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Similarity of textual documents

k-shingles: character k-grams of a document, e.g. k = 2 and
D =′ abdca′ ⇒ D = {ab, bd , dc , ca}
Handling whitespaces (e.g. The plane was ready for touch
down. and The quarterback scored a touchdown.)

choosing k is important (what should be the objectives)

One way to measure document similarity is by calculating the
Jaccard similarity of their k-shingles representation
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k-shingles – characters vs. words

English alphabet has 27 letters ⇒ possible 4-shingles =
531,441

P(”than”) ≫ P(”qyzz”) ≈ P(”yyyy”)

increase value k (e.g. k’=10) and represent documents as the
set of hash values (stored on e.g. k bytes) of its k’-shingles

similarity of news articles: instead of character-based
k-shingles of tokens that started with a stopword were
utilized. Reason?

Data mining
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Locality Sensitive Hashing (LSH) – Motivation

Suppose we would like to find duplicate documents in a
corpus of size N = 1, 000, 000 = 106

Brute force solution: calculating
(N
2

)
Jaccard similarities

carrying out 106 comparisons per second, that would take
more than 5.5 days

Data mining
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Locality Sensitive Hashing (LSH)

Find hash function h such that it satisfies with high
probability that:

s(A,B) → 1 ⇒ h(A) = h(B)
s(A,B) → 0 ⇒ h(A) ̸= h(B)

Since similar documents are likely to share their hash value,
comparing those elements for which h(A) = h(B) will be
sufficient

Data mining
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Representing sets

In the form of signatures: characteristic matrix

Element S1 S2 S3 S4
a 1 0 0 1
b 0 0 1 0
c 0 1 0 1
d 1 0 1 1
e 0 0 1 0

The entire matrix is naturally not stored in practice
→ sparse representation

Data mining
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Minhash function

Reorder the rows of the characteristic matrix

Let the hash value of a set be the index of the first occurrence
of a non-zero element

e.g. hmin(S2) = 4, hmin(S3) = 0

Item S1 S2 S3 S4
b 0 0 1 0
e 0 0 1 0
a 1 0 0 1
d 1 0 1 1
c 0 1 0 1

Data mining
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Minhash signatures

Measuring similarity of minhashes based on all the possible
reordering of rows of the characteristic matrix gives Jaccard
similarity

Determine minhash values for multiple random permutations
of the rows of the characteristic matrix

Represent sets as a smaller dimension (say 100) vector of
minhash values

For large matrices permutation cannot be carried out
effectively. Solution?

Data mining
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Minhash signatures – Example

Item S1 S2 S3 S4 h1 = x + 1 mod 5 h2 = 3x + 1 mod 5

0 1 0 0 1 1 1
1 0 0 1 0 2 4
2 0 1 0 1 3 2
3 1 0 1 1 4 0
4 0 0 1 0 0 3

Initialization
S1 S2 S3 S4

h1 ∞ ∞ ∞ ∞
h2 ∞ ∞ ∞ ∞
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Minhash signatures – Example

Item S1 S2 S3 S4 h1 = x + 1 mod 5 h2 = 3x + 1 mod 5

0 1 0 0 1 1 1
1 0 0 1 0 2 4
2 0 1 0 1 3 2
3 1 0 1 1 4 0
4 0 0 1 0 0 3

Step 1
S1 S2 S3 S4

h1 1 ∞ ∞ 1
h2 1 ∞ ∞ 1
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Minhash signature – Example

Item S1 S2 S3 S4 h1 = x + 1 mod 5 h2 = 3x + 1 mod 5

0 1 0 0 1 1 1
1 0 0 1 0 2 4
2 0 1 0 1 3 2
3 1 0 1 1 4 0
4 0 0 1 0 0 3

Step 2
S1 S2 S3 S4

h1 1 ∞ 2 1
h2 1 ∞ 4 1
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Minhash signature – Example

Item S1 S2 S3 S4 h1 = x + 1 mod 5 h2 = 3x + 1 mod 5

0 1 0 0 1 1 1
1 0 0 1 0 2 4
2 0 1 0 1 3 2
3 1 0 1 1 4 0
4 0 0 1 0 0 3

Step 3
S1 S2 S3 S4

h1 1 3 2 min(1, 3)
h2 1 2 4 min(1, 2)

Data mining
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Minhash signature – Example

Item S1 S2 S3 S4 h1 = x + 1 mod 5 h2 = 3x + 1 mod 5

0 1 0 0 1 1 1
1 0 0 1 0 2 4
2 0 1 0 1 3 2
3 1 0 1 1 4 0
4 0 0 1 0 0 3

Step 4
S1 S2 S3 S4

h1 1 3 2 1
h2 0 2 0 0
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Minhash signature – Example

Item S1 S2 S3 S4 h1 = x + 1 mod 5 h2 = 3x + 1 mod 5

0 1 0 0 1 1 1
1 0 0 1 0 2 4
2 0 1 0 1 3 2
3 1 0 1 1 4 0
4 0 0 1 0 0 3

Step 5
S1 S2 S3 S4

h1 1 3 0 1
h2 0 2 0 0

Data mining
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Minhash signature – Example

Final minhash signatures

S1 S2 S3 S4
h1 1 3 0 1
h2 0 2 0 0

Estimated (and the true) similarities
S1 S2 S3 S4

S1 1.0 (1,0) 0.0 (0.0) 0.5 (0.25) 1.0 (2/3)
S2 0.0 (0,0) 1.0 (1.0) 0.0 (0.0) 0.0 (1/3)
S3 0.5 (0,25) 0.0 (0.0) 1.0 (1.0) 0.5 (0.2)
S4 1.0 (2/3) 0.0 (1/3) 0.5 (0.2) 1.0 (1.0)

Data mining
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Locality Sensitive Hashing

M = [mi ,j ]k×n : mi ,j = minhash value of the i th permutation
of the j th data point

divide M to b bands each having r rows (k = br)

∃ band such that each r minhash values equal within that
band ⇒ a, b are regarded as high-similarity candidates

rows

bandsb

r

n elements

buckets
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Locality Sensitive Hashing

A,B has x lines in common (line of type 1-1), and differ in y
lines (on lines of type either 0-1 or 1-0) ⇒ sim(A,B) = P(a
and b shares a minhash value)= x

x+y

P(A and B differs on at least one line in r rows)
= 1− sim(A,B)r

P(A and B has at least one band of signatures being equal)
= 1− (1− sim(A,B)r )b

Data mining
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Locality Sensitive Hashshing – The effect of r and b
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Locality sensitive functions

Suppose we have a distance metric d over the points of the
data space S

a family of functions H is said to be (d1, d2, p1, p2)-sensitive,
if for every h ∈ H and (A,B) ∈ S pairs of points, it holds
that:

d(A,B) < d1 ⇒ P(h(A) = h(B)) ≥ p1
d(A,B) > d2 ⇒ P(h(A) = h(B)) ≤ p2

minhash function is a (d1, d2, (1− d1), (1− d2))-sensitive
function with respect Jaccard similarity (for d1 ≤ d2). What is
the case when d1 < d(A,B) < d2?

False positives: h(A) = h(B) but d(A,B) > t for some t

False negatives: h(A) ̸= h(B) but d(A,B) < t for some t

Let they also be: statistically independent, effective
(i.e. cheap and combinable)
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Amplification of locality sensitive functions – AND
constructions

Suppose we are given H, a family of (d1, d2, p1, p2)-sensitive
functions

the family of functions H ′ is going to be
(d1, d2, p

s
1, p

s
2)-sensitive in case it holds for all h′ ∈ H ′ that

h′(A) = h′(B) ⇔ ∀1≤i≤shi (A) = hi (B) : hi ∈ H

Data mining
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Amplification of locality sensitive functions – OR
constructions

Suppose we are given H, a family of (d1, d2, p1, p2)-sensitive
functions

the family of functions H ′ is going to be
(d1, d2, 1− (1− p1)

b, 1− (1− p2)
b)-sensitive in case it holds

for all h′ ∈ H ′ that

h′(A) = h′(B) ⇔ ∃1≤i≤bhi (A) = hi (B) : hi ∈ H

Data mining
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Amplification of locality sensitive functions – Combining
AND and OR constructions

Regard minhash function as (0.2, 0.6, 0.8, 0.4)-sensitive

1− (1− p4)4: apply ANDr=4 construction followed by ORb=4

(1− (1− p)4)4: apply ORb=4 construction followed by ANDr=4

d p 1− (1− p4)4 (1− (1− p)4)4

0.9 0.1 0.00039 0.01399
0.8 0.2 0.00638 0.12150
0.7 0.3 0.03201 0.33345
0.6 0.4 0.09854 0.57395
0.5 0.5 0.22752 0.77248
0.4 0.6 0.42605 0.90147
0.3 0.7 0.66655 0.96799
0.2 0.8 0.87850 0.99362
0.1 0.9 0.98601 0.99960
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LSH families for cosine distance

Project vectors being checked for similarity to randomly
chosen hyperplanes (let si denote the normal vector to them)

Let sketch hash functions be defined as hsi (a) = sign(s⊺i a)

hsi (a) = hsi (b) ⇔ a and b are located in the same halfspace
defined by the hyperplane selected randomly (i.e. the scalar
products of both vectors and the vector being normal to the
randomly chosen hyperplane have the same sign)

P(hsi (a) = hsi (b)) = 1− d(a,b)
180

Random projections define a
(d1, d2, (180− d1)/180, d2/180)-sensitive family for the cosine
distance

Data mining
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Heuristic approaches

Motivation: false negatives might be untolerable in certain
applications

Idea: do not compare those pairs (xi , xj) for which
P(s(xi , xj) ≥ J) = 0 for some threshold J

Assumption: the object to be compared are string comprising
of sorted characters without any repetition

Sorted: ∀a, b character their order should be the same in any
representation
Not real restrictions only makes discussion more convenient

Heuristics

Length based filtering
Prefix indexing, using position information, . . .

Data mining
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Length based filtering

Suppose objects are ordered based on their string
representations such that Ls < Lt

The overlap between the two string is ≤ Ls ⇒ sJacc(s, t) ≤ Ls
Lt

Given that we are only interested in pair (s,t) such that
sJacc(s, t) ≥ J then Ls

Lt
≥ J ⇔ Lt ≤ Ls

J is a necessity condition

Data mining



LSH
Bloom filters

Minhashing
LSH theory

Prefix indexing

Let index ∀ object by the characters in their p-character
prefixes

p should be chosen such that sim(s, t) ≥ J ⇒ ps ∩ pt ̸= ∅
Suppose sim(s, t) ≥ J yet ps ∩ pt = ∅
⇒ maximum similarity possible

(
Ls−ps
Ls

)
(iff the suffix of t

matches the Ls − ps long suffix of string s)
It is useless to compare s and t given that J > Ls−ps

Ls
holds

For some string s of length Ls let ps > ⌊(1− J)Ls⌋
(ps = ⌊(1− J)Ls⌋+ 1)

It might be a good idea to use some ordering of
representations other than lexicographic ordering. But how?

Order characters according to their increasing frequency

Data mining
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Prefix indexing – example

Assume J = 0.9 and
s = bcdefghij ⇒ Ls = 9 ⇒ ps = ⌊0, 9⌋+ 1 ⇒ ’b’ gets indexed

Assume that the representation of t does not start with
character b and

sim(s, t) ≥ 0.9 ⇒ t = abcdefghij ⇒ Lt = 10 ⇒
pt = ⌊(1− 0.9) ∗ 10⌋+ 1 = 2 ⇒ ’a’, ’b’ are indexed
⇒ ps ∩ pt ̸= ∅
starts with a character ”larger” than ’b’

Then ps ∩ pt = ∅ ⇒ sim(s, t) < J
Indeed, even if t = cdefghij , we have sim(s, t) = 8

9
< 0.9

Data mining
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Using position information

Motivation: prefix indexing can be too permissive (not strict
enough)

Suppose s = acdefghijk, t = bcdefghijk, J = 0.9

⇒ ps = ac and pt = bc (because of Ls = Lt = 10)
Then ps ∩ pt ̸= ∅, yet sim(s, t) = 9/11 < J

Idea: perform indexing not only by characters but according
to (character, position) tuples

Data mining



LSH
Bloom filters

Bloom filters

Probabilistic data structure (wrt. contains(key) operation)

Implemented using hash functions and a bit vector

If some object x gets hashed to a non-empty bucket, it is
possible that x is in the set
If some object x gets hashed to an empty bucket, it is sure
that x is not in the set
False negative rate is 0, however, we can return false positive
answers

Characterized by the length of the bit vector (n), the number
of hash functions (k)

Number of elements stored (m) also affects false positive rate

Links Bloom filter demo and Guava API

Data mining

http://billmill.org/bloomfilter-tutorial/
http://code.google.com/p/guava-libraries/


LSH
Bloom filters

Analyzing bloom filters

Darts analogy: we throw a dart r times into q targets

P(miss a target) = 1− 1
q

P(miss a target r times) =
(
1− 1

q

)r

=
(
1− 1

q

)q r
q ≈ e−

r
q

P(some target gets a hit) = 1− e−
r
q

What are q and r? q = n, r = m

What if we are allowed to throw with a dart multiple times?
q = n, r = k ∗m
P(false positive) = (1− e−

k∗m
n )k

Data mining
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Bloom filters – example

Suppose we have 109 objects and a bit vector of length 8 ∗ 109

P(false positive) = (1− e−
1
8 ) ≈ 0.1175

Suppose we apply two hash functions per objects

P(false positive) = (1− e−
2
8 )2 ≈ 0.0493

Data mining
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