Data mining
 Frequent itemsets
 Association\&decision rule mining

University of Szeged

What frequent itemsets could be used for?

- Features/observations frequently co-occurring in some database can gain us useful insights
- How a marketing person can make use of it? What about a data scientist?

Transaction ID	Items
1	\{milk, bread, salami\}
2	\{beer, diapers $\}$
3	\{beer, wurst $\}$
4	$\{$ beer, baby food, diapers $\}$
5	\{diapers, coke, bread \}

Possible forms - Horizontal

Transaction ID	Items
1	\{milk, bread, salami\}
2	\{beer, diapers $\}$
3	\{beer, wurst $\}$
4	$\{$ beer, baby food, diapers $\}$
5	\{diapers, coke, bread $\}$

Possible forms - Vertical/inverted

Item	Basket
milk	$\{1\}$
bread	$\{1,5\}$
salami	$\{1\}$
beer	$\{2,3,4\}$
diapers	$\{2,4,5\}$
wurst	$\{3\}$
baby food	$\{4\}$
coke	$\{5\}$

Possible forms - Relational

Basket	Item
1	milk
1	bread
1	salami
2	beer
2	diapers
3	beer
3	wurst
4	beer
4	baby food
4	diapers
5	diapers
5	coke
5	bread

Collecting association rules

- Goal: find item sets of the transactional database with high support and confidence
- Support of set $X: s(X)=\left|\left\{t_{i} \mid t_{i} \in T \wedge X \subseteq t_{i}\right\}\right|$
- Normalized support: $s(X)$ normalized by the number of transactions
- Confidence of rule $A \rightarrow B: c(A \rightarrow B)=\frac{s(A \cup B)}{s(A)} \approx P(B \mid A)$
- The meaning of a rule $A \rightarrow B$: given that items included in set A are put in the basket, chances are high that the items included in B are also in some basket

Interestingness of association rules

- Are all rules with high support and confidence equally interesting?
- Confidence of a rule can simply be high due to the fact the items on its right side are frequently purchased independently of the items on the left side. Any example?
- Interest score of rule $A \rightarrow B: I(A \rightarrow B)=c(A \rightarrow B)-P(B)$
- What is the interpretation of this score? (Interesting rules will have high absolute values. Why?)
- Choose threshold so that the number of rules defined is manageable
- There are plenty other scores for measuring interestingness: χ^{2}, κ, \ldots

What frequent itemsets can be utilized for? - Plagiarism detection

- Somewhat counter-intuitively let the sentences be the baskets and documents the items
- Conclusion
- Sometimes we need to be flexible about the concept of ,items" comprising „baskets"
- Our goal is to examine the relation of items to each other, and not that of baskets (we had that one before)
- How frequent itemsets could be interpreted if items and baskets were determined vice versa?

What else frequent itemsets could be used for? - Data mining

- We can use them to build a simple classifier
- Missing feature values can be estimated knowing how features typically co-occur with each other
- We can merge features if they show highly similar behavior in the database

The general schema of producing associational rules

- Collect the set of frequent items F having a (normalized) support surpassing some threshold t
- Partition F into non-empty, disjunct subsets and calculate the confidence of the rules determined

Why naive approach fails?

- How a naive approach would look like?
- d items $\Rightarrow 3^{d}-2^{d+1}+1$ possible rules (e.g. $d=9 \Rightarrow 18660$ possibilities)
- Proof (hint: $\left.(1+x)^{d}=\sum_{j=1}^{d}\binom{d}{j} x^{d-j}+x^{d}\right)$
- $\sum_{i=1}^{d}\binom{d}{i} \sum_{j=1}^{d-i}\binom{d-i}{j}=\sum_{i=1}^{d}\binom{d}{i}\left(2^{d-i}-1\right)=\sum_{i=1}^{d}\binom{d}{i} 2^{d-i}-\sum_{i=1}^{d}\binom{d}{i}=$
$\left(3^{d}-2^{d}\right)-\left(2^{d}-1\right)$

A priori principle

- Itemset I is frequent $\Rightarrow \forall J \subseteq I$ itemsets are frequent
- What can we say if itemset I is not frequent?
- Anti-monotone property: function f is said to be anti-monotone if $\forall X, Y \in \mathcal{P}(U): X \subseteq Y \Rightarrow f(X) \geq f(Y)$

The A priori principle in action

- Let assume a frequency threshold of 3

Item	Frequency
beer	3
bread	4
coke	2
diapers	4
milk	4
wurst	1

The A priori principle in action

- Let the frequency threshold be 3

Item	Frequency	
beer bread	3	
coke	2	
diapers	4	
milk	4	
wurst	1	
Item	Frequency	
\{beer, bread\}	2	
\{beer, diapers	3	
\{beer, milk\}	2	
\{bread, diapers	3	
\{bread, milk	3	
\{diapers, milk	3	

Calculating frequent itemsets

1. Algorithm Pseudocode for calculation of frequent itemsets

Input: set of possible items U, transaction database T, frequency threshold t
Output: frequent itemsets
1: $C_{1}:=\mathcal{U}$
2: Calculate the support of C_{1}
3: $F_{1}:=\left\{x \mid x \in C_{1} \wedge s(x) \geq t\right\}$
4: for $\left(k=2 ; k<|\mathcal{U}| \& \& F_{k-1} \neq \emptyset ; k++\right)$ do
5: \quad Determine C_{k} based on F_{k-1}
6: Calculate the support of C_{k}
7: $\quad F_{k}:=\left\{X \mid X \in C_{k} \wedge s(X) \geq t\right\}$
8: end for
9: return $\cup_{i=1}^{k} F_{i}$

Possible ways of determining C_{k}

- Based on the elements in F_{1}. Avoid this!
- Combining the elements of F_{k-1} and F_{1}. Somewhat better
- Combining the elements of F_{k-1} and F_{k-1} itself. Generates less candidates but does not miss any candidate which has the chance to be a frequent itemset. Combine two itemsets if $\exists A=\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{k-1}\right\} \in F_{k-1}$: $\forall a_{i}=b_{i}, 1 \leq i \leq k-2 \wedge a_{k-1} \neq b_{k-1}$
- We need an ordering over the elements of F (e.g. by converting them to integers) and store them in that form

Possible ways of calculating the frequency for C_{k}

- $\binom{\left|F_{k-1}\right|}{2}$ frequencies might need to be stored \rightarrow memory limitations (for brevity, let $f=\left|F_{k-1}\right|$)
- Depending on the ratio of non-zero elements, we can either store them proactively or store them reactively, in the form of (i, j, c) triplets, storing by c the co-occurrence of items i and j
- In a one-dimensional triangular matrix, the frequency of item pair $(i, j), i<j$ is stored at index $(j-i)+\sum_{r=f-i+1}^{f-1} r \Rightarrow$ no need to explicitly store index values i and j for each counter
- If the number of zero frequencies surpasses $\frac{\binom{f}{2}}{3}$ representation using triplets pays off (i, j, c)

Calculating C_{k} - example

- Suppose there are 10^{7} baskets, 10 items/baskets
- There are 10^{5} different items in total
- Using the triangular matrix representation $\approx 5 * 10^{9}$ integer is required
- In worst case there are at most $10^{7}\binom{10}{2}$ different pairs of items in the transaction dataset $\rightarrow \max . \approx 3 * 4.5 * 10^{8}=1.35 * 10^{9}$ integer suffices to store the non.zero frequencies of the purchase of item pairs

Compressing frequent itemsets

- Maximal frequent itemsets: $\{I \mid I$ frequent $\wedge \nexists$ frequent $J \supset I\}$
- Closed itemsets: $\{I \| J \supset I: s(J)=s(I)\}$
- Closed frequent itemsets: closed itemset having a support above some frequency threshold
- Can a maximal frequent itemset be non-closed?
- Can a closed itemset be non-maximal?

Compressing frequent itemsets - Example ($\mathrm{t}=3$)

Item	Frequency	Maximal	Closed	Closed frequent
A	4			
B	5			
C	3			
AB	4			
AC	2			
BC	3			
ABC	2			

Compressing frequent itemsets - Example ($\mathrm{t}=3$)

Item	Frequency	Maximal	Closed	Closed frequent
A	4	-	-	-
B	5	-	+	+
C	3	-	-	-
AB	4	+	+	+
AC	2	-	-	-
BC	3	+	+	+
ABC	2	-	+	-

The relation of different classes to each other

Frequent itemsets

Closed frequent itemsets

Maximal frequent
itemsets

PCY (Park-Chen-Yu) algorithm - an extension to A priori

- Besides counting the frequency of standalone items keep track of the frequency of buckets into which pairs of elements get assigned according to some hash function
- What can be said based on the aggregated frequency counts? What cannot be made for sure?
- Only pairs that consist of frequent items and which got hashed to a frequent bucket have the chance to be indeed frequent in the end

Practical considerations

- We might as well do sampling from the transaction database \Rightarrow correctness and completeness is sacrificed
- Different strategies can be applied for extracting frequent itemsets

Generalizing A priori

- It is not necessary to do the expansion according to the different 'levels' of the item lattice
- We can do expansion according to any equivalent classes
- Originally we defined equivalent classes based on the size of the itemsets
- Alternatively we can define equivalent classes based on the size of the overlap in the prefixes/suffixes

Generalizing A priori - the prefix and suffix view

(a) Prefix tree
(b) Suffix tree

FP trees

- Use a data structure which makes the extraction of frequent datasets easy
- FP trees: alternative, condensed representation
- It can be constructed by processing the rows of the transaction database in one pass
- Market baskets are represented as paths in the tree
- Certain item subsets show up multiple times \Rightarrow overlapping paths \Rightarrow compressability
- Hopefully the whole transaction dataset can be stored in the main memory as a result

Constructing FP trees

- Useful heuristic: order items according to their decreasing support
- Processing one line of the transaction database
- Continue paths starting from the root with the same prefix to the currently processed line
- Increment the frequencies stored for visited nodes
- Set the frequency of the new nodes to 1
- Otherwise start a new path from the root node
- Assign 1 for the frequency value of new nodes
- Include pointers between items of the same kind

FP tree - example

[^0]
FP tree - after processing the last basket

TID	Items
1	$\{\mathrm{~A}, \mathrm{~B}\}$
2	$\{\mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
3	$\{\mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
4	$\{\mathrm{~A}, \mathrm{D}, \mathrm{E}\}$
5	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
6	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
7	$\{\mathrm{~B}, \mathrm{C}\}$
8	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
9	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}\}$
10	$\{\mathrm{~B}, \mathrm{C}, \mathrm{E}\}$

- What trees would we get if items within baskets were ordered according to their increasing/decreasing order of overall support? (\{A:7,B:8,C:7,D:5,E:3\})

Why to order items based on their support?

- Item i that is ordered at position $r(i)$ among all the items, can add at most $2^{r(i)-1}$ nodes to an FP tree
- Another natural upper bound for the nodes of item i in an FP tree is $s(i)$, hence it has $\leq \min \left(2^{r(i)-1}, s(i)\right)$ presences

i	A	B	C	D	E	Σ
$s(i)$	7	8	7	5	3	30
$r_{1}(i)$	2	1	3	4	5	-
presences	≤ 2	1	≤ 4	≤ 5	≤ 3	≤ 15
$r_{2}(i)$	4	5	3	2	1	-
presences	≤ 7	≤ 8	≤ 4	≤ 2	1	≤ 22

FP-Growth algorithm

- Divide and conquer algorithm working on the FP tree in a bottom-up manner
- If the FP tree reveals that an itemset is frequent, check the support of its supersets
- Examine FP trees conditioned on some already known frequent itemsets
- E.g. as $\{E\}$ is frequent, check out the frequency of sets $\{A, E\}$, $\{B, E\},\{C, E\}$ and $\{D, E\}$

FP trees conditioned on some target item(s)

- The part of the FP trees that we would get if we looked at only transactions containing the target item(s)
- Without building the tree from scratch
(1) Forget about the parts of the tree not related to the target item(s)

TID	Basket
1	$\{A, B\}$
2	$\{B, C, D\}$
3	$\{A, C, D, E\}$
4	$\{A, D, E\}$
5	$\{A, B, C\}$
6	$\{A, B, C, D\}$
7	$\{B, C\}$
8	$\{A, B, C\}$
9	$\{A, B, D\}$
10	$\{B, C, E\}$

FP tree conditioned on $\{E\}$

FP trees conditioned on some target item(s)

- The part of the FP trees that we would get if we looked at only transactions containing the target item(s)
- Without building the tree from scratch
(2) Let the support of a node be the sum of the upgraded supports of its descendants

TID	Basket
\vdots	\vdots
3	$\{A, C, D, E\}$
4	$\{A, D, E\}$
\vdots	\vdots
10	$\{B, C, E\}$

FP tree conditioned on $\{E\}$

FP trees conditioned on some target item(s)

- The part of the FP trees that we would get if we looked at only transactions containing the target item(s)
- Without building the tree from scratch
(3) Eliminate items below frequency threshold (e.g. using a frequency threshold of 2)
(4) Create FP trees conditioned on item pairs (containing item $\{E\}$), based on which we can determine frequent item triples (e.g. $\{D, E\} \rightarrow\{A, D, E\}$)

TID	Basket
\vdots	\vdots
3	$\{A, C, D, E\}$
4	$\{A, D, E\}$
\vdots	\vdots
10	$\{B, C, E\}$

FP tree conditioned on $\{E\}$

[^0]: ${ }^{1}$ based on the slides of Tan, Steinbach, Kumar: Introduction to Data Mining

