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The role of dimensionality reduction

We can spare computational costs (or simply fit entire datasets
into main memory) if we represent data in fewer dimensions
Visualization of datasets (in 2 or 3 dimensions)
Elimination of noise from data, feature selection
Key idea: try to represent data points in lower dimensions
Depending our objective function with respect the lower
dimensional representation → PCA, LDA, SVD, . . .
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Principal Component Analysis

Transform multidimensional data into lower dimensions in such
a way that we lose as little proportion of the original variation
of the data as possible
Assumption: data points of the original m-dimensional space
lie at (or at least very close to) an m′-dimensional subspace →
we shall express data points with respect this subspace
What that m′-dimensional subspace might be?
We would like to minimize the reconstruction error

n∑
i=1

‖ (xi − x ′i ) ‖2

, where x ′i is an approximation for point xi
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Covariance

Reminder
Quantifies how much random variables Y and Z change
together
cov(Y ,Z ) = E[(Y − µY )(Z − µZ )]

µY = 1
n

n∑
i=1

yi and µZ = 1
n

n∑
i=1

zi

Columns i , j of data matrix X (i.e. X:,i ,X:,j) can be regarded
as observations from two random variables
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Scatter and covariance matrix

Scatter matrix: S =
n∑

k=1
(xi − µ)(xi − µ)ᵀ

(Un)biased covariance matrix: Σ = 1
nS (Σ = 1

n−1S)

Σ =


cov(X:,1,X:,1) cov(X:,1,X:,2) . . . cov(X:,1,X:,m)

cov(X:,2,X:,1) cov(X:,2,X:,2) . . . cov(X:,2,X:,m)

...
. . . cov(X:,i ,X:,j)

...
cov(X:,m,X:,1) . . . . . . cov(X:,m,X:,m)


Σi ,j is the covariance of variables i and j (cov(X:,i ,X:,j))
What values are included in the main diagonal?
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Characteristics of scatter and covariance matrices

Claim: matrices S and Σ are symmetric and positive definite

Bizonyítás.

S =
n∑

k=1
(xi − µ)(xi − µ)ᵀ =

(
n∑

k=1
(xi − µ)(xi − µ)ᵀ

)ᵀ

= Sᵀ

aᵀSa =
n∑

k=1
(aᵀ(xi − µ))((xi − µ)ᵀa) =

n∑
k=1

(aᵀ(xi − µ))2 ≥ 0

Consequence: the eigenvalues of S and Σ are
λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0
The m′-dimensional projection which preserves most of the
variation of the data can be obtained by projecting data points
using the eigenvectors belonging to the m′ highest eigenvalues
of either matrix S (or Σ) (proof: see table)
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Lagrange multipliers
Provides a schema for solving (non-)linear optimization
problems

f (x)→ min/max

such that gi (x) = 0∀i ∈ {1, . . . , n}
Lagrange function:

L(x , λ) = f(x)−
n∑

i=1

λigi(x)

Karush-Kuhn-Tucker (KKT) conditions: necessity conditions
for an optimum

∇L(x , λ) = 0 (1)
λigi (x) = 0∀i ∈ {1, . . . , n} (2)

λi ≥ 0 (3)
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Practical issues
Its worth handling all the features on similar scales

min-max normalization: xi,j =
xi,j−min(x∗,j )

max(x∗,j )−min(x∗,j )

standardization: xi,j =
xi,j−µj

σj

How to choose the reduced dimensionality (m’)?

Hint :
( m∑

i=1
λi =

m∑
i=1

s2
i

)
m′ = arg min

1≤k≤m

∑k
i=1 λi∑m
i=1 λi

≥ t threshold

m′ = arg max
1≤i≤m

(
λi >

1
m

m∑
j=1

λj

)

m′ = arg max
1≤i≤m−1

(λi − λi+1)
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Summarizing PCA

Subtract the mean vector from data X and also normalize it
somehow
Calculate the scatter/covariance matrix of the normalized data
Calculate its eigenvalues
Form projection matrix P from the eigenvectors corresponding
to the m′ largest eigenvalues
X ′ = XP gives the transformed data
X ′P−1 gives an approximation on the original positions of the
data points
A useful tutorial on PCA

Data mining
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Singular Value Decomposition

=X xU xSigma V
t

X = UΣV ᵀ =
rank(X )∑
i=1

σiuiv
ᵀ
i

‖X‖F=

√
n∑

i=1

m∑
j=1

x2
ij =

√
rank(X )∑
i=1

σ2
i

Low(er) rank approximation of X is X̃ = UΣ̃V ᵀ

We rely on the top m′ < m largest singular value of Σ upon
reconstructing X̃

This is the best possible m′-dimensional approximation of X if
we look for the approximation which minimizes
‖X − X̃‖Frobenius
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Example SVD


5 3 0
4 5 0
1 0 4
2 0 5

 =


−0.63 0.22 0.73
−0.67 0.33 −0.65
−0.21 −0.58 −0.19
−0.33 −0.72 0.08


8.87 0 0

0 6.33 0
0 0 1.52

−0.75 −0.59 −0.28
0.06 0.36 −0.93
0.65 −0.72 −0.24
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Possible usage of SVD

We can construct a space of latent topics using singular vectors
X = UΣV ᵀ implies XV = UΣ and UᵀX = ΣV ᵀ

We can „add” x /∈ X to the latent space by calculating xᵀV
and find similar data points in the latent space
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Singular Value Decomposition and Eigendecomposition

Reminder

Any symmetric matrix A is decomposable as A = XΛX−1, where
X = [x1x2 . . . xm] comprises of the orthogonal eigenvectors of A and
Λ = diag([λ1λ2 . . . λm]) containing the corresponding eigenvalues in
its main diagonal. Why?

Any n ×m matrix X can be uniquely decomposed into the
product of three matrices of the form UΣV ᵀ where

Un×n = [u1u2 . . .un] is the orthonormal matrix consisting of
the eigenvectors of XXᵀ

Σn×m = diag(
√
λ1,
√
λ2, . . . ,

√
λm)

Vm×m = [v1v2 . . . vm] is the orthonormal matrix consisting of
the eigenvectors of XᵀX Why?

Orthogonal matrices: MᵀM = I (a transformation which
preserves distance in the transformed space as well) Why?
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Relation between SVD and Frobenius-norm
Suppose M = P × Q × R , i.e. mij =

∑
k

∑
l pikqkl rlj

M =

−58 87
−32 48
−28 42

 =

6 3 1
2 4 2
3 2 0

4
1
2

 [−2 3
]
⇒ m32 = 3 ∗ 4 ∗ 3+ 2 ∗ 1 ∗ 3+ 0

Then ‖M‖2F=
∑
i

∑
j

(mij)
2 =

∑
i

∑
j

(∑
k

∑
l

pikqkl rlj

)2

Also
(∑

k

∑
l

pikqkl rlj

)2
=
∑
k

∑
l

∑
m

∑
n
pikqkl rljpinqnmrmj

From where ‖M‖2F=
∑
i

∑
j

∑
k

∑
l

∑
m

∑
n
pikqkl rljpinqnmrmj

Given than matrices P,Q,R originate from an SVD
decomposition,
‖M‖2F=

∑
i ,j ,k,n

pikqkk rkjpinqnnrnj =
∑
j ,k

qkk rkjqkk rkj =
∑
k

(qkk)2.

The error of the approximating X by X̃ = UΣ̃V ᵀ is
‖X − X̃‖2F= ‖U(Σ− Σ̃)V ᵀ‖2F=

∑
k

(σkk − σ̃kk)2
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CUR

The drawback of SVD is that a typically sparse matrix is
decomposed into a products of dense matrices (i.e. U and V )
One alternative is to use CUR decomposition

This time only matrix U happens to be dense
Matrices C and R are composed of the rows and columns of
the matrix X , thus they preserve the sparsity of X
SVD is unique, unlike CUR
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CUR decomposition – producing C and R

Choose k columns from the data matrix with replacement
Potentially, a column can be selected more than once into C
The probability of selecting a column should be proportional to
the sum of squared elements in it
Elements in the selected columns can be scaled by 1/

√
kpi

(kpi is the expected number of times column i gets selected)

Construction of R is totally analogous but relies on rows
instead of columns
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CUR decomposition – producing U

U = C †XR† with † denoting the pseudoinverse operation,
hence CUR = C (C †XR†)R = (CC †)X (R†R) ≈ X

Pseudoinverse is a generalization of „regular” matrix inverse for
non-square and/or invertible matrices

MM†M = M
Given that M is square&invertible M−1 = M

Relation to SVD: M = UΣV ᵀ ⇒ M† = (UΣV ᵀ)† = VΣ†Uᵀ

Diagonal matrices are easily invertible
5 0 0
0 0 0
0 0 −0.2
0 0 0


†

=

0.2 0 0 0
0 0 0 0
0 0 −5 0


It suffices to transpose and take the reciprocal of its nonzero
entries
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CUR decomposition – example

Alien Rambo Toy Story P

Tom 5 3 0 34
121

Eve 4 5 0 41
121

Kate 1 0 4 17
121

Phil 2 0 5 29
121

P 46
121

34
121

41
121

C =


5.734 0
4.587 0
1.147 4.859
2.294 6.074


U =

[
0.134 −0.001
−0.047 0.113

]
R =

[
6.670 5.363 0
2.889 0 7.222

]
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Linear Discriminant Analysis

Transform data points into lower dimensions in such a way that
points of the same class have as little dispersion as possible
whereas points of different classes mix as little as possible
How should we choose w , i.e. the direction of the projection?
µ̃c = wᵀµc ⇒ |µ̃1 − µ̃2| = |wᵀ(µ1 − µ2)|

s̃2
c =

∑
{(xi ,yi )|yi=c}

(wᵀx − µ̃c)2

w∗ = arg max
w

J(w) = arg max
w

|µ̃1 − µ̃2|2

s̃2
1 + s̃2

2
(1)
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LDA – Within and outer scatter matrices
The within-scatter matrix of points for class c :

Sc =
∑

{(xi ,yi )|yi=c}

(xi − µc)(xi − µc)ᵀ

Aggregated within scatter matrix: SW = S1 + S2

Scatter of the points for class c :
s̃2
c =

∑
{(xi ,yi )|yi=c}

(wᵀxi −wᵀµc)2 =

=
∑

{(xi ,yi )|yi=c}
wᵀ(xi − µc)(xi − µc)ᵀw = wᵀScw

Scatter matrix of the points between different classes:
SB = (µ1 − µ2)(µ1 − µ2)ᵀ

Scatter of the points between different classes:

(µ̃1 − µ̃2)2 = (wᵀµ1 −wᵀµ2)2 = wᵀSBw
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LDA

An equivalent objective with Eq. (1) is
w∗ = arg maxw J(w) = arg maxw

wᵀSBw
wᵀSWw

wᵀSBw
wᵀSW w is the so-called generalized Rayleigh-coefficient

J(w) is maximal ⇒ ∇ wᵀSBw
wᵀSWw = 0⇔ SBw = λSWw ⇔

S−1
W SBw = λw ⇔ w = S−1

W (µ1 − µ2)

Reminder(
f (x)
g(x)

)′
= f ′(x)g(x)−f (x)g ′(x)

g2(x)

∇xxᵀAx = 2Ax , given that A = Aᵀ

xxᵀy =

(
n∑

i=1
xiyi

)
x (i.e. a vector pointing in the direction

of x)
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LDA vs. PCA

0

1

2

3

4

0 1 2 3 4

b b

b

b

b

b

LDA

0

1

2

3

4

0 1 2 3 4

b
b b

b

b

b
b

b

b

b

PCA

b

b
b
b

Data mining



PCA
SVD
LDA

MDS, LLE, CCA

Multi-Dimensional Scaling (MDS)

Goal: given ∆ containing pair-wise cost/distances of points
find the positions of the points for which ‖ xi − xj ‖≈ δij
Transforms multidimensional points into lower dimensions such
that the pairwise distances get preserved as much as possible
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Locally Linear Embedding (LLE)

PCA, SVD and LDA all assume linear relationship between
variables
Non-linear dimensionality reduction technique
Idea: define the nearest neighbors for all points and define
them as their linear combination

J(W ) =
n∑

i=1
‖xi −

n∑
j=1

Wijxj‖2, such that
n∑

j=1
Wij = 1 and

wij > 0⇔ xj ∈ neighbors(xi )
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Canonical Correlation Analysis (CCA)

Our data points have two distinct representations (coordinate
systems)
Goal: find a common coordinate system (with reduced
dimensionality) such that the correlation between the
transformed points get maximized

ρ = E [xy ]√
E [x2]E [y2]

=
E[wᵀ

x xy
ᵀwy ]√

E[wᵀ
x xxᵀw

ᵀ
x ]E [wᵀ

y yyᵀwᵀ
y ]

=

wᵀ
x Cxywy√

wᵀ
x Cxxwxw

ᵀ
y Cyywy

arg max ρ is independent from the length of wx and
wy ⇒ arg max ρ = arg maxwᵀ

x Cxywy

Σ =

[
Σxx Σxy

Σyx Σyy

]
= E

[(x
y

)(x
y

)ᵀ]
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