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Abstract—Spectrum-Based Fault Localization (SBFL) is based
on risk formulas to rank program elements, which work generally
well in various situations. However, it cannot be ruled out that
zero division might happen during score calculation, which has
negative consequences, e.g., essential elements will not be in the
top part of the rank list. The literature has given several strategies
to tackle the problem, although there is little knowledge on which
one to use. In our work, we performed mathematical analysis
and an empirical study to find out how this phenomenon affects
SBFL. Results show that division by zero happens in many cases,
and the strategies can mitigate their consequences with varying
success. Thus, we propose a combined method to avoid the threat
of division by zero and improve the trustworthiness of SBFL. Our
proposals should be taken into consideration whenever a formula
is being used or a new one is proposed.

Keywords—Debugging, Division by Zero, Empirical, Fault
Localization, Spectrum-based Fault Localization

I. INTRODUCTION

Debugging is one of the most effort intensive activities dur-
ing development and maintenance, and the brunt of debugging
is generally seen to be localizing the fault. Like for many tasks
in software maintenance, it is also true for fault localization
that the more automated the better.

A widespread idea to localize faults automatically is based
on program spectra [1], [2], i.e., on information about pro-
gram execution during the testing phase. This information
usually includes if or how often program elements (statements,
branches, function calls, etc.) are executed during each test
case and this field of research is called spectrum-based fault
localization (SBFL). The intuition behind using the program
spectra is that those program elements that are exercised
by more failing tests than passing ones are more likely to
contain the fault. The state-of-the-art techniques [3] use hit-
based spectra, i.e., binary information about the execution of
elements recorded on a suite of passing and failing test cases.
Statistics can be derived from the produced binary matrices,
i.e., how many passing and failing executions covered or
missed the elements, which can then be used for further
calculations, such as computing the suspiciousness score for
each program element and use it for ranking. A good SBFL
technique is expected to give a high rank to the faulty element
(ideally, the 1st place), thus guiding the debugging efforts of
the software engineer.

However, even the best fault localization techniques are in
trouble when division by zero occurs. Several techniques came
from the fields of biological research [4]–[6] and have not
been prepared for the challenges posed by software engineer-
ing, especially automated fault localization. The reason why

the division by zero problem exists varies from formula to
formula. However, a typical case is when the spectrum of a
program element is skewed, i.e., it has been exercised either
by failing or by passing tests only. Another extreme case is
when a program element has not been exercised at all or it
has been exercised by all test cases, which can also result in
a division by zero in some formulas. Furthermore, it can also
happen that not the spectrum of a program element but the
whole test suite is unbalanced, e.g., in fuzz testing, when the
discovered bug is triggered by only one (generated) test case
and other tests, if they exist, come from a regression test suite
that do not signal the failure at all.

A detailed discussion about division by zero occurrences
can be found in the following sections of this paper, however,
it can already be seen that treating different cases uniformly
would result in inefficient fault localization, which may lead
to a loss of confidence in the technique. Motivated by these
issues, our goal is to answer the following research questions:

Research Questions

RQ1. How can mathematical analysis classify SBFL
formulas in terms of division by zero?

RQ2. How often does division by zero happen in
practice?

RQ3. Can enhancements be proposed to the formulas
in order to improve the effectiveness of SBFL algo-
rithms to localize bugs more successfully?

RQ4. If the score calculation is corrected, to what
extent do non-faulty program elements affect the
ranking of the faulty program elements?

Thus, in this paper, we utilize mathematical analysis to
gather more information about the published SBFL techniques
in the last 3 to 5 decades, and whether and how division
by zero affects them (Section III). Furthermore, based on
the analysis, we propose to categorize the collected formulas
into classes and give a reasonable, useful, context-dependent
solution to avoid division by zero for each problematic formula
class (Section IV). Additionally, we conduct an empirical
study on the effects of division by zero on the score calculation
in SBFL formulas using the Defects4J and JerryScript datasets
(Sections V and VI). Therefore, we guarantee that the existing
formulas work even in corner cases, like division by zero.
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II. BACKGROUND

A. Spectrum-Based Fault Localization

Given the elements of a program, |{ej}| = n, and test cases
as inputs, |{ti}| = m, a program element hit spectrum is a
binary matrix, S = (sij) ∈ Bm×n, where each element of the
matrix denotes whether the execution of the program on test
input ti has covered program element ej . Usually, sij = 1
denotes that the program element has been covered and sij =
0 otherwise. The hit spectrum is usually accompanied by a
binary result vector, R = (ri) ∈ Bm, where each element
denotes whether the execution of the program on test input ti
has resulted in a failure (ri = 1) or not (ri = 0). A typical
representation of these structures is shown below:

S =


e1 e2 · · · en

t1 0/1 0/1 · · · 0/1
t2 0/1 0/1 · · · 0/1
...

...
...

. . .
...

tm 0/1 0/1 · · · 0/1

 R =


0/1
0/1

...
0/1


Let e denote a program element, usually a function or a

statement, then using the S and R matrices, four derived
values can be calculated per program element e, presented
with the following notations:

• cef(e): number of failing test cases executing e,
• cnf(e): number of failing test cases not executing e,
• cep(e): number of passing test cases executing e, and
• cnp(e): number of passing test cases not executing e.
The majority of the published SBFL formulas in the lit-

erature, and all that we investigate in this paper, use these
c··(e) values to calculate suspiciousness scores in various ways
(although notation may vary across papers). Some of them use
all of the four values, but there are some that use only a subset.
Note that cef(e)+cnf(e) and cep(e)+cnp(e) are the same for all
program elements, giving the number of failing and passing
test cases, cfail and cpass, respectively. Also note that for the
sake of simplicity we omit the parametrization with (e) from
the notation in the rest of the paper.

B. SBFL Formulas and Division by Zero

Formulas are used to take the four derived values – in-
troduced above – and calculate a suspiciousness score for
each program element. When a score has been assigned to
all program elements, they are prioritized according to the
score in descending order. The highest ranked element is
considered the most suspicious, which should be investigated
by the software engineer. Over the years, multiple formulas
have been proposed to rank program elements in order to
predict the faulty statements more accurately. Several of these
formulas have been adapted from biological and medical
research studies to computer science, e.g., [7]. In their original
research domains, all their c·· values are strictly positive, so
division by zero most probably cannot happen. However, in
computer science and more specifically in fault localization,
the above assumption does not necessarily hold and division by
zero can happen, and unfortunately not all of the formulas have

been adapted to this case. Thus it is worth analyzing them from
the division by zero point of view in their new environment.
We have collected formulas from various sources [3], [6], [8]–
[16] and investigated them from a practical perspective: what
is their relation to division by zero?

Still, there are some assumptions that can be made during
the analysis of the collected formulas in the SBFL use case:

• ∀c ⩾ 0: all c·· values must be greater than or equal to
zero,

• cef + cnf = cfail > 0: the number of failing test cases
must be at least one, otherwise there would be nothing
to localize, and

• cep + cnp = cpass ⩾ 0: the number of passing test cases
can be zero, e.g., this can be the case when a regression
test suite is not available, only a (potentially randomly
generated) failing test case [17].

In terms of the previously introduced matrix notation,
column vectors in S can be zero (i.e., for a given element
ej , ∀i : sij = 0) if and only if none of the test cases covered
an element of the software under test (SUT). Additionally,
row vectors in S can also be zero (i.e., for a given test case ti,
∀j : sij = 0), which indicates that a test case has not covered
any of the elements in the SUT. This can happen in software
systems where only parts of the code base (e.g., the core logic)
are compiled with support for coverage information, however,
the execution is halted before reaching these parts.

These assumptions have been taken into account during the
mathematical analysis. Especially cfail > 0 narrowed down the
search space, since many formulas use division by cef + cnf,
which is strictly greater than zero.

C. Related Research

Numerous automatic fault localization techniques have been
published in the last decades, and several surveys and em-
pirical studies [9], [10], [12], [16], [18]–[20] collected them.
However, only a few of the published techniques addressed the
division by zero problem explicitly, thus it remained an open
question in the research domain. Several formulas came from
biological research where division by zero cannot happen due
to the properties of the processed data, therefore, the authors
did not have to deal with the problem. After their adaptation
to software maintenance, a few general guidelines have been
published about what to do when the problem occurs, but
these guidelines typically did not consider the specifics of the
formulas.

The first – and most naive – approach might be to assign a
zero suspiciousness score to the program element if any of the
denominators in the formula evaluates to zero as discussed by
Sarhan and Beszédes [21]. Beyond this solution, several pro-
posals have been made for more efficient operation. A popular
method is proposed by Jones and Harold [22] that assigns zero
to any division in the formula if its denominator evaluates
to zero, thus the suspiciousness score can be calculated as if
the division did not exist. Similar to that, Yoo [23] used the
constant value 1 for this purpose. Naish et al. [24] assigned
zero to the whole formula if the numerator was also zero
( 00 ) and a suitably large value (N ) otherwise. This suitably
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large value is expected to be larger than any value that can
be returned with a non-zero denominator, e.g., the number of
tests plus 1 with the Overlap formula or numerator plus 1 with
the DStar formula. As an alternative, both Naish et al. [24]
and Lee [25] have considered adding a small ϵ value to the
denominator to avoid division by zero. Lee and Naish [26]
considered x

0 = 9999 and 0
0 = 0.5. Furthermore, Xue and

Namin [27], and Landsberg et al. [28] have decided to add ϵ to
each of the c·· coefficients. These approaches can be grouped
as follows:

1) assign a predefined value to the score,
2) add a suitably small value (ϵ) to the denominator, or
3) add a suitably small value (ϵ) to all coefficients.
Vince et al. briefly analyzed the problem in their study [17]

and concluded that the approaches can be formalized by
modifying the division operation as

div⟨a,b⟩(x, y) =


a if x = 0 ∧ y = 0

b if x ̸= 0 ∧ y = 0

x/y otherwise

or as
div⟨+d⟩(x, y) =

x

y + d

or by modifying the values of the coefficients c··, denoted as
c+ ϵ.

Table I summarizes the existing solutions and how they
handle division by zero. The first column formulates the
solution using the above-defined notation and the second
column references the papers that proposed the method.

TABLE I: Existing Solutions for Division by Zero

Formula References

div⟨0,0⟩ Jones and Harrold [22], Lee [25]
div⟨0,N⟩ Naish et al. [24]
div⟨N,N⟩ Lee [25]
div⟨1,1⟩ Yoo [23]
div⟨0.5,9999⟩ Naish and Lee [26]
div⟨0,1⟩ Troya et al. [14]
div⟨+ϵ⟩ Naish et al. [24], Lee [25]
c+ ϵ Xue and Namin [27], Landsberg et al. [28]

D. Tool Implementations

Motivated by the literature, several IDE-integrated or
command-line-based fault localization tools have been imple-
mented. They usually provide an infrastructure to automat-
ically instrument the source code of the SUT in order to
generate the spectra of the program executions. Furthermore,
they often use colors to mark the program elements from
green to red based on their suspiciousness scores. Most of the
publicly available, open-source implementations are targeting
different programming languages or frameworks, however, all
of them face the division by zero problem.

Campos et al. [29] proposed a tool called “GZoltar”1 that
adopts SBFL to Java. It is available as a command-line tool,
as a plug-in for Maven, and as an extension for Eclipse
and Visual Studio Code, and it employs several methods to
calculate suspiciousness scores. Their first line of defense
against division by zero is checking if the spectrum matrices
are valid, and if not, zero is assigned as the score. Then, if
a formula for a program element evaluates its denominator
as zero, the score for that element will be one as Yoo [23]
suggested. Ribeiro et al. [30] proposed another tool for Java-
based programs, called “Jaguar”2, that assigns zero as the
score for those program elements that did not contribute to
the failing program execution (cef = 0) and also uses zero as
the default value if division by zero happens. Defaulting to
zero is popular among the tools, the approach is also used by
the “flacoco”3 tool of Silva et al. [31] and by “CharmFL”4 by
Sarhan et al. [32].

The published studies try to solve the existing problem in
the most generic way, and the publicly available tools use
the most naive solutions. Our experimental results show that
different formulas work best with different approaches, and
there is room for context-dependent optimizations.

III. MATHEMATICAL CLASSIFICATION

In order to get a good overview of the field of research, we
collected SBFL formulas from several sources [3], [6], [8]–
[16], including only those that contain division while exclud-
ing those that contain additions, subtractions, or multiplica-
tions only, since they do not fall within the scope of this study.
Regardless of the notation used in the original publication
of the formulas, we converted them to the common notation
described in Section II-A to facilitate their analysis. Then,
they were analyzed from a pure mathematical perspective
with the help of limit calculation. We were interested in how
the formulas behave when the divisor tends to zero, without
applying any context-dependent knowledge. The collected
formulas can be found in Appendix5.

Eventually, the formulas have been sorted into three cat-
egories: division by zero cannot happen (discussed in Sec-
tion III-A), the limit can be determined exactly – Section III-B,
and the limit cannot be determined mathematically – Sec-
tion III-C. Each section gives at least one example formula
that falls into that class.

A. Division by Zero Cannot Happen

Some formulas have been constructed in a way that they
contain denominators that cannot evaluate to zero. This can
come from the addition of a positive constant to the denomina-
tor or from the previously mentioned assumptions, e.g., at least
one failing test case is required to execute fault localization,
formally cef + cnf > 0. An example of this category is the
Jaccard formula [3], which assigns a suspiciousness score

1https://github.com/GZoltar/gzoltar, git hash: 310fba7.
2https://github.com/saeg/jaguar, git hash: efe8716.
3https://github.com/SpoonLabs/flacoco, git hash: 2a74fda.
4https://github.com/sed-szeged/CharmFL, git hash: 40dd511.
5https://doi.org/10.6084/m9.figshare.21071278
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to each program element that is proportional to how many
times it has contributed to failing test cases and inversely
proportional to the total number of failing test cases and
contributions to the passing test cases.

Jaccard(e) =
cef

cef + cnf + cep

The expression in the denominator contains cef + cnf, the
number of failing test cases that cannot be zero (cfail > 0),
thus the denominator never evaluates to zero even if cep = 0
holds. This class contains 25 formulas from the investigated
75, which are shown in Table 1 of the online Appendix5.

B. Limit Can Be Determined

Formulas in this category have the specific property that
their limits can be determined mathematically. An example of
this class is DStar [33] (D∗), which divides by zero when
cnf + cep = 0.

lim
(cnf,cep)→(0,0)

c∗ef

cnf + cep
= ∞

In that specific scenario, the formula tends to ∞. The ∞
as limit might have the meaning that the program element is
very suspicious (which is the case with the D∗), however, this
depends on the formula and we cannot state that as the ground
truth. Another example is CBISQRT [8], which approaches 0
and is defined as follows:

lim
(cef,CBIINC)→(0,0)

2

1
CBIINC

+

√
cef+cnf
√
cef

= 0

It uses another formula, called CBIINC , which, for the
purpose of the analysis, has been considered as a coefficient
that can take the value of 0. This class includes 21 formulas
that are shown in Table 2 of the online Appendix5.

C. Limit Does Not Exist

A common pattern in the investigated formulas can be
described as follows:

x

x+ y

The limit of this fraction does not exist, since the solutions
are different depending on the direction in which the fraction
is approaching to zero, i.e.,

lim
(x,0)→(0,0)

x

x+ y
= lim

(x,0)→(0,0)

x

x+ 0
= 1

lim
(0,y)→(0,0)

x

x+ y
= lim

(0,y)→(0,0)

0

0 + y
= 0

This pattern is common among the collected fault localiza-
tion formulas. An example formula for this class is Taran-
tula [3], which performs division by zero when cep + cnp = 0,
i.e., the test suite does not contain passing test cases.

Tarantula(e) =

cef

cef+cnf
cef

cef+cnf
+

cep

cep+cnp

Here, the limit of the error-causing part cannot be deter-
mined unambiguously, and for this reason, the limit of the
whole formula cannot be determined either. There are 29
formulas that belong to this category.

Answer to Research Question #1

Three disjunct categories can be created from the
examined formulas. Division by zero cannot happen
(25 formulas), the limit exists (21), and the limit
cannot be determined (29).

IV. PRACTICAL IMPROVEMENTS

In this section, we discuss context-dependent aspects of the
problem, i.e., in practice we may assume some restrictions that
the mathematical analysis might not consider.

In most systems, a typically constructed test case does
not exercise all of the program elements, therefore, it may
happen that a program element has not been exercised at all
(∃ej : cef(ej) + cep(ej) = 0 holds). Based on our analysis,
33 formulas perform division by zero when cef + cep = 0
(for three, even cef = 0 can trigger division by zero, for one,
cep = 0 is enough). Even if division by zero does not happen, it
is an important corner case in this research area. We can argue
that parts of the SUT that are not executed rarely contribute to
the faulty behavior, i.e., typically only the executed code parts
contribute to the failure. For these reasons, our first proposal
is to exclude those program elements from the ranking process
where cef + cep = 0 holds. Formulas should not even be
applied to program elements that do not satisfy this restriction.
Applying this proposal excludes many of the potential division
by zero cases, but not all. Table II shows 28 formulas that are
constructed in a way that are still affected by zero division.
(We have analyzed the source code of several open-source
tools – discussed in Section II-C –, however, contrary to our
expectations, none of them excluded the non-executed program
elements from the ranking.)

TABLE II: Division by Zero Can Happen After the Exclusion
of Non-Executed Program Elements

Formulas

Ample Gower Pierce
Ample 2 Gower 3 (YuleQ) Rogot
Arithmetic Mean Harmonic Mean Rogot 2
CBI Log Kulczynski Scott
CBI Sqrt M1 Tarantula
Cohen Minus Scott
Collective Strength Mountford YuleY
Conviction Ochiai 2 Zoltar
DStar Overlap
Fleiss Pearson

Division modes discussed in the literature and summa-
rized in Table I are general guidelines without knowledge
about the underlying formula. However, different zero division
avoidance methods might work best for different formulas.
Thus, our second proposal is to find the best performing
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division mode for each formula on an empirical basis (but
especially for those where mathematical analysis does not give
an unambiguous answer). The results of such an investigation
are shown in Section VI, after the evaluation of our empirical
results. As new formulas are published from time to time
in order to improve SBFL, we suggest for future authors to
include a detailed zero division avoidance guide or to use a
suitable division mode from Table I, preferably justified by
mathematical analysis or by empirical results, whenever an
affected formula is proposed.

Discussing further the common behavior of faults, program
elements that are exercised in every test execution have a
smaller chance of containing the bug. Several well-performing
formulas use this intuition, i.e., reducing the score by some
proportion, however, not all of them. Some of the investigated
formulas contain this exact expression, e.g., Conviction, thus
evaluating it to zero may result in a division by zero. However,
exclusion of those program elements where cnf+cnp = 0 holds
is not safe, and cannot be performed without a potential to lose
information.

V. EMPIRICAL EVALUATION

To evaluate the effect of different division modes and
the proposed improvement ideas, we evaluated 434 faulty
program versions from the Defects4J [34] dataset6 and 11 tests
from the JerryScript Reduction Test Suite (JRTS)7. Defects4J
(v1.5) contains 438 reproducible bugs from 6 real-world open
source programs (approximately 27.5K methods and 330K
LOC), and each is accompanied by a test suite that can
expose that bug. JRTS contains 13 fuzzer-generated test inputs
(JavaScript sources) that trigger failures in various versions
of the JerryScript8 engine (approximately 1.5K methods and
122K LOC). We used both datasets to empirically study how
the above-discussed division modes affect the score calculation
of the 75 collected formulas. Furthermore, we investigated
whether our proposals help the algorithms be more successful
at localizing bugs. Additionally, we combined the categories
from our mathematical classification with the existing division
modes.

Parnin et al. [35] showed that statement-level fault local-
ization might be too fine-grained and miss useful context
information. On the other hand, Wong et al. [3] showed class
level fault localization is too coarse-grained and does not help
the developer understand and fix the fault within a class.
Hence, we used method-level granularity in this study. In order
to compare the effectiveness of the different division modes,
we compiled the test programs with coverage information, then
executed the tests to get the the program spectra (the S and
R matrices from Section II). Then, we calculated the c··(e)
coefficients for all program elements, which are the inputs of
the formulas. With this information, the scores and the ranks
could be calculated with all the formulas and all the division
modes within them.

6https://github.com/rjust/defects4j/tree/v1.5.0
7https://github.com/vincedani/jrts/commit/7c6f8f
8https://github.com/jerryscript-project/jerryscript

Having the suspiciousness ranking list made, we can con-
clude which modes in Table I are better than the rest. A
division mode is more successful in helping the algorithm
find the fault if the faulty element is nearer to the top in the
list of suspicious elements. The rank position is an efficient
way to compare the effectiveness of algorithms, because it
gives clear information about the effort the developer has
to put into investigating the elements in the list. Several
studies [36], [37] investigated the trustworthiness of fault
localization and concluded that the buggy element must appear
in the top-5 positions in the rank list to be investigated by the
engineer repairing the software. Agreeing with these results,
we consider a formula effective when it puts the faulty element
within the top-5 positions in the rank list. Therefore, we
consider it an enabling improvement whenever faulty elements
go into the top-5 list after the selected division mode changes
their score. However, to get more detailed results, we also
investigate the top-1 and top-3 results of the ranking.

In order to see whether division modes make a difference in
score calculation and thus change the ranking list, we need to
know how often division by zero happens for each investigated
formula. The answer to this question determines whether our
study has relevance at all. The more problems formulas have
the more chance we have for enhancing the ranking by using
different division modes.

Furthermore, the division by zero problem might affect
the majority of elements during score calculation, not just
faulty ones. Therefore, the question arises: does defining a
suspiciousness score for all affected elements indeed improves
the rank of the faulty element (considering that non-faulty
elements may get a new score assigned, too)? Not to mention
the problem that in real fault localization scenarios, we do
not have prior knowledge about which program elements are
faulty, thus we have to deal with both cases in this study.

VI. RESULTS AND DISCUSSION

A. Occurrences of Division by Zero

First, we calculated the scores for all 75 collected formulas
to cross-validate whether the results of mathematical analysis
align with practice and see how often division by zero causes
problems. Table III shows the frequency of zero division
during score calculation on the two benchmark suites (i.e., we
investigated how many times division by zero happened during
calculating the scores of the program elements in all faulty
program versions). Formulas which belong to the “Division
by Zero Cannot Happen” class are not included, so this left
us with 39 formulas that turned out to be affected. These
are grouped by their categories based on the mathematical
analysis. We made a sanity check that the not included
formulas indeed did not cause the division by zero problem in
practice. The “All” columns contain how many times division
by zero occurred with any program element and columns
“Faulty” contain the same results for the faulty elements only.

We identified five formulas, highlighted with red, i.e., CBI
Log, CBI Sqrt, Conviction, Overlap and Zoltar, that are heavily
affected. But other formulas are also affected as the number
of divisions by zero typically falls between 3 and 30 for faulty
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TABLE III: Frequency of Division by Zero in the Used
Benchmark Programs

Metric Defects4J JerryScript
All Faulty All Faulty

Limit exists
CBI Inc (CBI) 625,089 5 2,130 0
CBI Log 725,018 408 6,030 10
Conviction 752,560 525 6,030 10
CorRatio (Ochiai 3) 625,089 5 2,130 0
Dennis 625,089 5 2,130 0
DStar 109 25 50 0
Fager 625,089 5 2,130 0
Fossum 625,089 5 2,130 0
Gower 625,180 5 3,539 3
Gower 3 (YuleQ) 625,180 5 3,539 3
GP 13 625,089 5 2,130 0
Hyperbolic 625,089 5 2,130 0
Kulczynski 109 25 50 0
M1 109 25 50 0
Ochiai 625,089 5 2,130 0
Pearson 625,180 5 3,539 3
YuleV 625,089 5 2,130 0
YuleY 625,180 5 3,539 3
Zoltar 2,616,037 69 11,816 2

Limit does not exist
AssocDice 625,089 5 2,130 0
Barinel (Coef, SBI) 625,089 5 2,130 0
CBI Inc (CBI) 625,089 5 2,130 0
Certainty 625,089 5 2,130 0
Collective Strength 26 0 1,410 3
Confidence 625,089 5 2,130 0
Correlation 625,089 5 2,130 0
Forbes 625,089 5 2,130 0
Gower 3 (YuleQ) 625,180 5 3,539 3
Harmonic Mean 625,180 5 3,539 3
Hyperbolic 625,089 5 2,130 0
Interest 625,089 5 2,130 0
Klosgen 625,089 5 2,130 0
Kulczynski 2 625,089 5 2,130 0
McCon 625,089 5 2,130 0
Minus 625,180 5 3,539 3
Mountford 625,198 30 2,180 0
Ochiai2 625,180 5 3,539 3
Overlap 2,743,508 589 15,716 12
Pierce 200 25 1,489 3
Rogot2 625,180 5 3,539 3
Tarantula 625,089 5 2,130 0

Color code: white: low frequency, yellow: medium frequency,
and red: high frequency.

elements, and between 2K and 625K for non-faulty ones (these
cases are highlighted with yellow). When comparing how
faulty and non-faulty program elements are affected, division
by zero caused a lot fewer problems for the faulty elements
than for the non-faulty ones. This is not surprising, since the
distribution of the two categories, i.e., faulty or non-faulty,
is uneven. However, the problem during score calculation of

non-faulty elements affect the ranking of faulty ones.

Answer to Research Question #2

• Formulas that got marked as safe during mathemati-
cal analysis (25 items) did not perform any division
by zero during the experiments.

• For 39 of the 50 remaining formulas, division by
zero is an existing problem during score calculation
in the used benchmark programs, both with faulty
and non-faulty program elements, proving that our
study has relevance.

B. Impact of the Proposed Enhancements

We evaluated the division modes presented in Table I on
each buggy version of programs from both datasets to deter-
mine which one performs best with the collected formulas.
Section II-C contains the analysis of several open-source fault
localization tools that handle division by zero in the simplest
possible way, assigning zero to the whole formula when the
problem occurs. For this reason, we consider this approach
as our baseline and compare the different division modes to
it. To compare the division modes, we needed to calculate the
average of average ranks of the 39 formulas (for both datasets)
that are affected by the problem using each division mode. We
consider a division mode better than the others if the ranks of
the faulty elements are closer to the top of the rank list with
its usage.

Table IV contains detailed information – with data from
both test programs – about how many times each formula
used zero as the denominator during processing the program
spectra. Program elements that were not executed by any of
the tests were excluded from the ranking, thus many division
by zero occurrences disappeared from the score computation.
However, the “Frequency of Division by Zero” column shows
that there is still a large number of zero divisions, which
makes the division mode selection necessary. Some items are
missing from the table compared to Table II, which means
that not all formulas that were analyzed and marked as unsafe
caused division by zero in the used programs. The column
also contains relative differences compared to Table III and
shows that the majority of the zero divisions are eliminated by
this proposed enhancement in 11 of 19 cases. Those formulas
where the issue could not be eliminated to any extent are
denoted with (—) as the relative change is zero.

For the remaining cases, it can be determined which mode
results in the most advantageous rank list in terms of top-
5 rank. For each formula, scores and ranks are computed
with different division modes and grouped by division mode.
The column “Best Performing Division Mode” contains which
mode performed the best for each metric. The two outstanding
modes are the div⟨+ϵ⟩ and the c + 0.1, giving the best
results in 8 cases each. Formulas in Table IV have unique
internal structures, and Section III discussed that some of
them are approaching an exact limit when the denominator
is approaching zero. However, the empirical results show that
modifying the division or adding a small ϵ to the coefficients
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TABLE IV: Effect of Proposed Enhancements in the Used Benchmark Programs

Name
Frequency of Best Performing Enabling

Formula
Division by Zero Division Mode Improvement

CBI Log 103,829 (-85.80%) div⟨+ϵ⟩ 79 (+58.52%) 2

1
CBIInc(e)

+
log(cef+cnf)

log(cef)

CBI Sqrt 2,000,134 (-23.85%) div⟨+ϵ⟩ 0 (—) 2

1
CBIInc(e)

+

√
cef+cnf√

cef

Collective Strength 1,436 (—) c+ 0.1
0 (—) 1− cef+cnp

(cef+cep)·(cef+cnf)+(cnf+cnp)·(cep+cnp)
·

1−(cef+cep)·(cef+cnf)−(cnf+cnp)·(cep+cnp)

1−cef−cnp

Conviction 131,371 (-82.68%) c+ 0.5 183 (+631.03%) max
(

(cef+cep)·(cep+cnp)

cep
,
(cef+cnf)·(cnf+cnp)

cnf

)
DStar 159 (—) div⟨+ϵ⟩ 18 (+9.00%)

c∗ef
cnf+cep

Gower 1,500 (-99.76%) c+ 0.1 0 (—) cef+cnp√
(cef+cnf)·(cef+cep)·(cnf+cnp)·(cep+cnp)

Gower 3 1,500 (-99.76%) c+ 0.1 133 (+164.20%) cef·cnp−cnf·cep
cef·cnp+cnf·cep

Harmonic Mean 1,500 (-99.76%) c+ 0.1 0 (—)
(cef·cnp−cnf·cep)·((cef+cep)·(cnp+cnf)+(cef+cnf)·(cep+cnp))

(cef+cep)·(cnp+cnf)·(cef+cnf)·(cep+cnp)

Kulczynski 159 (—) div⟨+ϵ⟩ 18 (+9.23%) cef
cnf+cep

M1 159 (—) c+ 0.1 21 (+43.75%) cef+cnp
cnf+cep

Minus 1,409 (-99.78%) c+ 0.1 0 (—)
cef

cef+cnf
cef

cef+cnf
+

cep
cep+cnp

−
1−

cef
cef+cnf

1−
cef

cef+cnf
+1− cep

cep+cnp

Mountford 159 (-99.97%) div⟨0,1⟩ 18 (+9.09%) cef

0.5·((cef·cep)+(cef·cnf))+(cep·cnf)

Ochiai 2 1,500 (-99.76%) div⟨+ϵ⟩ 0 (—) cef·cnp√
(cef+cep)·(cnp+cnf)·(cef+cnf)·(cep+cnp)

Overlap 2,132,005 (-22.73%) div⟨+ϵ⟩ 63 (+370.59%) cef
min(cef,cnf,cep)

Pearson 1,500 (-99.76%) div⟨+ϵ⟩ 0 (—)
(cef+cnf+cep+cnp)((cef·cnp)−(cep·cnf))

2

(cef+cep)·(cnf+cnp)·(cep+cnp)·(cef+cnf)

Pierce 1,689 (—) div⟨1,1⟩ 24 (+800.00%) (cef·cnf)+(cnf·cep)

(cef·cnf)+(2·cnf·cnp)+(cep·cnp)

Rogot 2 1,500 (-99.76%) c+ 0.1 0 (—) 1
4
·
(

cef
cef+cep

+
cef

cef+cnf
+

cnp
cnp+cep

+
cnp

cnp+cnf

)
YuleY 1,500 (-99.76%) c+ 0.1 133 (+164.20%)

√
cef·cnp−

√
cep·cnf√

cef·cnp+
√
cep·cnf

Zoltar 2,000,634 (-23.87%) div⟨+ϵ⟩ 0 (—) cef

cef+cnf+cep+
10000·cnf·cep

cef

leads to better approximation of the scores (than assigning the
limit to the score), and hence, to better rankings.

To better understand what happens during the score calcula-
tion and the ranking processes, two formulas are investigated
further from Table IV. The Overlap formula performed the
most division by zero operations among the investigated ones,
therefore, we paid special attention to it. Figure 1a shows how
the ranking is changed as a result of changing the division
mode. The green color indicates the number of cases when
the formula ranked the faulty program element to the 1st

place, then the yellow color indicates that it was ranked in
the top-3 places and the cyan means in the top-5. For this
formula, the naive and the three constant modes i.e., div⟨0,0⟩,
div⟨1,1⟩ and div⟨N,N⟩, are not effective, but the other division
modes boosted the effectiveness to a useful level. The term N
was introduced in Section II as a theoretically suitably large
value. In our experiments, we used the infinity value from the
mathematical module of Python 3.

The other formula we investigate is Conviction, which has
fewer zero values in the denominator in an order of magnitude,
but still in hundreds of thousand cases. Division modes behave
differently compared to the Overlap as shown in Figure 1b,

although using a division mode is still more effective than
assigning zero as the score of the program element (naive
column).

Table IV shows which different division modes work best
for specific formulas. However, in a broader context, the
question arises if there a “best division mode” which out-
performs the others in terms of average ranking? To be able
to analyze the experimental data from this perspective, we
averaged the ranks of each input and formula, i.e., the result
is the general effect of the division mode. With the exception
of c+0.5, all modes outperform the naive approach, however,
the averaged ranks are close to one another, thus there is no
“best division mode” that works best in all circumstances.
We also aggregated the top-N results of each input with each
division mode, however, the same patterns can be observed and
a conclusion can be drawn: in general, there is no better or
worse division mode and there is no “one fits all solution”, i.e.,
different modes work best with specific formulas.
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Figure 1: Effects of Different Division Modes on top-5 ranking (the higher the better): (a) Overlap, (b) Conviction.

Answer to Research Question #3

• Excluding those program elements from the score
calculation process that are not executed during the
testing phase (cef + cep = 0) reduced the division
by zero occurrences (59.84% on average, 99.97% in
best case) in our benchmark programs, although the
problem still exists to a lesser extent.

• Using any of the already existing division modes
instead of assigning zero as a score (marked as naive
in this study) is beneficial, however, division modes
behave differently with various formulas.

• In our benchmark programs, using the best fit divi-
sion mode for each formula resulted in 27.21% more
top-5 ranks on average.

C. Impact of Division by Zero in Non-Faulty Program Ele-
ments

In previous sections, we analyzed the impact of the proposed
solutions on the faulty elements in terms of changed scores
and rank positions. In this section, we focus on the unusual
cases, i.e., when this direct relationship does not hold between
the score and rank changes. We investigate how the solutions
to division by zero problem affect the relationship of both the
faulty and non-faulty elements together. Our hypothesis is that
when different division modes do not affect the score of the
faulty element itself, its rank may still change due to changes
in the scores of non-faulty elements. Eventually, the rank list
depends on the score of each and every program element, not
just the faulty ones.

To thoroughly investigate the problem, we need to differen-
tiate between the following four categories:

a) the rank of the faulty element is worse (than the baseline)
while its score is better,

b) the rank of the faulty element is worse, although the
score is unchanged,

c) the rank of the faulty element is better, although the score
is unchanged,

d) the rank of the faulty element is better while the score
got worse,

Category a) occurs when the score of the faulty element gets
better, however, scores in its environment improve even more,
i.e., non-faulty elements will be placed before the faulty using
one of the division modes. Categories b) and c) happen when
there is no zero division during the faulty score calculation,
however, non-faulty elements will be moved to either before
or after the faulty element in the rank list. Finally, the last
category d) is the polar opposite of a), i.e., even though using
a division mode will decrease the scores, the faulty element is
still going to be placed in a better position. This happens when
the non-faulty scores decrease more than the faulty score.

We counted the four categories using 75 formulas in De-
fects4J (438 bugs) and JerryScript (13 bugs). Table V shows
the percentage of each category in Defects4J and JerryScript.
Table V shows that both Defects4J and JerryScript have a
relatively high percentage in the a) category using c + 0.1
and c + 0.5 division modes and b) category using div⟨N,N⟩.
The former happens due to non-faulty elements having better
scores to begin with, therefore, the additional ϵ increases the
scores even more. In other words, the context of the faulty
elements (non-faulty) will pull the faulty element down in the
rank list when we use this division mode.

In the latter case, this division mode results in non-faulty
elements having better ranks than faulty ones in a relatively
high percentage of cases. Moreover, this is one of the reasons
why div⟨N,N⟩ strategy is not the best performing for several
formulas, as shown in Table IV.

We investigated the division modes using the Overlap for-
mula further, based on the 4 categories. It is not surprising that
category b) dominates the other categories, while category a)
has fewer occurrences. This stems from the way the metric
was constructed. Overlap’s numerator is cef, however, the
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TABLE V: Percentage of categories in Defects4J (D4J; 434 bugs) and JerryScript (JS; 13 bugs)

Division Mode a b c d
Dataset D4J JS D4J JS D4J JS D4J JS

c+ 0.1 19.2% 19.3% 0.1% 0.0% 0.0% 0.0% 0.4% 0.0%
c+ 0.5 23.6% 21.9% 0.1% 0.0% 0.0% 0.0% 0.5% 0.3%
div⟨+ϵ⟩ 0.6% 1.8% 3.4% 6.2% 0.1% 0.0% 0.0% 0.0%
div⟨0,0⟩ 0.6% 1.2% 0.7% 1.0% 0.0% 0.0% 0.0% 0.0%
div⟨0,1⟩ 0.7% 1.2% 3.4% 6.3% 0.1% 0.0% 0.0% 0.0%
div⟨1,1⟩ 1.0% 1.2% 18.2% 16.3% 0.0% 0.0% 0.0% 0.0%
div⟨0,N⟩ 0.5% 1.0% 5.8% 9.0% 0.1% 0.0% 0.0% 0.0%
div⟨N,N⟩ 0.0% 0.0% 34.1% 28.3% 1.0% 0.9% 0.1% 0.0%
div⟨0.5,9999⟩ 0.8% 1.6% 14.0% 15.8% 0.0% 0.0% 0.0% 0.0%

Categories a and b: faulty elements get worse ranks than non-faulty ones; Categories c and d: faulty elements get better
ranks than non-faulty ones.

denominator is a minimum of cef, cnf, and cep. Most non-faulty
elements have 0 failed test executions, therefore, will produce
ties. Otherwise, either cnf or cep are zero; in that case non-
faulty elements may get higher scores, therefore they will be
placed before the faulty element in the rank list.

Categories c) and d) i.e., the faulty element’s ranks improve,
were practically non-existent in our measurement results,
and this means that overall the phenomenon discussed in
this section negatively affects the risk formulas’ efficiency.
However, as seen in previous sections, the overall efficiency
of the formulas is affected positively, so this does not invalidate
our previous results.

Answer to Research Question #4

The discussed division modes impact all program
elements. In the used benchmark programs, using any
of the solutions can make the fault localization less
effective by putting the non-faulty elements before the
faulty ones on the rank list, however, it happens in a
relatively few cases only. Division modes c + 0.1,
c + 0.5, and div⟨N,N⟩ are most affected by this
phenomenon.

VII. CONCLUSIONS

In this paper, we focus on the problem of division by zero
in SBFL formulas. We investigated 75 formulas to find out
whether it is an existing problem for most of them. Then, we
investigated the research area, how the existing studies deal
with zero division. Finally, we analyzed several open-source
fault localization tools for different programming languages to
check how real applications deal with the problem.

We prototyped the formulas and the existing division modes,
then evaluated them on two publicly available benchmarks that
have been used in fault localization-related studies. The results
of our experiments show that using any division mode instead
of assigning zero to the score is beneficial, however, division
modes behave differently with various formulas.

We found out that excluding those program elements from
the score calculation process that are not executed during the
testing phase could eliminate the zero division occurrences in
the used benchmark programs by 59.84% on average, although
the problem still exists to a lesser extent. For the remaining
cases, we proposed to choose empirically the best performing
division mode for each affected formula. With this method,
SBFL formulas ranked 27% more faulty elements in the top-5
positions of the rank list. In summary, we can formalize the
following Proposals:

Proposals of the Study:

Proposal 1. cef+cep > 0: the program element must
be executed at least once to get a suspiciousness
score,

Proposal 2. If someone uses or plans to use an
existing SBFL formula that is affected by the
zero division problem, we recommend using the
assigned division mode from Table IV to improve
the effectiveness of their fault localization.

Proposal 3. If someone designs a new formula, we
recommend they include a detailed zero division
avoidance guide which will help the developer
in utilizing the formula, or use one of the best-
performing division modes (c + 0.1, div⟨+ϵ⟩) as a
default.

We plan to conduct further experiments to ensure that the
results generalize to granularities that are finer or more coarse
to those investigated in this paper. We wish to investigate
whether different ϵ values can help predicting the faulty
statements more precisely in the div⟨+ϵ⟩ division mode.
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