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Looking for similar data points

can be important when for example detecting

plagiarism
duplicate entries (e.g. from search results)
recommendation systems (customer A is similar to customer
B; product X is similar to product Y)

What do we mean under similar?
⇒ Objects that are only little distance away from each other.
⇒ How shall we define some distance?
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Axioms of distance metrics

Function d : Rn × Rn → R defined over the n-dimensional
point pair (a, b) is a distance metric iff it fulfills the following
requirements:
1. d(a, b) ≥ 0 (non-negativity)
2. d(a, b) = 0⇔ a = b (positive definiteness)
3. d(a, b) = d(b, a) (symmetry)
4. d(a, b) ≤ d(a, c) + d(c , b) (triangle inequality).
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Relation between distances and similarities

Tightly connected concepts

One can easily turn some distance to similarity and vice versa

e.g. given a distance measure d(a, b), we can define similarity
s(a, b) as:

s(a, b) = −d(a, b)
s(a, b) = 1

1+d(a,b)

s(a, b) = exp−d(a,b)

s(a, b) = cos(d(a, b)), if d(a, b) is given as an angle
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Characterization of distances

Euclidean vs. non-Euclidean distances

Euclidean distances: distances are determined by the positions
of the data points in the (Euclidean) space
non-Euclidean distances: distances of points are not directly
determined by their positions

Metric vs. non-metric distances

Metric distance: all of the axioms of distance metrics hold for
them
Non-metric distance: at least one of the axioms of distance
metrics does not hold for them

Example? d(1PM, 2PM)

Data mining



Similarity, distance

Minkowski distance

generalization of Euclidean distance

d(a, b) =
( N∑

i=1
(|ai − bi |p)

)1/p
p = 1⇒ Manhattan distance (`1 norm) → 7 in the example

p = 2⇒ Euclidean distance (`2 norm) → 5 in the example

p =∞⇒ Maximum (`max norm) → 4 in the example
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Cosine similarity

the cosine of the angle enclosed by vectors a and b
Pros? Cons?

scos(a, b) = cos Θ = aᵀb
‖a‖‖b‖ (Proof: at the blackboard)

Scalar product in case of binary data vectors?
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Cosine distance

Derived from cosine similarity as dcos = 1− scos(a, b) or
dcos = arccos scos(a, b)

d(a, b) ≥ 0

scos(a, a) = 1⇒ dcos(a, a) = 0

scos(a, b) = scos(b, a)⇒ dcos(a, b) = dcos(b, a)

Triangle inequality: rotating from a to c then from c to b has
to be at least as much as rotating directly from a to b
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More ’exotic’ distances – Handling inter-dependence
among variables

Mahalanobis distance

dmah(a,b) =
√

(a − b)ᵀΣ−1(a − b), where Σ is the
covariance matrix of the variables in the dataset
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What is in Mahalanobis distance?

Euclidean distance once the data is made uncorrelated

How could one make X uncorrelated? (X ∈ Rn×d)

We can assume that each feature has mean 0 → XᵀX ∝ Σ
We need L ∈ Rd×d such that (LᵀXᵀ)(XL) = I
It follows that Σ = (LLᵀ)−1 ≡ Σ−1 = LLᵀ, which means L
comes from the Cholesky decomposition of Σ−1

Reminder

1.) (AB)−1 = B−1A−1, (AB)ᵀ = BᵀAᵀ and (Aᵀ)−1 = (A−1)ᵀ

2.) Cholesky decomposition: any symmetric, positive definite ma-
trices (such as Σ) have a special LU decomposition where U = Lᵀ[

4 −4
−4 5

]
=

[
2 0

−2
√

?

] [
2 −2

0
√

?

]
How would the squared distance of two uncorrelated points
look? (Lᵀ(a − b))ᵀ(Lᵀ(a − b)) = (a − b)ᵀΣ−1(a − b)
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Making data uncorrelated using Cholesky decomposition

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

 

 

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6
Σ=[10 3; 3 4], µ=[0 0], n=500

Data mining



Similarity, distance

Distances for distributions

Bhattacharyya coefficient BC =
∑
x∈X

√
P(x)Q(x)

We would integrate for continuous variables
Quantifies the similarity between distributions
BC (P,Q) = 1⇔ P = Q
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Bhattacharyya and Hellinger distances

BC is the basis for various distances
Bhattacharyya distance: dB(P,Q) = − lnBC (P,Q)

Does not obey triangle inequality

Hellinger distance: dH(P,Q) =
√

1− BC (P,Q)

Can be regarded as a special form of Euclidean distance
( 1√

2
‖
√

P(X )−
√

Q(X )‖2)
E.g. for P ∼ Bernoulli(0.2) and Q ∼ Bernoulli(0.6) we have
BC(P,Q) =

√
0.12 +

√
0.32 = 0.912 and

dH(P,Q) =
√
1− 0.912 = 0.296
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More exotic distances – Variable length feature vectors

Feature vectors of variable length (e.g. in case of proteins and
genes)

How similar/different are the two strings AAGCTAA and
GGCTA?

Edit distance: determines the number of deletion and
insertion operations needed to transform string a into form b

Many alternations are known (e.g. weighted error types,
Levenshtein distance)

Can be solved with dynamic programming in time o(mn)
(where m and n are the lengths of the two words)

Tight connection with the Longest Common Subsequence
(LCS) problem

dED(a, b) = |a|+ |b| − 2|LCS(a, b)| = 7 + 5− 2 ∗ 4 = 4
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Edit distance – example

D[0, j ] = j , ∀j ∈ {0, 1, . . . , n}
D[i , 0] = i , ∀i ∈ {0, 1, . . . ,m}

D[i , j ] = min

{
d(i − 1, j) + 1, for deletion
d(i , j − 1) + 1, for insertion
d(i − 1, j − 1) + 2(1− a(i) == b(j)), for replacement

⇒ dED(a, b) = D[m, n]

A 5 4 5 6 5 4 3 4
T 4 5 6 5 4 3 4 5

C 3 4 5 4 3 4 5 6

G 2 3 4 3 4 5 6 7

G 1 2 3 2 3 4 5 6

ˆ 0 1 2 3 4 5 6 7

ˆ A A G C T A A
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Does edit distance fulfills the metric axioms?

∀ edits are weighted non-negatively ⇒ dED(a, b) ≥ 0

dED(a, a) = |a|+ |a| − 2 ∗ |LCS(a, a)| = 0

dED(a, b) = dED(b, a) as insertion and deletion operations are
weighted equally and inverses of each other

Triangle inequality: bringing a into form b in such a way that
it is first transformed into c needs at least as many deletions
and insertions as transforming it directly into form b
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Jaccard similarity

sJacc(A,B) = |A∩B|
|A∪B|

Example

sJacc(A,B) = 2/10 = 0.2
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Similarity of multisets

A = {x , x , x , y},
B = {x , x , y , y , z} ⇒ sJacc(A,B) = |{x,x,y}|

|{x,x,x,y ,y ,z}| = 3/6
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Jaccard and Dice distances

dJacc(A,B) = 1− sJacc(A,B)

one relative of Jaccard similarity: Dice coefficient

sDice(A,B) = 2|A∩B|
|A|+|B|

dDice(A,B) = 1− 2|A∩B|
|A|+|B|
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