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Abstract—Finding the relevant part of failure-
inducing inputs is an important first step on the path
of debugging. If much of a test case that triggers a bug
does not contribute to the actual failure, then the time
required to fix the bug can increase considerably. In
this paper, we focus on the memory requirements of
automatic test case reduction. During minimization,
the same test case might be tested multiple times, and
determining the outcome of an input may take time,
therefore, different caching solutions were proposed to
avoid re-testing previously seen inputs. We investigated
the caching solutions of DDMIN and HDD, and found
that their scaling is suboptimal. We propose three
optimizations for one of the state-of-the-art caching
solutions: with the optimizations combined, DDMIN
requires 96% and HDD requires 85% less memory com-
pared to the baseline implementation. Furthermore, as
a side effect, the reduction becomes faster by 9.9% with
DDMIN .

Keywords—cache, delta debugging, hierarchical delta
debugging, optimization, test case minimization

I. Introduction
If there is a chance that something can malfunction, that

behavior will happen sooner or later. Although software
engineering craftsmanship has undergone great develop-
ment in recent decades, a wide range of errors can still
be found in their handmade products, i.e., from misun-
derstanding the specifications (or a single feature request)
to low-level, programming language specific mistakes, e.g.,
pointer usage in C. When a program failure happens and
we are lucky enough, we have the record of events or inputs
that triggered the failure. In this case, a lucky engineer will
get the task of fixing the problem, but debugging is not
considered the most exciting part of software engineering,
especially when done manually.

The first step of fixing the problem is finding the
minimal subset of the input that caused the faulty behav-
ior. Luckily, several techniques are available to automate
this task, and one of the most well-known of them is
the minimizing Delta Debugging algorithm (DDMIN ) by
Zeller and Hildebrandt [1], [2], [3], working on all kinds
of inputs without the need for any information about
their internal structure. If the input structure is known,
however, that knowledge can be utilized to create smaller
results faster, therefore, Misherghi and Su have introduced
the Hierarchical Delta Debugging (HDD) algorithm [4],
[5], built on DDMIN , that works on tree-structured inputs
(i.e., on any input format that has a context-free grammar)
and prunes unnecessary subtrees of the structure during

reduction. Context-free grammars are readily available for
several input formats, which makes HDD easily applicable
in a variety of scenarios. However, the need for a grammar
can act as an obstacle for some users of test case reducers
if a grammar is unavailable or maintaining it is not a
practical option. In such cases, the structure-unaware
nature of DDMIN is very useful.

Both of the above algorithms can utilize caches to im-
prove their execution time at the cost of increased memory
usage. However, the concept of caching is orthogonal to the
reduction algorithms themselves, and studies have mainly
focused on the latter. In this paper, we focus on caches
and their memory footprint aspects. Our goal is to answer
the following research questions:

Research Questions

RQ1. How efficient are the state-of-the-art caching
techniques for test case reduction?

RQ2. Can caching be modified to reduce memory
usage without compromising the effectiveness
of the reduction algorithms?

RQ3. What are the effects of optimizations on
DDMIN and HDD?

Thus, we have studied the caching techniques of state-
of-the-art DDMIN and HDD-based reducers and analyzed
their efficiency. Then, we have proposed to optimize the
caching in order to require less memory without changing
the integrity of the process. Finally, we have evaluated our
proposals and found that they can help reduce the memory
footprint of the minimization process by as much as 96%
(DDMIN ) and 85% (HDD) compared to the publicly
available solutions.

The rest of the paper is organized as follows: first, in Sec-
tion II, we give a brief overview of DDMIN and HDD, to
make this paper self-contained. In Section III, we describe
our optimization ideas. In Section IV, we evaluate the
effects of the optimizations with the help of a prototype
implementation, and we present our experimental results,
then, in Section V, we discuss related work. Finally, in
Section VI, we summarize our work and conclude the
paper.

II. Background

The minimizing Delta Debugging (DDMIN ) algo-
rithm [1], [2], [3] is a systematic iterative approach for
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Let test and c✗ be given such that test(∅) = ✓ ∧ test(c✗) = ✗ hold.
The goal is to find c′

✗ = ddmin(c✗) such that c′
✗ ⊆ c✗, test(c′

✗) = ✗, and c′
✗ is 1-minimal.

The minimizing Delta Debugging algorithm ddmin(c) is

ddmin(c✗) = ddmin2(c✗, 2) where

ddmin2(c′
✗, n) =


ddmin2(∆i, 2) if ∃i ∈ {1, . . . , n} · test(∆i) = ✗ (“reduce to subset”)
ddmin2(∇i, max(n− 1, 2)) else if ∃i ∈ {1, . . . , n} · test(∇i) = ✗ (“reduce to complement”)
ddmin2(c′

✗, min(|c′
✗|, 2n)) else if n < |c′

✗| (“increase granularity”)
c′

✗ otherwise (“done”).

where ∇i = c′
✗ −∆i, c′

✗ = ∆1 ∪∆2 ∪ . . . ∪∆n, all ∆i are pairwise disjoint, and ∀∆i · |∆i| ≈ |c′
✗|/n holds.

The recursion invariant (and thus precondition) for ddmin2 is test(c′
✗) = ✗ ∧ n ≤ |c′

✗|.

Figure 1. The Minimizing Delta Debugging algorithm [3].

reducing arbitrary input while keeping a predefined prop-
erty invariant. The input is split into atomic units and
represented as a set of them. First, this set of units is split
into two roughly equal-sized subsets and both parts are
investigated about whether they still have the predefined
property of the initial input. If the property is kept in
any of the subsets, then the reduction step is considered
successful and a new iteration starts with that subset,
otherwise, the granularity is refined by doubling the split-
ting. The subsets of the new splitting are investigated
again, as well as their complements, i.e., it is checked
whether keeping or removing any of the subsets leads
to a smaller, yet interesting test case. Again, if any of
the investigated subsets (or their complements) keep the
property in question, it will be used as the input for
the next iteration, otherwise, the granularity is increased.
The iteration continues until the granularity reaches the
unit level, when it is proven to have found a so-called 1-
minimal result, a local minimum where the removal of any
unit from the set would cause the loss of the interesting
property.

DDMIN has its roots in the isolation of failure-inducing
code changes. An input is composed of elementary changes
(or deltas), denoted as δi, whence the algorithm got its
name. A set of elementary changes is also called a config-
uration, usually denoted by c. The outcome of a program
execution on a specific configuration is determined by a
testing function, and it can be either fail (also written
as ✗) if the current input produced the original behavior,
pass (also written as ✓) if the test succeeds, or unresolved
(written as ?) if the result is indeterminate. The initial
configuration that triggers the failing outcome is denoted
by c✗. Although the algorithm is often applied to the
simplification of program inputs where the term “change”
is not an intuitive fit to the units of a test case (e.g., to
characters or lines of a text file) and the algorithm also has
use cases where the interesting property of a test case is
not a program failure, most authors, including us, follow
the original notation for historical reasons. For the sake

1 procedure HDD(input tree)
2 level← 0
3 nodes← tagNodes(input tree, level)
4 while nodes ̸= ∅ do
5 minconfig← DDMIN(nodes)
6 prune(input tree, level, minconfig)
7 level← level + 1
8 nodes← tagNodes(input tree, level)
9 end while

10 end procedure

Figure 2. The Hierarchical Delta Debugging algorithm [4].

of completeness, Figure 1 gives Zeller and Hildebrandt’s
latest formulation of the minimizing Delta Debugging
algorithm [3].

If an input that is to be minimized has some mandatory
structure over its units, which is typical for inputs to a pro-
gram, DDMIN may work suboptimally. The configuration
partitioning during the iterations may be unaligned with
the boundaries of the structural elements of the input,
leading to incorrectly formatted, thus non-reproducing,
and therefore, useless test cases. The goal of the Hierar-
chical Delta Debugging (HDD) algorithm [4] is to avoid
such superfluous steps by not testing format-breaking
configurations. It works on hierarchical tree-structured
input representations (e.g., on parse trees, abstract syntax
trees, or XML DOM trees) and applies the minimizing
Delta Debugging algorithm to the levels of that tree,
progressing downwards from the root to the leaves. The
pseudocode formulation of HDD as defined by Misherghi
and Su [4] is shown in Figure 2. The auxiliary routine
tagNodes collects the nodes at a given level of the tree,
then DDMIN is invoked on those nodes, and finally, prune
applies the result of Delta Debugging to the tree. I.e.,
for HDD, configurations are sets of tree nodes at a given
level, and the removal of a node causes the removal of the
whole subtree rooted from that node. In a latter variant
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of HDD, “pruning” of a node has been reinterpreted as
its replacement with the minimal applicable syntactically
correct fragment to reduce the number of test attempts
at incorrectly formatted configurations even further [5]. If
HDD is iterated until a fixed-point is reached, denoted as
HDD*, it gives a 1-tree-minimal result, i.e., if any node is
removed from the tree, the newly serialized test case would
not be interesting anymore.

Zeller [1] also raised the issue that testing an arbitrary
configuration may take time. If the input to be tested is
a program in source code form, its recompilation and re-
execution could take minutes or even hours, and this time
can be considerably reduced by smart recompilation tech-
niques. Even if no recompilation is needed (e.g., providing
XML files to an XML parser or JavaScript inputs to an
execution engine), program execution can take a long time.

It might happen that the same configuration is tested
multiple times among the iterations. To avoid running
the same test twice, Zeller provided an outcome caching
mechanism in his reference implementation1. The cache
is implemented as a tree structure where each node is
labelled with a unit of the configuration and an outcome
that corresponds with the subconfiguration formed by
the units from the current node up to the root of the
tree. Consider the following configurations in the cache:
(⟨1, 2⟩ , ✗), (⟨1, 2, 3⟩ , ✓), and (⟨1, 4, 5⟩ , ✗). They can be
represented in a tree structure as shown in Figure 3. If a
configuration has already been tested, there is a path from
the root to the node along with the labels, and the end of
the path contains the result of the testing function (✗, ✓,
?). If the algorithm creates a new configuration to test, a
cache lookup is performed first. If the lookup succeeds, the
previously determined test outcome is returned without
the need for an actual (and potentially long-lasting) test
execution. Otherwise, the configuration is tested and the
outcome is inserted into the cache. (Note that when insert-
ing outcomes in the cache, inner nodes may be added to
the tree that represent configurations that have not been
tested yet. These nodes are not labelled with an outcome
at that point of the algorithm, but may get an outcome
assigned later on. Figure 3 shows ⟨1, 4⟩ and ⟨1⟩ as examples
of such not-yet-tested configurations.)

While the above-described configuration-based cache is
efficient with DDMIN , it may not be the best approach
for HDD. Hodován et al. formalized this problem in their
study [6]: various configurations of tree nodes at a given
level may produce the same serialized output, configu-
rations on different levels may induce the same output,
furthermore, configurations of different HDD* iterations
may also produce the exact same output. All such con-
figurations yield the same test outcome as well. However,
if the outcome cache is based on tree nodes of a given
level, none of these recurrences would be detected, i.e.,
they will result in cache misses and require repeated test

1https://www.st.cs.uni-saarland.de/dd/DD.py

(1, )

(2, ✗)

(3, ✓)

(4, )

(5, ✗)

Figure 3. The outcome caching approach of the reference implemen-
tation of the Delta Debugging algorithm.

attempts. Motivated by these insights, they proposed to
optimize HDD by using a content-based cache, i.e., storing
the serialized test case instead of the configuration as a key
and the test outcome as the value. Therefore, if multiple
configurations yield the same test case, this type of cache
avoids the duplicated testing steps. The content-based
cache is an optimization motivated by HDD, however, it
can be applied to DDMIN as well.

III. Cache Optimizations
Although the content-based cache improved the effi-

ciency of reduction, there is still room for improvement.
General purpose caching techniques try to maximize the
utilization of the available (fixed size) memory by keeping
the most popular entries in cache [7]. The most widespread
algorithms for cache replacements are Least Frequently
Used (LFU), Most Frequently Used (MFU), and Least
Recently Used (LRU) [8], but these classic techniques
do not make use of knowledge of the underlying algo-
rithms and thus evict elements from cache that might be
needed later. However, in this work, we are interested in
reducing the memory footprint of the cache by utilizing
the characteristics of the reduction algorithm. Therefore,
we propose three optimizations that aim to reduce the
memory requirements of the content cache.

Consider the following example: given an input to re-
duce that contains numbers from 1 to 5, one character
each, and the interesting property to keep is to contain the
numbers 2 and 4, then we would like to reduce the text of
“12345” to the form of “24”. Table I shows the character-
based reduction process of DDMIN step by step. For the
sake of simplicity, we skip the “reduce to subset” steps,
only the “reduce to complement” operations are presented.

As discussed in Section II, the basic concept of DDMIN
is that if it finds a failing configuration that results in a
serialized test case of size n, then it starts a new iteration
with that to reduce it further. Hereinafter, configurations
that result in test cases that are larger than n would not
be tested, since the new iteration splits that configuration
into smaller chunks, e.g., in the 4th step in Table I, the
size of the serialized test case is 4 (“1245”) and that would
be split further into “145” and “245” in later steps. This
observation can be written as follows, using the notations
introduced in Section II:
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TABLE I
Execution of Delta Debugging on a Motivational Example

Step Content Action Outcome
1 “12” test ✓
2 “345” test ✓
3 “123” test ✓
4 “1245” test ✗
5 “145” test ✓
6 “245” test ✗
7 “2” test ✓
8 “45” test ✓
9 “24” test ✗

10 “2” cache ✓
11 “4” test ✓

cx, cy ⊆ c✗

∥.∥ : size of the serialized configuration
∃cx : test(cx)→ ✗ found

∀cy : ∥cy∥ > ∥cx∥ : out of search space

(1)

It is known that after a failing configuration is found,
its subsets would be reduced further via DDMIN , thus
theoretically there is no chance of getting a failing outcome
back from the cache. Suppose that we have a configuration
of size n, and before testing it, we perform a cache lookup.
The cache may contain smaller entries, e.g., in the 6th step
in Table I, where n = 3 and the cache already contains
(“12”, ✓), however, if a smaller entry (m < n) would be in
the cache with a failing outcome, then the current state
could not have occurred, since DDMIN would have split
that m sized entry into even smaller chunks. Therefore,
if a cache hit occurs, we can be sure that it was a result
of a passing test. Thus, our first proposal, as shown in
(2), is to add only passing tests to the cache which may
reduce the memory footprint of the test case minimization.
Furthermore, cache lookups might be quicker since the
queries are performed in a smaller search space.

cx ⊆ c✗

when ∃cx : test(cx)→ ✓ found
insert to cache ( serialize(cx) )

(2)

(The function insert to cache inserts an element into the
cache, while serialize performs the serialization of test
cases as discussed in [6].)

Another benefit of (1) is that if a failing test case is
found, we can be sure that no cache entry corresponding
to larger test cases than the currently found one would be
queried during the remaining reduction process. Therefore,
when a new failing test case is found, entries that stores
the outcome of test cases that is larger than the currently
investigated one can be evicted from the cache, as shown
in (3). We will refer to this eviction process as our second
proposal.

cx, cy ⊆ c✗

when ∃cx : test(cx)→ ✗ found
∀cy : serialize(cy) ∈ cache ∧ ∥cy∥ > ∥cx∥ :

delete from cache ( serialize(cy) )

(3)

(The function delete from cache implements the removal
of an element from the cache.)

For small inputs, this proposal might be a runtime
overhead only, however, the benefits might overcome the
costs for “large enough” inputs. We assume that cache
lookup is quicker than actual test execution, but, of course,
it takes time as well. Thus, if the search space of the cache
is maintained properly, then the time spent with lookups
will be less than the time spent with eviction.

If we follow the above discussed proposals, the cache
will contain passing tests only and will be cleared after
each successful reduction step. However, the lengths of
the stored entries are varying, i.e., they are larger at
the beginning of the reduction (proportional to the size
of the initial failing test case) and become smaller as
the process is progressing towards the 1-minimum. Thus,
our third proposal is the following: the cache should not
store the serialized content of the configurations, but their
transformed form as shown in (4).

cx ⊆ c✗, M : M ∈ N
transform(cx) : 2N 7→ 2M bijection

when ∃cx : test(cx)→ ✓ found
insert to cache (transform( serialize(cx) ))

(4)

The proposal is functional only if the transformation
is bijective, i.e., each test case has its own transformed
form, each transformed element corresponds to exactly one
test case, and unpaired elements are forbidden. From a
practical perspective, the bijection is not possible, since
an infinite set would have to be mapped to a finite one.
Therefore, a large enough M and a suitable transform
function must be chosen to minimize the possibility of
collisions of cache keys, e.g., an SHA-3-256 cryptographic
hash function2. In contrast, if the chosen M is too large,
the desired positive effect on memory usage is lost.

Although the possibility of mapping two arbitrarily
different test cases to the same element is negligibly small
(e.g., the collision resistance of an SHA-3 algorithm is 2n/2,
with SHA-3-256 it is 2128), it needs to be dealt with.

cx, cy ⊆ c✗

x : serialize(cx), y : serialize(cy)
∃cx,∃cy : x ̸= y =⇒

transform(x) = transform(y)

(5)

Suppose that cx from (5) has already been tested
(test(cx) → ✓) and inserted into the cache. Now the al-
gorithm tries another configuration cy (cx ̸= cy), performs

2https://csrc.nist.gov/projects/hash-functions/sha-3-project

445



a cache lookup, and finds that it has already been tested
(since transform(x) = transform(y)). This state can lead
to two different outcomes:
test(cx) = ✓∧ test(cy) = ✓: none of them reproduced the
interesting property and the integrity of the algorithm
is not compromised,

test(cx) = ✓∧test(cy) = ✗: cy would reproduce the initial
✗, but because of the cache hit, it would never be tested.
This may lead to a suboptimal reduction outcome, but

the invariants of the algorithm are still not violated. In
theory, this may lower the effectiveness of the reduction.
Section IV will discuss whether collisions happened in our
experiments in practice.

IV. Experimental Results

A. Experiment Setup
To evaluate the effects of the optimizations, we have

created a prototype implementation of the proposals based
on the open-source Picire3 and Picireny4 projects. Picire
is a Python implementation of DDMIN , supporting par-
allelization and several configuration options. Picireny is
a hierarchical test case reduction framework on top of
Picire, also written in Python, that supports ANTLR v45

grammars and already contains an implementation of the
HDD algorithm. We have chosen the SHA-3-256 algorithm
from the Python hashlib module for the transform function
in (4). To measure the cache size during reduction, we have
used the pympler6 Python module.

As inputs, we have collected test cases from different
sources, all of which have already been used in the lit-
erature for benchmarking reduction. The first test suite
is the Perses Test Suite7 (PTS), which contains fuzzer-
generated C sources that cause various internal compiler
errors in the Clang and GCC compilers. The second test
set is the JerryScript Reduction Test Suite8 (JRTS), which
also contains fuzzer-generated JavaScript files that cause
failures in the JerryScript lightweight JavaScript engine.
In the case of both test suites, the interesting property
of the test cases to keep during reduction is the failure
they induce. The properties of the test cases are shown in
Table II. Size is expressed as the number of non-whitespace
characters in the test case, Tree Height represents the
height of the parse tree built from the input, Rules show
the number of non-terminals, and Tokens show the number
of terminals in it. The parse tree representation of each test
case, to be passed as input to HDD, was built using the
grammar available for the input format from the official
ANTLR v4 grammars repository9. Moreover, Picireny has

3https://github.com/renatahodovan/picire
4https://github.com/renatahodovan/picireny
5https://github.com/antlr/antlr4
6https://pypi.org/project/Pympler/
7https://github.com/uw-pluverse/perses
8https://github.com/vincedani/jrts
9https://github.com/antlr/grammars-v4

TABLE II
Properties of the Inputs Used for Benchmarking

Test Size Tree Height Rules Tokens

clang-22382 65,786 242 29,344 6,573
clang-22704 597,827 272 255,972 61,255
clang-23309 118,178 288 52,183 11,570
clang-23353 94,734 185 44,100 9,989
clang-25900 245,065 292 106,751 23,406
clang-26350 378,160 304 168,324 25,790
clang-26760 588,548 340 288,964 60,762
clang-27747 409,083 265 238,604 46,295
clang-31259 137,161 331 66,291 14,590
gcc-59903 166,754 298 76,531 17,322
gcc-60116 218,223 279 100,651 21,479
gcc-61383 110,643 303 46,786 9,070
gcc-61917 254,742 254 115,834 24,508
gcc-64990 439,587 342 200,107 45,000
gcc-65383 125,221 254 58,846 13,237
gcc-66186 139,087 258 65,228 14,434
gcc-66375 191,827 282 86,512 19,216
gcc-70127 400,556 293 210,039 44,942
gcc-71626 14,465 20 8,044 2,047
jerry-3299 1,208 33 608 140
jerry-3361 1,520 28 562 163
jerry-3376 4,647 36 2,194 473
jerry-3408 2,100 28 778 228
jerry-3431 648 30 527 130
jerry-3433 652 24 378 82
jerry-3437 4,623 36 2,188 471
jerry-3479 3,998 25 1,326 347
jerry-3483 326 19 193 48
jerry-3506 2,735 28 1,278 343
jerry-3523 2,802 28 1,416 345
jerry-3534 1,409 28 641 176
jerry-3536 592 23 310 71

applied the squeezing of linear tree components [6] and the
flattening of recursive structures [9] to the trees.

The C sources of PTS are an order of magnitude
bigger than the JavaScript files of JRTS both in terms
of character count and in their internal representation.
This also had a negative effect on the execution time of
DDMIN on tests from PTS, therefore we have used tests
from JRTS only for benchmarking DDMIN . For HDD, we
have used both test suites. To determine the effects of
the proposals on the execution time, we have repeated the
experiments multiple times and averaged their execution
times. (Note that reduction output and cache behavior
were stable across the repeated experiments. The only
thing that varied slightly was the execution time.) The
workstation used to conduct the experiments was equipped
with an Intel Core i5-9400 CPU clocked at 2.9 GHz and
16 GB RAM. The machine was running Ubuntu 20.04 with
Linux kernel 5.4.0, and executing the experiments only.
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Figure 4. Cache hits and test executions with (a) DDMIN and (b) HDD.

B. Efficiency of the Content Cache

In order to make sure optimization ideas presented
in Section III are relevant, the behavior of the content
cache should be examined first. Test cases from JRTS are
reduced with DDMIN to see how many times the cache
was queried and how cache hits (✓ or ✗) relate to one
another. Figure 4(a) shows the results: the horizontally
striped (blue) bars representing the test executions show
that in the majority of cases (97% on average) the algo-
rithm had to test the configuration to determine its out-
come. The remaining cases are successful cache lookups:
vertically striped (green) bars show cache hits with pass
outcome, while (yellow) bars with grid patterns stand – or,
would stand – for fail outcomes returned from the cache.
Note that, supporting (1), no cache lookup returned a ✗
outcome. Similar observations can be made about HDD
(see Figure 4(b)), however, the cache is utilized better
compared to DDMIN : 79% of the configurations were
tested and 21% of them had outcomes in the cache, on
average.

We had one unexpected finding with HDD though: 9
cache lookups (0.01% of all cases) returned a ✗ result.
After manual analysis of the steps of the algorithm on
the test cases we found that this may happen when the
minimal replacement of a tree node is identical to its
serialized form, i.e., when it does not matter if such a
node is pruned or not, the same character sequence would
be serialized from it. Therefore, contrary to (1), there is
a chance of retrieving a fail outcome from the cache with
the HDD algorithm if minimal replacements are used, even
if that chance is really small. If Proposal 1 were applied
when using HDD, these configurations had to be tested
again, thus the required testing steps would increase by

0.01% (on the test suites used in the experiments).
The memory consumption of the cache highly depends

on the size of the input both with DDMIN and HDD,
as shown in Figure 5(a) and 5(b). The horizontal axes
show the input size (in kB and MB, respectively) and
the vertical axes show the peak memory consumption (in
MB or GB). Figure 5(a) shows how DDMIN reduced
the inputs taken from JRTS. The cache could consume
a relatively large amount of memory (up to 53 MB) even
for small inputs (up to 4.6 kB). Figure 5(b) shows the
same information for the HDD algorithm, where tests
from both JRTS and PTS are reduced. The rule of thumb
is that bigger inputs cause higher memory consumption,
which generally holds for both DDMIN and HDD (with
the exception of some outliers). But with HDD, the peak
memory consumption could easily reach 4 GB.

According to these results, even though only a small
percentage of the lookups resulted in a cache hit (3% with
DDMIN and 21% with HDD), the cache consumed a high
amount of memory. Thus, DDMIN -based reduction tech-
niques could benefit from more efficient cache utilization.

C. The Effects of Optimizations
This subsection presents experimental results on how

different optimizations affect the reduction process. For
DDMIN , the effects of the optimizations are presented
incrementally. I.e., the effects of the 1st proposal are
presented against the baseline, then we compare the effects
of the combined 1st and 2nd proposals against the results
of the 1st, and finally, we show how all three proposals
compare against the combination of the 1st and 2nd.
Technically, as described in Section III, we think of our
proposals as steps. For HDD, the results are presented for
all three proposals combined.
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Figure 5. Memory consumption of the content cache with (a) DDMIN and (b) HDD.

Proposal 1
As motivated in Section III, the first proposal is to avoid

adding configurations to the cache that have failing out-
comes. Figure 6(a) shows relative differences in the number
of cache entries (horizontally striped (blue) bars), peak
memory consumption (vertically striped (green) bars),
and runtime ((yellow) bars with grid pattern), where the
effects of the proposal are compared to the baseline cache
implementation that stores all outcomes in the cache.
The number of entries in the cache has been decreased
by 10.51% on average, and by 18.37% in the best case
(meaning that DDMIN finds failing configurations in
about every tenth attempt). Likewise, on average, 11%
less memory was needed to accomplish the reduction, with
24.29% improvement in the best case. When investigating
the execution time, we can see that the change is not
consistent: in the best case, 3.45% of the execution time
is saved (jerry-3376), but there can also be increase, with
a maximum of 4.51% (jerry-3299). The reduction is not
changed beyond these characteristics, i.e., the output is
exactly the same as before applying the proposal.

Proposal 2
As (3) shows, our second proposal is to do regular

housekeeping and clear entries from the temporary storage
that are bigger than the actually found failing test case.
The first proposal is about not doing something, how-
ever, actively managing the cache during reduction might
take additional time in exchange for reduced memory
consumption. Figure 6(b) shows the surprising effects of
this proposal from a runtime point of view: it consistently
speeded up the reduction by 9.5% on average (and by
23.3% in the best case). The number of maximum cache
entries reduced by 86.29% on average (by 90.16% in the
best case) and also on average, 87.63% less memory was

required to finish the task. The outcome of the reduction
remained the same as before applying the proposal. Note
that Proposal 1 was considered as the reference in this
comparison.

Proposal 3
Our third proposal is about storing a transformed ver-

sion of the serialized test case in the cache. As mentioned
before, we investigated the SHA-3-256 hashing algorithm
to transform the test cases. However, using the hash is not
compatible with Proposal 2, since the size information of
the stored entries is lost. Table I presented an example
algorithm execution, and the values from the “Content”
and “Outcome” columns are stored in the cache as key-
value pairs. The outcome is redundant information after
Proposal 1, since only the passing test cases are stored for
further usage. Thus, the size information can be stored as
a value in place of the outcome, therefore, the key is the
SHA-3-256 transformed content of the test case and the
value is its size (before the transformation).

We first examined the question that was raised in Sec-
tion III, i.e., whether collisions happened during reduction:
during our experiments with the used test suites and
algorithm implementations, we have not faced any hash
collisions at all.

Since only the form of the stored entities changed,
Figure 6(c) contains memory consumption and runtime
changes only. The effect of this proposal on runtime is
similar to Proposal 1, i.e., relatively small changes could
be observed in both directions (0.39% increase on average
and +1.46% maximum). The memory consumption after
applying this proposal has dropped by 65% on average and
by 91.24% in the best case.

The backing data for the experiments are shown in
Table III. The “Baseline” column shows the peak memory

448



jer
ry-

32
99

jer
ry-

33
61

jer
ry-

33
76

jer
ry-

34
08

jer
ry-

34
31

jer
ry-

34
33

jer
ry-

34
37

jer
ry-

34
79

jer
ry-

34
83

jer
ry-

35
06

jer
ry-

35
23

jer
ry-

35
34

jer
ry-

35
36

−20 %

−10 %

0 %

10 %

Entries (%)
Peak Memory (%)

Runtime (%)

(a)

jer
ry-

32
99

jer
ry-

33
61

jer
ry-

33
76

jer
ry-

34
08

jer
ry-

34
31

jer
ry-

34
33

jer
ry-

34
37

jer
ry-

34
79

jer
ry-

34
83

jer
ry-

35
06

jer
ry-

35
23

jer
ry-

35
34

jer
ry-

35
36

−80 %

−60 %

−40 %

−20 %

0 %

(b)

jer
ry-

32
99

jer
ry-

33
61

jer
ry-

33
76

jer
ry-

34
08

jer
ry-

34
31

jer
ry-

34
33

jer
ry-

34
37

jer
ry-

34
79

jer
ry-

34
83

jer
ry-

35
06

jer
ry-

35
23

jer
ry-

35
34

jer
ry-

35
36

−80 %

−60 %

−40 %

−20 %

0 %

(c)

Figure 6. (a) Effects of Proposal 1 on DDMIN compared to the baseline [6]. (b) Effects of Proposal 2 on DDMIN compared to Proposal 1.
(c) Effects of Proposal 3 on DDMIN compared to Proposals 1 and 2 combined.
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consumption required for reducing the input (in kilobytes).
Then, the “Proposal 1”, “2”, and “3” columns show the
same results after applying each proposal incrementally,
and the “Difference” column shows the relative difference
between the baseline and the last proposal (that includes
all discussed optimizations). It can be seen that after
applying the proposals, the reduction process can work
with a fraction of the initial memory footprint (reduced
from 53.2 MB to 483.5 kB in the most extreme case).
As a side effect, the execution time is improved as well.
Although only Proposal 2 resulted in a consistent change,
the average improvement after the optimizations is 9.89%.
Hierarchical Delta Debugging

HDD uses DDMIN as a utility to minimize the nodes
of its parse tree (see Figure 2), therefore, we discuss the
combined impacts of the optimizations (as the utility is
replaced by the improved DDMIN ).

When investigating experimental results from JRTS, we
found that the cache had to store 47.47% fewer entries
after enabling all of the optimizations, and this required
63.19% less memory usage on average. We did not see
consistent trends in the reduction time, but on average
0.57% more time was needed for the reduction. Measure-
ments with PTS showed bigger improvements: on average,
86.34% fewer cache entries were stored, which resulted in
99.93% smaller memory footprint and 7.89% shorter run-
time. As shown in Table II, the characteristics of the used
test suites are quite different and it can be observed that
the baseline solution by Hodován et al. [6] does not scale
well. The bigger the input, the more resources are needed
to perform the reduction. Averaging the relative changes
from both test suites, optimizations enabled reducing test
cases with 85% smaller memory footprint in 4.46% shorter
time.

The backing data can be found in Table IV, the “Pro-
posals” column shows results after applying all three
proposals.
D. Conclusions

Based on the data and observations above, we can con-
clude the experiments and answer our research questions.

Answer to Research Question #1

How efficient are the state-of-the-art caching tech-
niques for test case reduction?

• Based on our preliminary research, we chose the
“content-based” caching technique by Hodován
et al. [6] as our baseline.

• DDMIN determined the outcome of its configu-
rations via the cache only in 3% of the cases.

• HDD utilized the cache better, the actual test-
ing of 21% of the configurations could be
avoided.

• The baseline caching solution did not scale well

for either algorithm: DDMIN consumed up to
53 MB of memory for reducing a 4 kB sized
input, while HDD required 4 GB of RAM to
reduce a 0.44 MB sized test in the worst case.

Answer to Research Question #2

Can caching be modified to reduce memory usage
without compromising the efficiency of the reduc-
tion algorithms?

In this study, we proposed three optimizations to
reduce the memory footprint of caches used in test
case minimization:
1) add only passing (✓) tests to the cache,
2) when a new failing (✗) test case is found, evict

cache entries of bigger test cases, and
3) instead of storing the serialized test contents,

store their hashed value (fixed-width keys in-
stead of variable-width).

In our experiments, the result of the reductions
did not change after the optimizations.

Answer to Research Question #3

What are the effects of optimizations on DDMIN
and HDD?

• The effects of the optimizations are similar on
both algorithms.

• On DDMIN , 96% less memory was needed on
average.

• On HDD, 85% less memory was needed on
average. However, the size of the input had an
effect on the results: on JRTS (smaller tests),
the average improvement was 63.19%, while on
PTS (larger inputs), it was 99.93%.

E. Threats to Validity
We identified the following threats in this study and

considered the following actions to avoid or minimize their
effects.

Selection of benchmarks: We used two suites of bench-
marks, one in C and one in JavaScript programming
language, the Perses Test Suite (PTS) and JerryScript
Reduction Test Suite (JRTS), respectively. As the formats
of the test cases are similar, structured, and come from
the same domain of programming languages, the findings
may not generalize to all types of test cases. However, we
think that the results on these test suites are indicative as
they contain real-world test cases and have been used in
reduction-related studies [10], [11], [12].

Correctness of implementation: In order to ensure that
the implementation of the experiments is correct and
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TABLE III
Peak Memory Footprint of Content Cache with DDMIN

Test Baseline Proposal 1 Proposal 2 Proposal 3 Difference
(kB) (kB) (kB) (kB) (%)

jerry-3299 4,338.4 3,946.7 556.9 134.1 -96.91%
jerry-3361 1,461.5 1,332.5 211.7 79.4 -94.57%
jerry-3376 33,301.8 30,398.5 3,138.4 328.7 -99.01%
jerry-3408 4,558.0 4,142.5 378.9 112.0 -97.54%
jerry-3431 970.6 863.1 96.5 41.2 -95.75%
jerry-3433 145.8 122.3 14.5 12.9 -91.12%
jerry-3437 21,652.0 19,381.8 1,578.3 215.9 -99.00%
jerry-3479 51,993.7 49,201.1 5,392.9 472.1 -99.09%
jerry-3483 75.3 57.0 13.2 8.5 -88.74%
jerry-3506 6,470.1 5,823.0 900.6 170.7 -97.36%
jerry-3523 13,604.9 12,198.1 993.7 188.9 -98.61%
jerry-3534 2,589.7 2,323.9 250.3 88.8 -96.57%
jerry-3536 361.3 327.8 38.1 23.3 -93.55%

accurate, we conducted a review of the code. On selected
C and JavaScript examples, we traced the behavior of
the implementation to validate that it works as intended.
Furthermore, the implementation is based on open-source
and well-maintained repositories like Picire and Picireny
frameworks that have been used in several studies [6], [9],
[13], [14], [15], [16], [17], [18], and ANTLR v4.

V. Related Work
One of the first and most well-known works on auto-

mated test case reduction is Delta Debugging by Zeller
and Hildebrandt [1], [2], [3], minimizing inputs of arbi-
trary format. The price of its generality is a potentially
lowered performance because of format-breaking incorrect
test cases generated and evaluated during the reduction
process. The authors have recognized that the same config-
uration may be tested at different stages of the reduction,
thus they provided a configuration-based outcome caching
solution in their reference implementation.

To avoid syntactically broken intermediate test cases,
Miserghi and Su proposed to use information about for-
mat encoded in context-free grammars, i.e., to convert
test cases into a tree representation [4] and apply delta
debugging to the levels of the tree. This Hierarchical
Delta Debugging approach helped remove parts of the
test case that aligned with syntactic unit boundaries. As
a further improvement, Miserghi proposed the concept of
a syntactically correct replacement for nodes that cannot
be completely removed from the test case without causing
syntax errors [5]. Hodován et al. investigated the perfor-
mance of the configuration-based outcome cache in their
study [6] and found that in different HDD* iterations or
at different tree levels, different node configurations yield
the same serialized test case, thus HDD tests the same test
case multiple times. Based on this finding, they suggested

storing the serialized test case in the cache instead of
configurations, called content-based cache. We have used
this solution as our baseline and optimized it further to
consume fewer resources during the reduction.

An interesting analogy between test case reduction and
program slicing was recognized by Binkley et al. [19], [20],
[21], [22], [23], [24]. They have realized that the concepts
of slicing (e.g., the program to be sliced or the slicing
criterion) can be reformulated as concepts of test case re-
duction (e.g., the test case or the interestingness property,
respectively). Their approach, called observation-based
slicing, avoids the complexities of building a dependency
graph representation of a program and can work purely at
the syntactic level. Stepanov et al. [25] suggested a com-
bined approach using program slicing, HDD, and Kotlin-
specific transformation in their “ReduKtor” prototype
tool. They also experienced that during transformations,
the tool may encounter configurations that have already
been explored. To avoid re-checking, they hashed the AST
configurations and stored them together with the outcome.
It should be noted though that using AST configurations
for cache lookups, either in full or in hashed form, can
face the same problem as traditional configuration-based
caching, i.e., different AST configurations can produce the
same serialized test case.

The above-mentioned works utilized different caching
solutions, but none of the used approaches took the speci-
ficities of the reduction algorithms into account. Conse-
quently, none of these works tried to optimize the cache
by exploiting such specificities. We have investigated the
state-of-the-art reduction tools, and made a step further
to maximize the resource efficiency of the reduction.

451



TABLE IV
Peak Memory Footprint of Content Cache with HDD

Test Baseline Proposals Difference
(kB) (kB) (%)

clang-22382 377,257.05 250.66 -99.93%
clang-22704 3,619,547.48 219.04 -99.99%
clang-23309 1,079,463.82 898.76 -99.92%
clang-23353 728,406.59 315.23 -99.96%
clang-25900 779,289.02 477.48 -99.94%
clang-26350 2,644,713.97 486.09 -99.98%
clang-26760 2,044,780.89 202.71 -99.99%
clang-27747 242,636.81 167.38 -99.93%
clang-31259 1,009,121.59 591.93 -99.94%
gcc-59903 1,461,098.60 289.84 -99.98%
gcc-60116 920,202.62 943.73 -99.90%
gcc-61383 844,987.29 428.65 -99.95%
gcc-61917 1,766,635.98 315.82 -99.98%
gcc-64990 3,900,100.63 680.55 -99.98%
gcc-65383 893,910.29 590.15 -99.93%
gcc-66186 1,030,536.05 633.49 -99.94%
gcc-66375 1,555,498.32 792.48 -99.95%
gcc-70127 3,853,617.25 374.30 -99.99%
gcc-71626 35,775.61 180.52 -99.50%
jerry-3299 61.21 15.70 -74.36%
jerry-3361 36.32 10.96 -69.82%
jerry-3376 61.56 10.64 -82.72%
jerry-3408 34.43 16.73 -51.40%
jerry-3431 8.82 5.58 -36.76%
jerry-3433 4.20 1.54 -63.38%
jerry-3437 30.16 4.29 -85.78%
jerry-3479 161.83 13.23 -91.83%
jerry-3483 10.45 7.83 -25.06%
jerry-3506 33.38 8.55 -74.37%
jerry-3523 28.30 12.68 -55.20%
jerry-3534 39.91 19.66 -50.75%
jerry-3536 45.30 18.10 -60.04%

VI. Summary

In this paper, we have been focusing on the memory
requirements of test case reduction. We have investigated
DDMIN and HDD, and how they perform on various test
suites. We have found that different tools use different
strategies, however, their cores are similar: they find a
property of the configuration that fully represents that
and store that in the cache. The “content-based” solution
was selected to improve upon, which works with both
algorithms in a way that serializes the input for the SUT
from the configuration and stores that as a key beside
the outcome whether passed or failed. Based on its open-
source implementation, we have prototyped our proposals
as follows:

Proposals

1) Store entries in the cache with a passing (✓)
outcome only.

2) When a new failing (✗) test case is found, evict
entries of bigger test cases.

3) Instead of storing the test contents in the cache,
store their transformed, fixed-length representa-
tion (SHA-256-3 in our experiments).

In our experiments, the result of the reductions has not
changed, but DDMIN and HDD required 96% and 85%
less memory, respectively.

As for future work, we have plans to continue this topic
of research in various ways. We wish to conduct further
experiments to investigate how different properties of the
input (e.g., size, format, structure, etc.) affect the results.
This includes the investigation of the current test suites
as well as potential additional datasets to see whether the
current results can be generalized. We would also like to
see the implementation of these proposals in more state-of-
the-art test case reduction tools, and measure and compare
their effect across algorithms. Furthermore, we would like
to explore additional caching techniques in order to be able
to minimize inputs that do not have a traditional serialized
form.
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variant of the hierarchical delta debugging algorithm,” in Proc.
9th ACM SIGSOFT Int. Workshop Automating Test Case De-
sign, Selection, Eval. (A-TEST). ACM, 2018, pp. 16–22.

[15] D. Vince, R. Hodován, D. Bársony, and Á. Kiss, “Extending
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