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Abstract 
 

We present a performance optimization method of 
tensor programs for embedded devices with memory 
constraints. Based on the Tensor Virtual Machine, which 
automatically optimizes tensor programs, we introduce 
four techniques to reduce memory consumption. First, we 
improve the search templates for convolution tensor 
programs to reduce memory consumption. Second, we 
improve the planner by focusing on a specific target 
processor, a central processing unit. Third, to avoid 
unnecessary memory allocations and copies, we improve 
the runtime. Last, we introduce how to choose the best 
configuration. Experimental results show that the 
proposed method gives better performance with respect to 
both the memory footprint and the inference time when 
compared to conventional ones. 
 
Keywords: Embedded AI; On-Device AI; Optimization 
 
1. Introduction 
 

The optimization of tensor programs is a crucial step 
in realizing deep learning applications on embedded 
devices with limited resources. Tensor program libraries, 
such as Arm Compute Library (ACL) and Microsoft 
Linear Algebra Subprograms (MLAS), are somewhat 
optimized for the target architecture. However, because 
tensor program libraries are implemented to cope with all 
possible tensor shapes and graph configurations, it is not 
easy to achieve optimal inference time and memory 
consumption for a specific model on a specific embedded 
device. 

Manual optimization of tensor programs relies on 
intuition and experience. It takes a lot of time and effort 
for each new layer or model. Tensor shapes and graph 
configurations vary widely across various models, thus 
multiple transformations can be applied to each tensor 
program. Moreover, the hardware diversity of embedded 
devices expands the optimization search space even 

further. This very large search space makes manual 
optimization challenging, thus automated optimization 
methods have been introduced. E.g., in the Tensor Virtual 
Machine (TVM) [1, 2] deep learning compiler stack, a 
framework called AutoTVM tries to find the fastest 
configuration. This framework is designed to compile the 
tensor program, measure the inference time on a target 
device, and choose the fastest setting. However, this 
approach is relatively insensitive to memory consumption. 

This paper presents a memory-aware optimization 
method implemented within the infrastructure of TVM. 
There are many candidate processors for deep learning 
processing. But, in terms of memory consumption, CPUs 
are advantageous in an embedded device with extremely 
limited resources. So, we assume all of the deep learning 
applications run on CPUs only. 

The rest of this paper is structured as follows: Section 
2 explains our proposed memory-aware optimization 
method, and Section 3 shows experimental results. 
Section 4 concludes our work. 

 
2. Memory-aware Optimizations 

 
The TVM deep learning compiler infrastructure 

focuses on executing a tensor program as fast as possible, 
which can lead to not considering memory consumption. 
This is problematic in devices that use memory-sensitive 
image-to-image models, such as Style-Transfer or Super-
Resolution [3]. This can be addressed by implementing 
memory-aware optimizations such as those introduced in 
the following subsections. 
 
2.1 Improvements of Convolution Tensor Programs 
 

Convolution is one of the most computationally 
intensive operations in neural networks.  The main idea of 
TVM’s default search for a fast convolution tensor 
program is to transpose the data into a more compute-
friendly layout to reduce the inference time. The main 
drawback is that these intermediate representations 
usually require more space. 
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Our approach is to eliminate most of these allocations 
by moving the intermediate transformations into the 
computations. Some cases even eliminate them entirely, 
while still maintaining the same or even better 
performance. The potential to save memory depends 
highly on the convolution size. For example, in the case 
of a 1×3×1080×1920 (NCHW) input size, if we compute 
at the H axis, we only need 1080×1920 sized buffers for 
the intermediate representation. Instead, if the C axis is 
used for computation, this requires three times bigger 
memory allocation. 

Our solution is to extend TVM’s computation and 
search space with the proper configurations. There is no 
ultimate configuration which fits for all cases. Inlining 
everything would give us the best memory usage, but it 
would result in an overcomplicated direct convolution 
which loses all the speed improvements made with the 
transformations. Our optimal case is a slight-or-no 
runtime loss with a moderate-to-high memory reduction. 
Allocating inside a computation requires a cache-friendly 
memory layout to be effective, therefore we had to reorder 
and tile the computational axis to match that. For target 
devices which support NEON, we made sure to have the 
proper format to leverage all the possible vectorization. 
The biggest drawback is the configuration space size 
which could explode if we increase the number of 
parameters above a certain limit. This should be 
considered while introducing any new option as a 
parameter. 

The transpose convolution, also known as 
deconvolution, is commonly used in image-to-image 
models. It up-scales the input data, and with all the 
intermediate allocations, it is a very memory heavy 
operation. With a memory-restricted target device, our 
approach is a bit limited here compared to the convolution. 
We had to inline all computation and find the optimal re-
ordering and tiling which had the best performance. The 
computation uses dilation for the upscaling, which will 
introduce branching inside the computation when inlined. 
To minimize those, we used very specific tiling to avoid 
branches inside the inner loop of the computations. In 
addition, we have also done as many loop unrolling 
actions as it is possible to reduce the overhead of branch 
penalties. 

 
2.2 Improvement of the Graph Planner 

 
TVM creates the blueprint of the model via the Graph 

Planner. The output of this phase contains the actions that 
have to be done, the parameters of these actions, and the 
dependencies of them. These actions are the computation 
layers in the models. Since one layer can depend on 
another, it requires the output of the parent layer. These 
are temporary buffers in the TVM terminology. 

To store the results of intermediate computations, 
TVM uses these buffers which are managed during each 
layer execution. TVM can support multiple backends and 
the temporary buffers have to be managed separately for 
every backend. Since we are focusing on the CPU 
backend, the memory allocations happen on the CPU side 
only andin this case the management of the temporary 
buffers can be computed ahead. Based on the 

dependencies and the shapes stored in the blueprint, it is 
possible to precompute the minimal memory space area 
which could hold all the temporary buffers required and 
to reuse obsolete areas as well. In addition, in the case of 
a single CPU backend, we can also combine the input and 
the output buffers with the temporary ones, which is not 
possible in the case of multiple backends. 

 
2.3 Improvement of the Runtime 

 
In the initialization phase the runtime program makes 

allocations, allocating those memory chunks which will 
be used later by layers’ computations. In addition, most of 
these allocated spaces will be filled with static data. Since 
our target devices are embedded devices running Linux-
based OS, the memory optimization has to consider this. 
In a Linux environment the most frequent method to 
measure memory consumption is to read the peak memory 
consumption number of a process from the kernel, which 
is stable and works quite straightforwardly. On the other 
hand, the Linux OS applies many optimizations in its own 
memory manager while allocating and deallocating 
physical CPU memory. One of the most painful 
operations in a memory-aware embedded system is the 
unloading of an allocated memory space. In this case the 
OS will only mark the area as a free memory space, but 
does not detach it from its current parent process. The 
actual unloading, detaching will be done later controlled 
by other conditions, such as back references, urge of 
allocating additional memory, etc. 

The approach officially suggested by TVM is to load 
the weights of a model from a separate file. This leads to 
mapping the whole file to the process’s memory region 
which increases the memory consumption. After that the 
initialization phase does a memory copy from this pre-
allocated space to a special tensor data memory region. In 
the general case, this is necessary because the runtime 
doesn’t know anything about the target architecture, and 
this special tensor data region can be at the CPU or GPU 
or any other memory region. In our case, it is the CPUs, 
and there is no need for an extra copy. Additionally, in 
this environment, it is not optimal to load all the static data, 
allocate free space for them, and keep them until the end 
of the process. One solution is to load only small chunks 
for the next allocated space instead of loading everything 
together. With these we can achieve an implementation 
that never increases the maximum resident set size above 
the minimum that is required during initialization. 

 
2.4 Configuration Selection 

 
In the default AutoTVM implementation, the cost 

function measures the inference time. In most of the cases 
it is a good approach, however in case of embedded 
devices, the memory consumption should also be 
considered. Our solution is a manual fine-tuning of this 
approach. 

It is possible to rewrite the measurement method of the 
evaluation of the generated tensor programs. The memory 
consumption can be retrieved instead of inference time. 
With this change the AutoTVM framework searches for a 
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new configuration set which reduces the memory 
consumption. However, with this approach, the inference 
times may increase considerably. To get the best out of 
both approaches it is possible to limit parameters that have 
a large impact on memory consumption in the search 
templates to a certain value which leads to a better 
memory consumption in general. 
 
3. Evaluation 
 

In our experiment, we compared our optimization 
methods against the unmodified version of TVM, 
TensorFlow-Lite (TF-Lite), and the Open Neural 
Network Exchange (ONNX) runtime. TF-Lite is a 
framework for embedded devices, which can run 
converted TensorFlow (TF) [4] models. The tool is widely 
used, thus suitable as a baseline in our experiment. We 
used version 1.15, compiled with ARM NEON support. 
The ONNX runtime supports a variety of tensor program 
libraries, such as ACL and MLAS, and it is also a de-facto 
standard format for model exchange in various deep 
learning frameworks. The used version is 0.5, which 
supports MLAS. The baseline TVM version was 6.0, 
where its auto-tuning logs were used for optimization. 

The evaluation platform of the experiments was an 
embedded device equipped with an ARM Cortex A-72 
quad-core processor. 

In our experiment, we have used two applications. To 
measure the inference time, we ran each model 51 times 
using randomly generated inputs. The measurement of the 
first warm-up run was thrown away, and the remaining 50 
were averaged. To measure memory consumption, we 

have used peak resident set size information retrieved 
from the operating system. 

 
3.1 MobileNet 

 
MobileNet [5] is suitable as a reference model because 

it is a well-known model for embedded devices. Figure 1 
shows that the tensor program optimized by TVM reduces 
inference time compared to TF-Lite by 43%, but memory 
consumption increases by 34%. In contrast, the tensor 
program optimized by our proposed method reduces the 
inference time by 46%, and also reduces memory 
consumption by 21% compared to TF-Lite. The inference 
time difference between TVM and our proposed method 
is not significant, but the memory consumption of the 
proposed method is close to half that of TVM’s. 

Table 1 shows the inference time for each type of 
convolution in the MobileNet model. Despite the 
significant difference in memory consumption between 
the baseline TVM and the proposed method, the inference 
time is similar. Because the default search templates 
provided by TVM already have a search space fitted for 
the MobileNet, the extended search space of the proposed 
method has a lesser effect on the inference. In this 
MobileNet experiment, most of the reduction in peak 
memory consumption comes from improvements in the 
runtime and memory planner. 

 
3.2 Super-Resolution 
 

In Super-Resolution models, unlike in classification 
models, the output tensor is also in an image form. Thus, 
the memory consumption is usually higher. For this 
experiment, we measured the inference time and memory 

 
Figure 1: Peak memory and inference time 
comparison for mobilenet-v1-224-1.0 model 

 

Table 1: Inference time comparison for convolutions 
of mobilenet-v1-224-1.0 model (ms) 

 TVM Proposed 
Convolutions 54 52 
Depthwise-Convolutions 10 6 

 

 
Figure 2: Peak memory and inference time 

comparison for super-resolution model 

 

Table 2: Inference time comparison for convolutions 
of super-resolution model (ms) 

 TVM Proposed 
Convolutions 651 305 
Transpose-Convolution 326 21 
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consumption of a lightweight Super-Resolution model 
consisting of a combination of multiple 1×1, 3×3 
convolutions, and one 3×3 transpose convolution. In this 
model, the resolution of the input image is 250×250, and 
the resolution of the output image is 500×500. Figure 2 
shows the inference time and memory consumption of the 
Super-Resolution model described above. One important 
observation is that the tensor program of TVM and the 
tensor program of ONNX-runtime show different 
characteristics compared to Figure 1. This is because the 
Super-Resolution model used in the experiment consists 
of convolutions with a relatively small number of 
channels and a large feature map size compared to 
MobileNet. The proposed method has extended the search 
space to explore tensor programs suitable for each model 
shape characteristic, thereby minimizing both inference 
time and memory consumption in models with different 
characteristics. 

Table 2 shows the inference time for each type of 
convolution in the Super-Resolution model. Although 
both the baseline TVM and the proposed method are using 
optimized tensor programs for target device and model 
through auto-tuning, we can observe that there is a 
significant difference in the inference time between TVM 
and the proposed method, unlike the MobileNet results in 
Table 1. This is because the templates of the proposed 
method have an extended search space and so can 
generate a tensor program suitable for image-to-image 
models such as Super-Resolution. 
 
4. Conclusion 

 
In this paper, we proposed a memory-aware 

optimization method that significantly reduces the 
memory consumption and also reduces the inference time 
of tensor programs for embedded devices. Four 
techniques have been introduced, implemented, and 
evaluated in embedded TV devices. The first one was the 
improvement of convolution and transpose convolution 
algorithms using target specialization and addition of new 
parameters for the optimal search space. The second was 
the reuse of memory regions in the blueprint of the model 
to reduce the memory consumption. The third was the 
improvement of the initialization phase in case of 
targeting the CPU backend, which avoids unnecessary 
allocations and copies. The last one was a method to 
choose the best configuration while focusing on 
performance in a memory-aware embedded system. 

Through experiments, we have shown that the 
proposed methods significantly reduce memory 
consumption in classification and in memory-sensitive 
image-to-image models, while also reducing inference 
times. The evaluation reveals that our proposed tensor 
program optimization methods produce the best 
performance and memory consumption compared to other 
tensor programs. 
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