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Abstract—Minimizing failing test cases is an important pre-
processing step on the path of debugging. If much of a test case
that triggered a bug does not contribute to the actual failure,
then the time required to fix the bug can increase considerably.
However, test case reduction itself can be a time consuming task,
especially if done manually. Therefore, automated minimization
techniques have been proposed, the minimizing Delta Debugging
(DDMIN) and the Hierarchical Delta Debugging (HDD) algo-
rithms being the most well known. DDMIN does not need any
information about the structure of the test case, thus it works for
any kind of input. If the structure is known, however, it can be
utilized to create smaller test cases faster. This is exemplified by
HDD, which works on tree-structured inputs, pruning subtrees
at each level of the tree with the help of DDMIN.

In this paper, we propose to extend HDD with a reduction
method that does not prune subtrees, but replaces them with
compatible subtrees further down the hierarchy, called hoisting.
We have evaluated various combinations of pruning and hoisting
on multiple test suites and found that hoisting can help to further
reduce the size of test cases by as much as 80% compared to the
baseline HDD. We have also compared our results to other state-
of-the-art test case reduction algorithms and found that HDD
extended with hoisting can produce smaller output in most of
the cases.

Index Terms—test case minimization, hierarchical delta debug-
ging, hoisting

I. INTRODUCTION

Our software can fail, so our software will fail. If we are
lucky enough, we have a record of the events or inputs that
triggered the failure. If we are even luckier, the failure is
reproducible. In this case, a lucky engineer will get the task
of fixing the problem.

Usually, the observed problem is only a symptom, and the
root of it has to be found first in order to get the bug fixed. The
record of the events or inputs that triggered the failure – i.e.,
the test case – can help here. However, this test case is often a
mixture of relevant and irrelevant information. If much of the
test case is irrelevant, i.e., it does not contribute to the failure,
then the engineering time and effort required to fix the bug can
increase considerably. Therefore, the minimization of failure-
inducing test cases is an important first step on the path of
debugging. However, it is of limited benefit if engineer-hours
spent on bug fixing are simply converted to engineer-hours
spent on manual test case reduction.

One of the most well-known techniques to automate reduc-
tion is the minimizing Delta Debugging algorithm (DDMIN)

by Zeller and Hildebrandt [1]–[3], working on all kinds of
test cases without the need for any information about their
structure. It has been realized, however, that if the structure
of the test cases is known, that knowledge can be utilized to
create smaller results faster. Misherghi and Su have introduced
the Hierarchical Delta Debugging (HDD) algorithm [4], [5],
built on DDMIN, that works on tree-structured inputs (e.g., on
any input format that has a context-free grammar) and prunes
unnecessary subtrees of the test case during reduction. These
foundational works have inspired many follow-up research:
some papers focused on improving their performance [6]–[9],
while others aimed for smaller results [10].

In this paper, we also focus on the size aspect of the
reduced test cases. We propose to extend the pruning-based
reduction approach of HDD, where subtrees of the test case are
removed, with a technique called hoisting, where subtrees are
replaced with compatible subtrees further down the hierarchy.
Therefore, we define the algorithmic framework of hoisting
and describe its potential combinations with pruning. We have
evaluated the introduced approaches and found that hoisting
can help to further reduce the size of test cases by as much
as 80% compared to the baseline HDD.

The rest of the paper is organized as follows: first, in Sec-
tion II, we give a brief overview of DDMIN and HDD, to make
this paper self-contained. Then, in Section III, we show some
examples where pruning-based reduction can be improved
upon, and describe and formalize the idea of hoisting. In
Section IV, we evaluate the effects of hoisting with the help of
a prototype implementation, and we present our experimental
results. In Section V we discuss related work, and finally, in
Section VI we summarize our work and conclude the paper.

II. BACKGROUND

The minimizing Delta Debugging (DDMIN) algorithm [1]–
[3] is a systematic iterative approach for reducing a test
case while keeping some interesting property invariant. The
algorithm works on a set of atomic units representing parts of
the test case. First, this set of units is split into two subsets
of roughly equal size, and both subsets are investigated for
whether they still have the interesting property of the original
test case. If the property is kept in any of the subsets, reduction
was successful and a new iteration starts with the found subset,
otherwise the granularity is refined by doubling the splitting.
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Let test and c7 be given such that test(∅) = 3 ∧ test(c7) = 7 hold.
The goal is to find c′7 = ddmin(c7) such that c′7 ⊆ c7, test(c′7) = 7, and c′7 is 1-minimal.
The minimizing Delta Debugging algorithm ddmin(c) is

ddmin(c7) = ddmin2(c7, 2) where

ddmin2(c′7, n) =


ddmin2(∆i, 2) if ∃i ∈ {1, . . . , n} · test(∆i) = 7 (“reduce to subset”)
ddmin2(∇i,max(n− 1, 2)) else if ∃i ∈ {1, . . . , n} · test(∇i) = 7 (“reduce to complement”)

ddmin2(c′7,min(|c′7|, 2n)) else if n < |c′7| (“increase granularity”)

c′7 otherwise (“done”).

where ∇i = c′7 −∆i, c′7 = ∆1 ∪∆2 ∪ . . . ∪∆n, all ∆i are pairwise disjoint, and ∀∆i · |∆i| ≈ |c′7|/n holds.
The recursion invariant (and thus precondition) for ddmin2 is test(c′7) = 7 ∧ n ≤ |c′7|.

Fig. 1. The Minimizing Delta Debugging Algorithm.

The subsets of the new partitioning are investigated again,
one by one, as well as their complements. I.e., it is checked
whether keeping or removing any of the subsets leads to an
interesting smaller test case. Again, if any of the investigated
test cases keeps the property in question, it will be used as the
input to the next iteration, otherwise the splitting is increased.
The iteration continues until the granularity reaches the unit
level, when it is proven to have found a so-called 1-minimal
result, a local minimum where the removal of any single unit
from the test case causes the loss of the interesting property.

The algorithm has its roots in the isolation of failure-
inducing code changes, which is visible in its terminology.
For the algorithm, a test case is composed of elementary
changes or deltas, denoted as δi, whence the algorithm got its
name. A set of changes is also called a configuration, usually
denoted by c. The outcome of a program run on a specific
configuration is determined by a testing function, and it can
be either FAIL (also written as 7) if the test case induced the
original failure, PASS (also written as 3) if the test succeeds, or
UNRESOLVED (written as ?) if the result is indeterminate. The
set of all changes, i.e., the initial configuration that triggers a
failing run is denoted by c7. Although the algorithm is often
applied to the simplification of program inputs where the term
“change” is not an intuitive fit to the units of a test case (e.g.,
to characters or lines of a text file) and the algorithm also has
use cases where the interesting property of a test case is not a
program failure. Most authors, including us, follow the original
notation for historical reasons. For the sake of completeness,
Figure 1 gives Zeller and Hildebrandt’s latest formulation of
the minimizing Delta Debugging algorithm [3].

If a test case that is to be reduced has some mandatory
structure over its units, which is quite typical for inputs to a
program, DDMIN may work suboptimally. The configuration
partitioning during the iterations may be completely unaligned
with the boundaries of the structural elements of the input,
leading to incorrectly formatted, non-reproducing, and thus
useless test cases. The goal of the Hierarchical Delta Debug-
ging (HDD) algorithm [4] is to avoid such superfluous steps
by not testing format-breaking configurations. To achieve that
goal, it works on hierarchical tree-structured input representa-
tions (e.g., on parse trees, abstract syntax trees, or XML DOM

1 procedure HDD(input tree)
2 level← 0
3 nodes← TAGNODES(input tree, level)
4 while nodes 6= ∅ do
5 minconfig← DDMIN(nodes)
6 PRUNE(input tree, level,minconfig)
7 level← level + 1
8 nodes← TAGNODES(input tree, level)
9 end while

10 end procedure

Fig. 2. The Hierarchical Delta Debugging Algorithm.

trees) and applies the minimizing Delta Debugging algorithm
to the levels of a tree, progressing downwards from the root
to the leaves.

The pseudocode formulation of HDD as defined by Mish-
erghi and Su [4] is shown in Figure 2. In the algorithm, the
auxiliary routine TAGNODES collects the nodes at a given
level of the tree, then DDMIN is invoked on those nodes, and
finally PRUNE applies the result of Delta Debugging to the
tree. I.e., for HDD, configurations are sets of tree nodes at a
given level and removal of a node causes the removal of the
whole subtree rooted at that node. In a later variant of HDD,
“pruning” of a node has been reinterpreted as its replacement
with the minimal applicable syntactically correct fragment to
reduce the number of test attempts at incorrectly formatted
configurations even further [5]. If HDD is iterated until a fixed-
point is reached, denoted as HDD∗, it gives a 1-tree-minimal
result, i.e., if any single node is removed from the tree, the
new test case will not be interesting anymore.

III. HOISTING

Although HDD performs better on structured inputs than
DDMIN, there is still room for improvement. Several improve-
ments have already been proposed, often by preprocessing
the tree representation HDD is working on, e.g., by hiding
some tokens from HDD and DDMIN to reduce the number
of nodes that have to be considered, by collapsing (a.k.a.
squeezing) multiple nodes into one for the same reason [7],
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int main() {
if (1) {

printf("Hello world!\n");
}

}

(a)

*

externalDeclaration

functionDefinition

typeSpecifier

’int’

directDeclarator

Identifier
’main’

*

’(’ ’)’

compoundStatement

’{’ selectionStatement

’if’ ’(’ primaryExpression

Constant
’1’

’)’ statement

compoundStatement

’{’ *

expressionStatement

postfixExpression

Identifier
’printf’

*

’(’ StringLiteral
’"Hello world!\n"’

’)’

’;’

’}’

’}’

(b)
Fig. 3. An overly complicated “Hello World” program: (a) written in C and
(b) its parse tree.

or by rotating recursive structures of the tree to reduce its
height [8]. However, these transformations do not change the
core structure of the tree, i.e., the test case generated (or,
serialized) from the preprocessed tree will still be the same
as the original input. Because of this, and because of the way
HDD works, an HDD-reduced test case – although being 1-
tree-minimal – may contain structural elements that a human
expert would remove.

A. Examples

A simple example of this suboptimal structure-preserving
behavior is shown in Figure 3. The C program in Figure 3(a)
prints the classic “Hello world!” message, but it wraps the
printing in an if statement where the predicate always evalu-
ates to true. If we take this program as a test case and define
the printing of the “Hello world!” message as interesting, then
we can try and minimize it1. Figure 3(b) shows the parse tree
of the program, generated by a parser using a context-free
grammar of the C programming language and preprocessed for
compactness (most notably, squeezing and recursion flattening
have been applied). Unfortunately, HDD cannot reduce this
test case any further (especially if replacement with minimal
syntactically correct fragment is used when pruning subtrees)
as removing any of the nodes would either yield a syntactically

1This is an example where the interesting property of the test case is not
a program failure.
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externalDeclaration

functionDefinition

typeSpecifier

’int’

directDeclarator

Identifier
’main’

*

’(’ ’)’

compoundStatement

’{’ *

expressionStatement

postfixExpression

Identifier
’printf’

*

’(’ StringLiteral
’"Hello world!\n"’

’)’

’;’

’}’

(a)

int main() {
printf("Hello world!\n");

}

(b)

Fig. 4. The example program of Figure 3 minimized to keep printing the
“Hello world!” message: (a) the parse tree with hoisting applied and (b) the
C program serialized from the tree.

incorrect test case, or one that does not print the message,
making it uninteresting2.

Theoretically, both HDD and the underlying DDMIN algo-
rithms could be modified to give n-tree-minimal results, but
that would lead to exponential complexity, which is impracti-
cal. Thus, we propose another approach called hoisting.

We can observe that there are recurring structures in the
parse tree, subtrees rooted at nodes with identical labels, de-
noting the derivation of the same non-terminal of the grammar.
The assumption of hoisting is that one such subtree may be
replaced with another without losing syntactic correctness,
and that subtrees whose roots are in ancestor-descendant
relationship may be good candidates for reduction. Of course,
the testing function has to confirm (or reject) whether such a
transformation keeps the resulting test case interesting.

In the tree of Figure 3(b), there is one pair of such
subtrees, those rooted at nodes labeled as compoundStatement.
Figure 4(a) shows a transformed tree where the descendant
subtree is hoisted to replace all the structures that enclosed
it. When this tree is serialized into the form of a C program
(see Figure 4(b)), it becomes apparent that, in this case, this
transformation was indeed useful and we got a smaller and
still interesting test case.

When discussing the idea of hoisting with fellow re-
searchers, the argument was often raised that such a trans-
formation is only good for removing some minor syntactic
elements from the result, like a dangling semicolon or a pair of
superfluous braces, etc. The example of Figures 3 and 4 does
not seem to contradict such arguments. However, Figure 5(a)

2DDMIN (either line or character-based) would not be able to remove the
unnecessary if from around the printing either.
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1 public class LocalizedPi {
2 private static String decSep(String locale) {
3 if (locale.equals("en")) {
4 return ".";
5 }
6 throw new Exception("Unsupported locale");
7 }
8 private static String formatParts(String intPart,
9 String fracPart, String decSep) {

10 return intPart.concat(decSep).concat(fracPart);
11 }
12 public static void main(String[] args) {
13 String pi = formatParts(
14 "3", "14", decSep(args[0]));
15 System.out.println(pi);
16 }
17 }

(a)

1 class LocalizedPi {
2 static String decSep(String a) {
3 throw new Exception("Unsupported locale");
4 }
5 static String formatParts(String intPart,
6 String fracPart, String decSep) {
7 return intPart.concat(decSep).concat(fracPart);
8 }
9 public static void main(String[] args) {

10 String a = formatParts("", "", decSep(args[0]));
11 }
12 }

(b)

1 class LocalizedPi {
2 static String decSep(String a) {
3 throw new Exception("Unsupported locale");
4 }
5 public static void main(String[] args) {
6 String a = decSep(args[0]);
7 }
8 }

(c)

Fig. 5. A program to print the rounded value of π in a locale-specific format:
(a) written in Java, (b) minimized with HDD to keep the program throw an
uncaught exception if an unsupported locale is specified on the command line,
and (c) minimized with hoisting applied before HDD.

shows another example, a program written in Java, that prints
the rounded value of π in a localized format, provided that
the specified locale is supported, and throws an exception
otherwise.

As presented, the program only supports the en locale. We
shall take this program as a test case and the testing function
shall check whether the program throws an exception when
invoked with an unsupported locale (e.g., hu). If HDD is used
to minimize this test case, it will be able to remove some
parts of the program, but most of the original structure will
remain in the output. (Because the exception that needs to
be thrown is in the decSep method, which is called inside
a call to the formatParts method, both methods are forced
to be kept in the reduced test case.) The parse tree for this
program would be too big to be presented as an example, so
we only show the HDD-reduced Java program in Figure 5(b),
which also displays precisely what HDD can and what it cannot
prune away. However, if hoisting is used before HDD, it can
pave the way for the latter reduction technique by hoisting the
call to decSep to replace the enclosing call to formatParts, thus

allowing the complete removal of the definition of formatParts.
(In this example, the method calls are the recurring structures
that are in ancestor-descendant relation in the tree.) The result
of the combined application of the two techniques is presented
in Figure 5(c).

Note that formatParts could be constructed arbitrarily com-
plex, making the theoretical potential of hoisting considerably
higher than the removal of the anecdotical semicolons or curly
braces. Also note, however, that hoisting cannot achieve this
alone, as it “only” moves subtrees higher up the tree, but it
has to cooperate with HDD.

B. Transformation-based Minimization

To formalize the ideas described and motivated above, we
build on and extend the notations and terminology of delta
debugging (as given in Section II) to introduce transformation-
based minimization first.

In the context of delta debugging, a test case is always
composed of a subset of the elements of the initial failing
configuration. The testing function is also defined for the
subsets of c7 only. However, it is useful (actually, necessary)
if we can also determine the outcome of a program run on a
set of elements, even if some of them are not part of the initial
configuration (e.g., in the case of hoisting, when an element –
a node – is replaced by another element – another node further
down the hierarchy –, which is part of the tree, but is not a
member of the initial set). Therefore, we extend the definitions
of delta debugging [3] as follows.

Let D denote the set of all potential test case elements, and
let δ ∈ D denote one element of that set, i.e., a test case
element. A test case or configuration is denoted as c ⊆ D. A
testing function test : 2D → {7,3, ?} shall determine for any
test case whether it produces the failure in question. The initial
failing configuration is denoted as c7 = {δ1, . . . , δn} ⊆ D, and
test(c7) = 7 holds.

As c7 is a subset of a potentially larger set D, we allow
for transformations that can not only remove, but also replace
elements in the configuration. We use the following definitions
and notations for transformations:

A function t : D → D is a transformation of test
case elements, and the identity transformation of test case
elements is idD : D → D; δ 7→ δ. We also define the
application of a test case element transformation to test cases
(or configurations) as t̄ : 2D → 2D; c 7→ {t(δ) : δ ∈ c} (e.g.,
idD(c7) = c7). And a transformation that is derived from
another transformation by changing the mapping of one test
case element is defined as

t[δ′ 7→ δ′′] : D → D; δ 7→

{
δ′′ if δ = δ′

t(δ) otherwise.

In the examples of Section III-A, the transformations that
could be applied were quite straightforward. There was only
one compoundStatement and one method call that could poten-
tially replace their parents. In a general case, however, a test
case element may have multiple replacement candidates (or
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Let D denote the set of all potential test case elements, and let δ ∈ D denote one element of that set.
Let test and c7 = {δ1, . . . , δn} ⊆ D, and test(c7) = 7 holds.
Let τ and ‖ · ‖ be given such that ∀δ ∈ D · ∀δ′ ∈ τ(δ) · ‖δ′‖ < ‖δ‖ holds.
The goal is to find t7 = tminτ (c7) such that test(t̄7(c7)) = 7 and t7 is 1-maximal.
The transformation-based minimizing algorithm tminτ (c) is

tminτ (c7) = tminτ2(c7, idD) where

tminτ2(c7, t
′
7) =

{
tminτ2(c7, t

′
7[δ 7→ δ′]) if ∃δ ∈ c7 · ∃δ′ ∈ τ(t′7(δ)) · test(t̄′7[δ 7→ δ′](c7)) = 7

t′7 otherwise.

The recursion invariant (and thus precondition) for tminτ2 is test(t̄′7(c7)) = 7.

Fig. 6. The Transformation-based Minimizing Algorithm.

none at all). This is formalized using a function τ : D → 2D

that maps test case elements to their transformed candidates.
Finally, as test cases are not necessarily the subsets of the

initial failing configuration, minimality cannot be defined in
terms of the subset relation anymore. Thus, we expect a ‖ · ‖
measure to exist on set D.

If all transformation candidates in τ are potentially reducing
the size of a configuration according to the measure ‖ · ‖, i.e.,
∀δ ∈ D · ∀δ′ ∈ τ(δ) · ‖δ′‖ < ‖δ‖ holds, then in order to
minimize the test case we have to maximize the replacements
applied to the elements of the initial configuration (even
transitively) while ensuring that the so-transformed test case
remains interesting. Just like it is true for DDMIN that search-
ing for the global optimum is impractical, so is it also true
for transformation-based minimization. Therefore, our actual
goal is to find a local optimum, a 1-maximal transformation
t7 such that ∀δ ∈ c7 ·∀δ′ ∈ τ(t7(δ)) ·test(t̄7[δ 7→ δ′](c7)) 6= 7
holds.

Figure 6 wraps up this subsection and formalizes the
transformation-based minimizing algorithm TMINτ , worded in
the likeness of DDMIN.

C. Hoisting and HDD

The transformation-based minimizing algorithm gives us a
framework to formulate hoisting. The key to this is to define
hoisting as a transformation of tree nodes. More precisely,
to define those nodes in the tree representation of the input
that can act as replacement candidates for their ancestors.
The formula in Figure 7, χ(n), is one possible way to define
these candidates, i.e., the hoistable descendants of a node n.
χ(n) is given in terms of two auxiliary functions, of which
CHILDREN(n) is trivial, giving the direct descendants of a
node, whereas COMPATIBLE(n, n′) leaves some space for
interpretation. In an extreme case, any two nodes could be
considered compatible, but that would rarely be useful. If the
tree representation of the input is built using a context-free
grammar, as motivated in Section III-A, then a natural inter-
pretation is to regard identically-labeled nodes (i.e., subtrees
of derivations of the same non-terminal of the grammar) as
compatible.

The natural measure to use for tree nodes is based on the
size of subtrees, i.e., the number assigned by the measure to

χ(n) =
⋃

n′∈children(n)

χ′(n, n′)

χ′(n, n′) =


{n′} if compatible(n, n′)⋃
n′′∈children(n′)

χ′(n, n′′) otherwise

Fig. 7. χ(n), the potentially hoistable descendants of node n.

1 procedure HOIST(input tree)
2 level← 0
3 nodes← TAGNODES(input tree, level)
4 while nodes 6= ∅ do
5 hoisting← TMINχ(nodes)
6 TRANSFORM(input tree, level, hoisting)
7 level← level + 1
8 nodes← TAGNODES(input tree, level)
9 end while

10 end procedure

Fig. 8. The Hoisting Algorithm.

a node n equals the number of nodes in the subtree of n. It
is obvious that all transformation candidates returned by χ(n)
reduce the size of the configuration according to this measure,
as expected by the definition of TMIN.

Now, with the help of TMINχ, we can introduce a hierar-
chical algorithm, called HOIST, that works its way through the
tree from the root to the leaves, and uses TMINχ to find the
hoisting transformations at each level. Candidates found by
TMINχ are prioritized by their distance to the ancestor, further
nodes give higher priority. The pseudocode of the algorithm
is presented in Figure 8. The structure of HOIST is similar to
that of HDD: both contain a loop through the levels of the tree,
and inside the loop, both perform a minimization step (TMINχ

vs. DDMIN) and the application of its result to the tree (via
the TRANSFORM and PRUNE auxiliary functions).

As discussed at the example of Figure 5, although HOIST
can achieve reduction on its own, it is expected to work best
if used in combination with HDD, e.g., by using HOIST as
a preprocessing step. However, inspired by the similarities
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1 procedure HDDH(input tree)
2 level← 0
3 nodes← TAGNODES(input tree, level)
4 while nodes 6= ∅ do
5 minconfig← DDMIN(nodes)
6 PRUNE(input tree, level,minconfig)
7 hoisting← TMINχ(minconfig)
8 TRANSFORM(input tree, level, hoisting)
9 level← level + 1

10 nodes← TAGNODES(input tree, level)
11 end while
12 end procedure

Fig. 9. The Hierarchical Delta Debugging & Hoisting Algorithm.

between the two algorithms, we can think of other ways of
combination as well. E.g., the bodies of the loops of the
two algorithms can be interlaced, performing both the DDMIN
and TMINχ-based minimizations at each level. One way to
formulate this idea is shown in Figure 9, in the algorithm
named HDDH.

IV. EXPERIMENTAL RESULTS

To evaluate the effects of hoisting, we have implemented the
above introduced HOIST and HDDH algorithms and published
them in the 21.3 release of the Picireny project3. Picireny
is a hierarchical test case reduction framework written in
Python that supports ANTLR v44 grammars, and already
contains an implementation of the HDD algorithm. In this
implementation of hoisting, we consider nodes labeled with the
same non-terminal of the grammar as compatible, as discussed
in Section III-C.

We have used the implemented algorithms in four different
combinations during our experiments:

• HDD∗: hierarchical delta debugging without any hoisting,
acted as the baseline.

• HOIST∗+HDD∗: hoisting was applied as a preprocessing
step to HDD∗.

• HDDH∗: hoisting interlaced with HDD∗.
• HOIST∗+HDDH∗: HOIST∗ and HDDH∗ algorithms are not

mutually exclusive, thus we have used them in sequence.

In all cases, the asterisk superscript denotes the fixed-point
iteration of the marked algorithm.

As inputs, we have collected test cases from different
sources. The first (small) set of test cases is composed of
the examples from Section III-A (helloworld.c and Local-
izedPi.java, with properties to keep as described above).
The second set of test cases have already been used in the
literature for benchmarking reduction: the Perses Test Suite5

contains fuzzer-generated C sources that cause various internal

3https://github.com/renatahodovan/picireny
4https://github.com/antlr/antlr4
5https://github.com/perses-project/perses

compiler errors in the Clang and GCC compilers6. Finally,
as a third set, we have composed a new suite of JavaScript
sources, also generated with fuzzing, that cause failures in
the JerryScript lightweight JavaScript engine (which will be
referred to as the JerryScript Reduction Test Suite)7. In the
case of the latter two test suites, the interesting property of the
test cases to keep during reduction is the failure they induce.

For each test case, we have built its parse tree representation
using the grammar available for the input format from the
official ANTLR v4 grammars repository8. Before evaluating
any of the reduction algorithm combinations, we have applied
squeezing of linear tree components [7] and flattening of
recursive structures to the trees [8]. The experiments were
executed on a workstation equipped with an Intel Core i5-
9400 CPU clocked at 2.9GHz and 16GB RAM. The machine
was running Ubuntu 20.04 with Linux kernel 5.4.0.

Table I shows the sizes of the example test cases, both
before and after reduction. In all cases, size is expressed
as the number of non-whitespace characters to avoid bias
from indentation or other formatting differences. For these
example inputs, all reduction approaches that use hoisting
(i.e., HOIST∗+HDD∗, HDDH∗, and HOIST∗+HDDH∗) give a
smaller output than the baseline HDD∗. Actually, they all give
exactly the same output for each input, reducing the size of
helloworld.c by 16% and LocalizedPi.java by 48%, compared
to HDD∗. There is a difference in the performance of the
algorithms though – measured in steps, i.e., how many times
the testing function was invoked to determine the outcome
of a test case –, as shown in Table II. For both examples,
HOIST∗+HDD∗ and HOIST∗+HDDH∗ required fewer steps than
HDD∗ to minimize the input, and HDDH∗ was also faster on
LocalizedPi.java. However, HDDH∗ on helloworld.c executed
more steps than the baseline. (In each row of these tables, as
well as in the tables to follow, bold numbers highlight the best
result(s).)

Tables III and IV show the results of the algorithms on
the Perses Test Suite. Note that for the reduction of the test
cases in this test suite, we have used two additional non-
HDD-based state-of-the-art test case reduction tools to give a
more comprehensive evaluation of hoisting. The two tools are
Perses5 (revision 34d4dc4, a Java and Kotlin-based implemen-
tation of the algorithm of Sun et al. [11]) and Pardis9 (revision
b656c6f, by Gharachorlu and Sumner [12]). For details on the
algorithms and their implementations, the reader is referred to
the corresponding papers and tool documentations.

As shown in Table III, all hoisting-based algorithm com-
binations produce a smaller output than the baseline in 17
of 19 cases. (For one input, gcc-70127, HDD∗ ran out of

6The Perses Test Suite comes with a docker environment provided by its
authors. The environment is presumed to contain all compiler versions and
tools required to reproduce the issue of each test case in the suite. However,
that turned out not to be the case in practice. Thus, we have only used those
test cases for evaluation that worked as expected at the time of writing this
paper.

7https://github.com/vincedani/jrts
8https://github.com/antlr/grammars-v4
9https://github.com/golnazgh/PARDIS
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TABLE I
EXAMPLES: INPUT AND OUTPUT SIZES (NUMBER OF NON-WHITESPACE CHARACTERS)

Test Input HDD∗ HOIST∗+HDD∗ HDDH∗ HOIST∗+HDDH∗

helloworld.c 42 42 35 (-16.67%) 35 (-16.67%) 35 (-16.67%)
LocalizedPi.java 446 359 186 (-48.19%) 186 (-48.19%) 186 (-48.19%)

TABLE II
EXAMPLES: NUMBER OF TEST EXECUTIONS

Test HDD∗ HOIST∗+HDD∗ HDDH∗ HOIST∗+HDDH∗

helloworld.c 32 26 (-18.75%) 51 (+59.38%) 26 (-18.75%)
LocalizedPi.java 638 302 (-52.66%) 588 (-7.84%) 304 (-52.35%)

TABLE III
PERSES TEST SUITE: INPUT AND OUTPUT SIZES (NUMBER OF NON-WHITESPACE CHARACTERS)

Test Input HDD∗ HOIST∗+HDD∗ HDDH∗ HOIST∗+HDDH∗ Perses Pardis

clang-22382 65,786 582 489 (-15.98%) 475 (-18.38%) 489 (-15.98%) 509 1,027
clang-22704 597,827 168 164 (-2.38%) 165 (-1.79%) 161 (-4.17%) 246 724
clang-23309 118,178 3,582 1,486 (-58.51%) 1,677 (-53.18%) 1,416 (-60.47%) 1,943 5,188
clang-23353 94,734 374 354 (-5.35%) 592 (+58.29%) 351 (-6.15%) 331 397
clang-25900 245,065 1,562 986 (-36.88%) 885 (-43.34%) 888 (-43.15%) 943 1,970
clang-26350 378,160 1,613 778 (-51.77%) 585 (-63.73%) 760 (-52.88%) 1,220 1,777
clang-26760 588,548 586 595 (+1.54%) 297 (-49.32%) 582 (-0.68%) 345 825
clang-27747 409,083 419 406 (-3.10%) 377 (-10.02%) 415 (-0.95%) 415 765
clang-31259 137,161 2,174 814 (-62.56%) 947 (-56.44%) 796 (-63.39%) 1,339 1,519
gcc-59903 166,754 1,726 1,432 (-17.03%) 620 (-64.08%) 1,298 (-24.80%) 487 3,301
gcc-60116 218,223 3,788 1,185 (-68.72%) 1,152 (-69.59%) 941 (-75.16%) 1,823 3,852
gcc-61383 110,643 1,701 1,041 (-38.80%) 844 (-50.38%) 874 (-48.62%) 1,908 2,525
gcc-61917 254,742 1,764 575 (-67.40%) 885 (-49.83%) 570 (-67.69%) 557 2,371
gcc-64990 439,587 2,844 561 (-80.27%) 1,282 (-54.92%) 551 (-80.63%) 843 2,787
gcc-65383 125,221 1,027 543 (-47.13%) 490 (-52.29%) 441 (-57.06%) 474 1,281
gcc-66186 139,087 2,614 978 (-62.59%) 977 (-62.62%) 977 (-62.62%) 1,124 4,144
gcc-66375 191,827 2,963 1,446 (-51.20%) 1,439 (-51.43%) 1,430 (-51.74%) 1,594 3,918
gcc-70127 400,556 — 992 — 915 — 947 — 998 1,986
gcc-71626 14,465 168 167 (-0.60%) 167 (-0.60%) 167 (-0.60%) 167 169

TABLE IV
PERSES TEST SUITE: NUMBER OF TEST EXECUTIONS

Test HDD∗ HOIST∗+HDD∗ HDDH∗ HOIST∗+HDDH∗ Perses Pardis

clang-22382 14,699 9,910 (-32.58%) 12,955 (-11.86%) 9,997 (-31.99%) 2,325 2,331
clang-22704 10,540 21,094 (+100.13%) 10,474 (-0.63%) 21,180 (+100.95%) 1,890 4,705
clang-23309 24,630 16,025 (-34.94%) 19,833 (-19.48%) 15,828 (-35.74%) 4,147 3,960
clang-23353 14,598 30,114 (+106.29%) 14,662 (+0.44%) 30,182 (+106.75%) 2,288 2,324
clang-25900 14,766 9,983 (-32.39%) 12,510 (-15.28%) 9,865 (-33.19%) 2,115 2,431
clang-26350 16,789 18,851 (12.28%) 14,831 (-11.66%) 19,847 (+18.21%) 3,976 8,835
clang-26760 12,957 11,808 (-8.87%) 11,884 (-8.28%) 11,835 (-8.66%) 1,933 1,828
clang-27747 7,174 13,899 (+93.74%) 6,601 (-7.99%) 13,911 (+93.91%) 1,559 1,545
clang-31259 19,239 8,791 (-54.31%) 15,914 (-17.28%) 8,992 (-53.26%) 2,230 2,107
gcc-59903 18,935 12,554 (-33.70%) 18,381 (-2.93%) 12,345 (-34.80%) 3,879 3,761
gcc-60116 23,844 12,740 (-46.57%) 17,153 (-28.06%) 12,041 (-49.50%) 4,394 4,975
gcc-61383 17,286 11,802 (-31.73%) 15,350 (-11.20%) 11,984 (-30.67%) 3,326 4,275
gcc-61917 17,455 8,432 (-51.69%) 13,769 (-21.12%) 8,525 (-51.16%) 2,802 3,566
gcc-64990 19,624 10,533 (-46.33%) 17,565 (-10.49%) 10,548 (-46.25%) 2,690 3,799
gcc-65383 16,239 6,524 (-59.83%) 11,801 (-27.33%) 6,334 (-61.00%) 2,097 2,843
gcc-66186 16,181 13,771 (-14.89%) 13,930 (-13.91%) 13,762 (-14.95%) 2,333 3,693
gcc-66375 21,251 16,046 (-24.49%) 18,393 (-13.45%) 16,131 (-24.09%) 2,932 3,013
gcc-70127 — 15,699 — 18,330 — 15,974 — 2,517 2,527
gcc-71626 4,216 6,520 (+54.65%) 4,205 (-0.26%) 6,522 (+54.70%) 567 274
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TABLE V
JERRYSCRIPT REDUCTION TEST SUITE: INPUT AND OUTPUT SIZES (NUMBER OF NON-WHITESPACE CHARACTERS)

Test Input HDD∗ HOIST∗+HDD∗ HDDH∗ HOIST∗+HDDH∗ Perses

jerry-3299 1,208 92 89 (-3.26%) 89 (-3.26%) 89 (-3.26%) 152
jerry-3361 1,520 97 95 (-2.06%) 95 (-2.06%) 95 (-2.06%) 136
jerry-3376 4,647 70 35 (-50.00%) 37 (-47.14%) 35 (-50.00%) 202
jerry-3408 2,100 62 54 (-12.90%) 54 (-12.90%) 54 (-12.90%) 102
jerry-3431 648 28 27 (-3.57%) 27 (-3.57%) 27 (-3.57%) 62
jerry-3433 652 18 18 (0.00%) 18 (0.00%) 18 (0.00%) 67
jerry-3437 4,623 34 18 (-47.06%) 18 (-47.06%) 18 (-47.06%) 33
jerry-3479 3,998 94 89 (-5.32%) 89 (-5.32%) 89 (-5.32%) 413
jerry-3483 326 38 38 (0.00%) 38 (0.00%) 38 (0.00%) 50
jerry-3506 2,735 52 52 (0.00%) 52 (0.00%) 52 (0.00%) 135
jerry-3523 2,802 63 48 (-23.81%) 48 (-23.81%) 48 (-23.81%) 120
jerry-3534 1,409 96 80 (-16.67%) 80 (-16.67%) 80 (-16.67%) 115
jerry-3536 592 123 120 (-2.44%) 120 (-2.44%) 120 (-2.44%) 135

TABLE VI
JERRYSCRIPT REDUCTION TEST SUITE: NUMBER OF TEST EXECUTIONS

Test HDD∗ HOIST∗+HDD∗ HDDH∗ HOIST∗+HDDH∗ Perses

jerry-3299 176 228 (+29.55%) 192 (+9.09%) 251 (+42.61%) 169
jerry-3361 144 254 (+76.39%) 154 (+6.94%) 266 (+84.72%) 199
jerry-3376 119 412 (+246.22%) 109 (-8.40%) 422 (+254.62%) 266
jerry-3408 167 278 (+66.47%) 178 (+6.59%) 289 (+73.05%) 160
jerry-3431 55 185 (+236.36%) 70 (+27.27%) 192 (+249.09%) 92
jerry-3433 18 58 (+222.22%) 23 (+27.78%) 62 (+244.44%) 27
jerry-3437 49 49 (0.00%) 48 (-2.04%) 56 (+14.29%) 78
jerry-3479 233 576 (+147.21%) 230 (-1.29%) 592 (+154.08%) 291
jerry-3483 69 95 (+37.68%) 71 (+2.90%) 97 (+40.58%) 64
jerry-3506 115 248 (+115.65%) 122 (+6.09%) 251 (+118.26%) 338
jerry-3523 111 416 (+274.77%) 83 (-25.23%) 421 (+279.28%) 295
jerry-3534 173 197 (+13.87%) 149 (-13.87%) 200 (+15.61%) 243
jerry-3536 150 226 (+50.67%) 182 (+21.33%) 251 (+67.33%) 93

memory, but the variants with hoisting correctly finished the
minimization. To avoid a biased interpretation of data, we do
not consider the correctly performing variants better than the
baseline in this case.) The reduced test cases can be up to
80.27%, 70.07%, and 80.63% smaller (using HOIST∗+HDD∗,
HDDH∗, and HOIST∗+HDDH∗, respectively) than the result of
HDD∗. The average improvement is 37.15%, 38.54%, and
39.82%, respectively. When comparing them to each other,
HDDH∗ gives the smallest result in 8 cases, HOIST∗+HDDH∗

produces the smallest output in 9 cases, while there is also
a tie, where HDDH∗ and HOIST∗+HDDH∗ produce exactly the
same output. Furthermore there is another tie when all three
approaches find the same (local) minimum. When Pardis and
Perses are also included in the comparison, the results of the
hoisting-based minimizations are still good enough. In 15 of
the 19 test cases, at least one of HDDH∗ and HOIST∗+HDDH∗

gives smaller results than Perses, and in 11 cases both of them
are better. (The detailed comparison to Pardis is omitted as
Perses gave smaller results than Pardis in all cases of this
experiment.)

Regarding performance, Table IV shows that hoisting can
have a positive effect on the number of overall test case evalua-
tions, but not necessarily. HDDH∗ performed the minimization

of 17 inputs faster than the baseline HDD∗, but in those
approaches where hoisting was a preprocessing step (namely,
in HOIST∗+HDD∗ and HOIST∗+HDDH∗), this improvement is
only visible in 13 cases. Moreover, not even HDDH∗ could
overcome Perses or Pardis speed-wise: these two tools were
the fastest to produce output for all test cases of the Perses
Test Suite.

The experimental results measured on the JerryScript Re-
duction Test Suite are shown in Tables V and VI. On these
13 inputs, all algorithms work quite similarly with respect
to the output size: there are many cases where some or all
approaches give identical results. Still, in 10 cases, all hoisting-
based approaches give strictly smaller output than the baseline
(by 50%, 47.14%, and 50% in the best case of HOIST∗+HDD∗,
HDDH∗, and HOIST∗+HDDH∗, respectively), while in none of
the other cases do they give worse results. On this test suite,
the average improvement of the approaches over HDD∗ is
12.85%, 12.63%, and 12.85%, respectively. Performance-wise,
however, this test suite gives significantly different results
than the Perses Test Suite. In the vast majority of the cases,
the application of hoisting increased the number of testing
steps performed during reduction. HOIST∗+HDD∗, HDDH∗, and
HOIST∗+HDDH∗were slower than HDD∗ in 12, 8, and 13 of the
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13 cases, respectively.
We wanted to perform an experiment with Perses and Pardis

on this test suite as well. Although none of these tools have
official support for JavaScript inputs at the time of writing
this paper, we have managed to extend Perses with the help
of the same ANTLR v4 grammar files as used with Picireny.
(As Perses outperformed Pardis on the previous test suite, we
have not spent resources on extending Pardis, eventually.) The
results show that all hoisting-based approaches give strictly
smaller outputs than Perses, while producing minimized output
faster in 4 of 13 cases.

Based on the experimental data and observations above, we
can conclude the following:
• On both artificial and real-world inputs, hoisting com-

bined with hierarchical delta debugging gives generally
smaller, or at least as small outputs as hierarchical delta
debugging alone. Bigger outputs are rare. Minimized test
cases can be as small as 1⁄5 of the output given by
traditional hierarchical delta debugging.

• In most of the cases, hierarchical delta debugging inter-
laced with hoisting (HDDH∗) gives smaller results than
non-HDD-based state-of-the-art reduction techniques.

• The effect of hoisting on the performance of test case
reduction is inconclusive. All approaches that use hoist-
ing have shown both improvements and deteriorations in
terms of speed in several cases.

V. RELATED WORK

One of the first and most well-known work on automated
test case reduction is Delta Debugging by Zeller and Hilde-
brandt [1]–[3], minimizing inputs of arbitrary format. The
price of its generality is a potentially lowered performance
because of format-breaking incorrect test cases generated and
evaluated during the reduction process. To avoid syntactically
broken intermediate test cases, Miserghi and Su proposed to
use information about format encoded in context-free gram-
mars, i.e., to convert test cases into a tree representation [4]
and apply delta debugging to the levels of the tree. This
Hierarchical Delta Debugging approach helped to remove parts
of the test case that aligned with syntactic unit boundaries.
As a further improvement, Miserghi proposed the concept
of syntactically correct replacement for nodes of the tree
representation that cannot be completely removed from the
test case without causing syntax errors [5].

The formalization of HDD does not detail how to build
the tree representation, but its first implementation used tra-
ditional context-free grammars to parse the input. To improve
on this, Hodován et al. suggested to use extended context-
free grammars for building the tree [10], thus creating more
balanced representations, which could lead to smaller results
and improved performance. They have also described various
tree transformations with the same goal [7], [8].

Tree-based test case reduction does not necessarily mean
subtree removal. Bruno suggested to use hoisting as an alterna-
tive transformation in his framework called SIMP [13], which
was specifically designed to reduce database-related inputs.

In every reduction step, SIMP tried to replace a node with a
compatible descendant. In a follow-up work that introduced
the tool FlexMin, Morton and Bruno extended SIMP with
Delta Debugging [14]. The main algorithm was the hoisting,
while DDMIN was applied only to repeated structures, like lists
(column names) and data (string literals). Instead of manually
classifying the nodes into two parts, our algorithm tries to
hoist every node if it has at least one compatible descendant.

Sun et al. combined the above approaches into their Perses
framework [11]. In their work, they utilized quantifiers and
normalized the parse tree producing grammars by rewriting
recursive rules to use quantified expressions. This transformed
grammar form was referred to as Perses Normal Form (PNF).
During the reduction, they applied a worklist algorithm, in
which non-terminals with more tokens were prioritized over
nodes with less token descendants. In every step, a node was
popped from the worklist and reduced according to its type:
quantified nodes were reduced with DDMIN while hoisting was
applied on non-quantified, regular ones. They also mentioned
that the number of compatible nodes for hoisting can be
enormous. Instead of collecting all candidates and trying to
hoist the descendant that has the longest distance from its
ancestor, they limited the search space with two constrains: (1)
the number of nodes between ancestor-descendants is limited
(4 was used in their evaluation); (2) if a compatible descendant
has been found, the searching was not continued further down
in the hierarchy.

Built upon the ideas introduced in Perses, Gharachorlu
and Sumner [12] extended it in a new framework, named
Pardis, with an improved queue prioritization algorithm. This
algorithm only considered nullable, i.e., completely removable
tree nodes and assigned weights based on a node own token
weight instead of its parents. The other key difference was that
eventually they eliminated the hoisting step, since they found
it too expensive from performance perspective.

Herfert et al. [15] also combined subtree removal and hoist-
ing in their Generalized Tree Reduction (GTR) algorithm but
instead of analyzing a grammar to decide about the applica-
bility of a certain transformation they learned this information
from an existing test corpus. The search-based program repair
work of Gazzola et al. [16] also mentions modifications on
the abstract syntax tree, however transformations are given
as predefined templates and could be performed randomly
without the ancestor-descendant relationship.

The above mentioned works targeted textual inputs, but
test case reduction can be applied to other scenarios as
well. Several authors have minimized faulty event sequences
originating from various sources: Scott et al. [17] minimized
event sequences of distributed systems, Clapp et al. [18]
aimed at Android GUI event sequences with a variant of
DDMIN. Moreover, Delta Debugging was even used for the
minimization of SMT solver formulas (Brummayer et al. [19]).

An interesting analogy between test case reduction and pro-
gram slicing was recognized by Binkley et al [20]–[25]. They
have realized that the concepts of slicing (e.g., the program
to be sliced or the slicing criterion) can be reformulated as
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concepts of test case reduction (e.g., the test case or the
interestingness property, respectively). Their approach, called
observation-based slicing, avoids the complexities of building
a dependency graph representation of a program and can
work purely at syntactic level. Although their approach is not
DDMIN-based, the algorithms show similarities with the ideas
of DDMIN and HDD.

We can consider the algorithms as phases in our implemen-
tation that process the input via tree traversal. The pruning
phase is identical to HDD, while HOIST phase tries to hoist
the furthest compatible descendant from the tree hierarchy. In
addition, other transformations can be implemented easily as
new phases into the framework.

VI. SUMMARY

In this paper, we have been focusing on the automated
reduction of tree-structured test cases. We have proposed an
extension to the well-established pruning-based hierarchical
delta debugging technique. The key idea of the extension,
called hoisting, is to allow moving up subtrees in the structure
of the test case, thus reducing its size. We have defined
an algorithmic framework for generic transformation-based
minimizations and used it to formalize hoisting. We have also
described various ways of how hoisting can be combined with
hierarchical delta debugging.

We have prototyped the introduced algorithms and evaluated
several combinations of hoisting and pruning on multiple test
suites. The results of our experiments support that hoisting
can improve the output of hierarchical delta debugging by
producing as much as 80% smaller minimized tests in the best
case. Moreover, the prototype implementation gave smaller
results than other, non-HDD-based state-of-the-art test case
reduction tools in most of the experiments.

As for future work, we have plans to continue this topic
of research in various ways. We wish to conduct further
experiments to ensure that the results generalize to inputs
that are larger or differently structured compared to those
investigated in this paper. We plan to investigate the com-
bination of hoisting with other HDD algorithm variants, like
Coarse HDD [8] or HDDr [9]. We also aim at speeding up
hoisting-extended HDD while not increasing the output size.
Furthermore, we would like to explore additional minimizing
transformations. Finally, we are also interested in the human
understandability aspect of reduced test cases, considering
both pruning- and transformation-based reduction methods.
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[6] R. Hodován and Á. Kiss, “Practical improvements to the minimizing
delta debugging algorithm,” in Proc. 11th Int. Joint Conf. Softw. Technol.
(ICSOFT), vol. 1. SciTePress, 2016, pp. 241–248.
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