory consumption. Second, we
improve the planner by focusing on a specific target
processor, a central processing unit. Third, to avoid
unnecessary memory allocations and copies, we improve
the runtime. Last, we introduce how to choose the best
configuration. Experimental results show that the
proposed method gives better performance with respect to
both the memory footprint and the inference time when
compared to conventional ones.

Keywords: Embedded AI; On-Device AI; Optimization

1. Introduction

The optimization of tensor programs is a crucial step
in realizing deep learning applications on embedded
devices with limited resources. Tensor program libraries,
such as Arm Compute Library (ACL) and Microsoft
Linear Algebra Subprograms (MLAS), are somewhat
optimized for the target architecture. However, because
tensor program libraries are implemented to cope with all
possible tensor shapes and graph configurations, it is not
easy to achieve optimal inference time and memory
consumption for a specific model on a specific embedded
device.

Manual optimization of tensor programs relies on
intuition and experience. It takes a lot of time and effort
for each new layer or model. Tensor shapes and graph
configurations vary widely across various models, thus
multiple transformations can be applied to each tensor
program. Moreover, the hardware diversity of embedded
devices expands the optimization search space even

further. This very large search space makes manual
optimization challenging, thus automated optimization
methods have been introduced. E.g., in the Tensor Virtual
Machine (TVM) [1, 2] deep learning compiler stack, a
framework called AutoTVM tries to find the fastest
configuration. This framework is designed to compile the
tensor program, measure the inference time on a target
device, and choose the fastest setting. However, this
approach is relatively insensitive to memory consumption.

This paper presents a memory-aware optimization
method implemented within the infrastructure of TVM.
There are many candidate processors for deep learning
processing. But, in terms of memory consumption, CPUs
are advantageous in an embedded device with extremely
limited resources. So, we assume all of the deep learning
applications run on CPUs only.

The rest of this paper is structured as follows: Section
2 explains our proposed memory-aware optimization
method, and Section 3 shows experimental results.
Section 4 concludes our work.

2. Memory-aware Optimizations

The TVM deep learning compiler infrastructure

focuses on executing a tensor program as fast as possible,
which can lead to not considering memory consumption.
This is problematic in devices that use memory-sensitive
image-to-image models, such as Style-Transfer or Super-
Resolution [3]. This can be addressed by implementing
memory-aware optimizations such as those introduced in
the following subsections.

2.1 Improvements of Convolution Tensor Programs

Convolution is one of the most computationally
intensive operations in neural networks. The main idea of
TVM’s default search for a fast convolution tensor
program is to transpose the data into a more compute-
friendly layout to reduce the inference time. The main
drawback is that these intermediate representations
usually require more space.

The Fifth International Conference on Consumer Electronics (ICCE) Asia 2020

- 168 -

Our approach is to eliminate most of these allocations
by moving the intermediate transformations into the
computations. Some cases even eliminate them entirely,
while still maintaining the same or even better
performance. The potential to save memory depends
highly on the convolution size. For example, in the case
of a 1×3×1080×1920 (NCHW) input size, if we compute
at the H axis, we only need 1080×1920 sized buffers for
the intermediate representation. Instead, if the C axis is
used for computation, this requires three times bigger
memory allocation.

Our solution is to extend TVM’s computation and
search space with the proper configurations. There is no
ultimate configuration which fits for all cases. Inlining
everything would give us the best memory usage, but it
would result in an overcomplicated direct convolution
which loses all the speed improvements made with the
transformations. Our optimal case is a slight-or-no
runtime loss with a moderate-to-high memory reduction.
Allocating inside a computation requires a cache-friendly
memory layout to be effective, therefore we had to reorder
and tile the computational axis to match that. For target
devices which support NEON, we made sure to have the
proper format to leverage all the possible vectorization.
The biggest drawback is the configuration space size
which could explode if we increase the number of
parameters above a certain limit. This should be
considered while introducing any new option as a
parameter.

The transpose convolution, also known as
deconvolution, is commonly used in image-to-image
models. It up-scales the input data, and with all the
intermediate allocations, it is a very memory heavy
operation. With a memory-restricted target device, our
approach is a bit limited here compared to the convolution.
We had to inline all computation and find the optimal re-
ordering and tiling which had the best performance. The
computation uses dilation for the upscaling, which will
introduce branching inside the computation when inlined.
To minimize those, we used very specific tiling to avoid
branches inside the inner loop of the computations. In
addition, we have also done as many loop unrolling
actions as it is possible to reduce the overhead of branch
penalties.

2.2 Improvement of the Graph Planner

TVM creates the blueprint of the model via the Graph

Planner. The output of this phase contains the actions that
have to be done, the parameters of these actions, and the
dependencies of them. These actions are the computation
layers in the models. Since one layer can depend on
another, it requires the output of the parent layer. These
are temporary buffers in the TVM terminology.

To store the results of intermediate computations,
TVM uses these buffers which are managed during each
layer execution. TVM can support multiple backends and
the temporary buffers have to be managed separately for
every backend. Since we are focusing on the CPU
backend, the memory allocations happen on the CPU side
only andin this case the management of the temporary
buffers can be computed ahead. Based on the

dependencies and the shapes stored in the blueprint, it is
possible to precompute the minimal memory space area
which could hold all the temporary buffers required and
to reuse obsolete areas as well. In addition, in the case of
a single CPU backend, we can also combine the input and
the output buffers with the temporary ones, which is not
possible in the case of multiple backends.

2.3 Improvement of the Runtime

In the initialization phase the runtime program makes

allocations, allocating those memory chunks which will
be used later by layers’ computations. In addition, most of
these allocated spaces will be filled with static data. Since
our target devices are embedded devices running Linux-
based OS, the memory optimization has to consider this.
In a Linux environment the most frequent method to
measure memory consumption is to read the peak memory
consumption number of a process from the kernel, which
is stable and works quite straightforwardly. On the other
hand, the Linux OS applies many optimizations in its own
memory manager while allocating and deallocating
physical CPU memory. One of the most painful
operations in a memory-aware embedded system is the
unloading of an allocated memory space. In this case the
OS will only mark the area as a free memory space, but
does not detach it from its current parent process. The
actual unloading, detaching will be done later controlled
by other conditions, such as back references, urge of
allocating additional memory, etc.

The approach officially suggested by TVM is to load
the weights of a model from a separate file. This leads to
mapping the whole file to the process’s memory region
which increases the memory consumption. After that the
initialization phase does a memory copy from this pre-
allocated space to a special tensor data memory region. In
the general case, this is necessary because the runtime
doesn’t know anything about the target architecture, and
this special tensor data region can be at the CPU or GPU
or any other memory region. In our case, it is the CPUs,
and there is no need for an extra copy. Additionally, in
this environment, it is not optimal to load all the static data,
allocate free space for them, and keep them until the end
of the process. One solution is to load only small chunks
for the next allocated space instead of loading everything
together. With these we can achieve an implementation
that never increases the maximum resident set size above
the minimum that is required during initialization.

2.4 Configuration Selection

In the default AutoTVM implementation, the cost

function measures the inference time. In most of the cases
it is a good approach, however in case of embedded
devices, the memory consumption should also be
considered. Our solution is a manual fine-tuning of this
approach.

It is possible to rewrite the measurement method of the
evaluation of the generated tensor programs. The memory
consumption can be retrieved instead of inference time.
With this change the AutoTVM framework searches for a

The Fifth International Conference on Consumer Electronics (ICCE) Asia 2020

- 169 -

new configuration set which reduces the memory
consumption. However, with this approach, the inference
times may increase considerably. To get the best out of
both approaches it is possible to limit parameters that have
a large impact on memory consumption in the search
templates to a certain value which leads to a better
memory consumption in general.

3. Evaluation

In our experiment, we compared our optimization
methods against the unmodified version of TVM,
TensorFlow-Lite (TF-Lite), and the Open Neural
Network Exchange (ONNX) runtime. TF-Lite is a
framework for embedded devices, which can run
converted TensorFlow (TF) [4] models. The tool is widely
used, thus suitable as a baseline in our experiment. We
used version 1.15, compiled with ARM NEON support.
The ONNX runtime supports a variety of tensor program
libraries, such as ACL and MLAS, and it is also a de-facto
standard format for model exchange in various deep
learning frameworks. The used version is 0.5, which
supports MLAS. The baseline TVM version was 6.0,
where its auto-tuning logs were used for optimization.

The evaluation platform of the experiments was an
embedded device equipped with an ARM Cortex A-72
quad-core processor.

In our experiment, we have used two applications. To
measure the inference time, we ran each model 51 times
using randomly generated inputs. The measurement of the
first warm-up run was thrown away, and the remaining 50
were averaged. To measure memory consumption, we

have used peak resident set size information retrieved
from the operating system.

3.1 MobileNet

MobileNet [5] is suitable as a reference model because

it is a well-known model for embedded devices. Figure 1
shows that the tensor program optimized by TVM reduces
inference time compared to TF-Lite by 43%, but memory
consumption increases by 34%. In contrast, the tensor
program optimized by our proposed method reduces the
inference time by 46%, and also reduces memory
consumption by 21% compared to TF-Lite. The inference
time difference between TVM and our proposed method
is not significant, but the memory consumption of the
proposed method is close to half that of TVM’s.

Table 1 shows the inference time for each type of
convolution in the MobileNet model. Despite the
significant difference in memory consumption between
the baseline TVM and the proposed method, the inference
time is similar. Because the default search templates
provided by TVM already have a search space fitted for
the MobileNet, the extended search space of the proposed
method has a lesser effect on the inference. In this
MobileNet experiment, most of the reduction in peak
memory consumption comes from improvements in the
runtime and memory planner.

3.2 Super-Resolution

In Super-Resolution models, unlike in classification
models, the output tensor is also in an image form. Thus,
the memory consumption is usually higher. For this
experiment, we measured the inference time and memory

Figure 1: Peak memory and inference time
comparison for mobilenet-v1-224-1.0 model

Table 1: Inference time comparison for convolutions
of mobilenet-v1-224-1.0 model (ms)

 TVM Proposed
Convolutions 54 52
Depthwise-Convolutions 10 6

Figure 2: Peak memory and inference time

comparison for super-resolution model

Table 2: Inference time comparison for convolutions
of super-resolution model (ms)

 TVM Proposed
Convolutions 651 305
Transpose-Convolution 326 21

TF-Lite

TVM

Proposed

ONNX-
runtime

0

10

20

30

40

50

60

0 25 50 75 100 125 150

Pe
ak

 m
em

or
y

(M
B

)

Inference time (ms)

TF-Lite

TVM

Proposed

ONNX-
runtime

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

Pe
ak

 m
em

or
y

(M
B

)

Inference time (ms)

The Fifth International Conference on Consumer Electronics (ICCE) Asia 2020

- 170 -

consumption of a lightweight Super-Resolution model
consisting of a combination of multiple 1×1, 3×3
convolutions, and one 3×3 transpose convolution. In this
model, the resolution of the input image is 250×250, and
the resolution of the output image is 500×500. Figure 2
shows the inference time and memory consumption of the
Super-Resolution model described above. One important
observation is that the tensor program of TVM and the
tensor program of ONNX-runtime show different
characteristics compared to Figure 1. This is because the
Super-Resolution model used in the experiment consists
of convolutions with a relatively small number of
channels and a large feature map size compared to
MobileNet. The proposed method has extended the search
space to explore tensor programs suitable for each model
shape characteristic, thereby minimizing both inference
time and memory consumption in models with different
characteristics.

Table 2 shows the inference time for each type of
convolution in the Super-Resolution model. Although
both the baseline TVM and the proposed method are using
optimized tensor programs for target device and model
through auto-tuning, we can observe that there is a
significant difference in the inference time between TVM
and the proposed method, unlike the MobileNet results in
Table 1. This is because the templates of the proposed
method have an extended search space and so can
generate a tensor program suitable for image-to-image
models such as Super-Resolution.

4. Conclusion

In this paper, we proposed a memory-aware

optimization method that significantly reduces the
memory consumption and also reduces the inference time
of tensor programs for embedded devices. Four
techniques have been introduced, implemented, and
evaluated in embedded TV devices. The first one was the
improvement of convolution and transpose convolution
algorithms using target specialization and addition of new
parameters for the optimal search space. The second was
the reuse of memory regions in the blueprint of the model
to reduce the memory consumption. The third was the
improvement of the initialization phase in case of
targeting the CPU backend, which avoids unnecessary
allocations and copies. The last one was a method to
choose the best configuration while focusing on
performance in a memory-aware embedded system.

Through experiments, we have shown that the
proposed methods significantly reduce memory
consumption in classification and in memory-sensitive
image-to-image models, while also reducing inference
times. The evaluation reveals that our proposed tensor
program optimization methods produce the best
performance and memory consumption compared to other
tensor programs.

References

[1] T. Chen, et al., “TVM: An automated end-to-end optimizing
compiler for deep learning,” in Proc. 13th USENIX Symp. Oper.

Syst. Design Implement. (OSDI), Carlsbad, CA, USA, pp. 578-
594, 2018.

[2] T. Chen, L. Zhang, E. Wang, Z. Jiang, T. Moreau, L. Ceze,
C. Guestrin, and A. Krishnamurthy, “Learning to optimize
tensor programs,” arXiv:1805.08166, 2018.

[3] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for
real-time style transfer and super-resolution,” in Proc. 14th
European Conf. Computer Vision, Amsterdam, The Netherlands,
pp. 694-711, 2016.

[4] M. Abadi, et al., “TensorFlow: A system for large-scale
machine learning,” in Proc. 12th USENIX Symp. Oper. Syst.
Design Implement. (OSDI), vol. 16, pp. 265-283, 2016.

[5] A. G. Howard, et al. “MobileNets: Efficient convolutional
neural networks for mobile vision applications,”
arXiv:1704.04861, 2017.

The Fifth International Conference on Consumer Electronics (ICCE) Asia 2020

- 171 -

	ICCE-Asia2020
	Information

	Time Table
	QR Codes for YouTube/Zoom links
	Floor Map
	Contents
	Papers

	Oral Session 1 - AI and ML

	OS1-1

	OS1-2

	OS1-3

	OS1-4

	OS1-5

	Oral Session 2 - Automotive
Applications
	OS2-1

	OS2-2

	OS2-3

	OS2-4

	Oral Session 3 - Image and Video
Processing
	OS3-1

	OS3-2

	OS3-3

	OS3-4

	OS3-5

	Oral Session 4 - CE Systems

	OS4-1

	OS4-2

	OS4-3

	OS4-4

	OS4-5

	Oral Session 5 - IoT

	OS5-1

	OS5-2

	OS5-3

	OS5-4

	Oral Session 6 - CE Technologies

	OS6-1

	OS6-2

	OS6-3

	OS6-4

	Oral Session 7 - Wireless
Communications
	OS7-1

	OS7-2

	OS7-3

	OS7-4

	Special Session 1 - AI and Embedded
AI SW
	SS1-1

	SS1-2

	SS1-3

	SS1-4

	SS1-5

	Special Session 2 - SK-Hynix

	SS2-1

	SS2-2

	SS2-3

	SS2-4

	SS2-5

	Special Session 3 - WEIE Workshop

	SS3-1

	SS3-2

	SS3-3

	SS3-4

	SS3-5

	Poster Session 1
	PS1-1

	PS1-2

	PS1-3

	PS1-4

	PS1-5

	PS1-6

	PS1-7

	PS1-8

	PS1-9

	PS1-10

	PS1-11

	PS1-12

	PS1-13

	PS1-14

	PS1-15

	Poster Session 2
	PS2-1

	PS2-2

	PS2-3

	PS2-4

	PS2-5

	PS2-6

	PS2-7

	PS2-8

	PS2-9

	PS2-10

	PS2-11

	PS2-12

	PS2-13

	PS2-14

	PS2-15

	PS2-16

	PS2-17

	PS2-18

	Poster Session 3
	PS3-1

	PS3-2

	PS3-3

	PS3-4

	PS3-5

	PS3-6

	PS3-7

	PS3-8

	PS3-9

	PS3-10

	PS3-11

	PS3-12

	PS3-13

	PS3-14

	PS3-15

	PS3-16

	Poster Session 4
	PS4-1

	PS4-2

	PS4-3

	PS4-4

	PS4-5

	PS4-6

	PS4-7

	PS4-8

	PS4-9

	PS4-10

	PS4-11

	PS4-12

	PS4-13

	Poster Session 5
	PS5-1
	PS5-2

	PS5-3

	PS5-4

	PS5-5

	PS5-6

	PS5-7

	PS5-8

	PS5-9

	PS5-10

	PS5-11

	PS5-12

	PS5-13

	PS5-14

	PS5-15

	PS5-16

	Poster Session 6
	PS6-1

	PS6-2

	PS6-3

	PS6-4

	PS6-5

	PS6-6

	PS6-7

	PS6-8

	PS6-9

	PS6-10

	PS6-11

	PS6-12

	PS6-13

	PS6-14

	Poster Session 7
	PS7-1

	PS7-2

	PS7-3

	PS7-4

	PS7-5

	PS7-6

	PS7-7

	PS7-8

	PS7-9

	PS7-10

	PS7-11

	PS7-12

	PS7-13

	PS7-14

	PS7-15

	Poster Session 8
	PS8-1

	PS8-2

	PS8-3

	PS8-4

	PS8-5

	PS8-6

	PS8-7

	PS8-8

	PS8-9

	PS8-10

	PS8-11

	PS8-12

	PS8-13

	PS8-14

	PS8-15

