Data mining Measures – similarities, distances

University of Szeged

Looking for similar data points

- can be important when for example detecting
 - plagiarism
 - duplicate entries (e.g. from search results)
 - recommendation systems (customer A is similar to customer B; product X is similar to product Y)
- What do we mean under similar?
 - \Rightarrow Objects that are only little distance away from each other.
 - \Rightarrow How shall we define some distance?

Axioms of distance metrics

- Function d : ℝⁿ × ℝⁿ → ℝ defined over the n-dimensional point pair (a, b) is a distance metric iff it fulfills the following requirements:
 - 1. $d(a, b) \ge 0$ (non-negativity) 2. $d(a, b) = 0 \Leftrightarrow a = b$ (positive definiteness) 3. d(a, b) = d(b, a) (symmetry) 4. $d(a, b) \le d(a, c) + d(c, b)$ (triangle inequality).

Relation between distances and similarities

- Tightly connected concepts
- One can easily turn some distance to similarity and vice versa
- e.g. given a distance measure d(a, b), we can define similarity *s*(*a*, *b*) as:
 - s(a,b) = -d(a,b)• $s(a,b) = \frac{1}{1+d(a,b)}$

 - $s(a, b) = \exp^{-d(a, b)}$
 - $s(a, b) = \cos(d(a, b))$, if d(a, b) is given as an angle

Characterization of distances

- Euclidean vs. non-Euclidean distances
 - Euclidean distances: distances are determined by the positions of the data points in the (Euclidean) space
 - non-Euclidean distances: distances of points are not directly determined by their positions
- Metric vs. non-metric distances
 - Metric distance: all of the axioms of distance metrics hold for them
 - Non-metric distance: at least one of the axioms of distance metrics does not hold for them
 - Example? d(1PM, 2PM)

Minkowski distance

6

• generalization of Euclidean distance

•
$$d(a,b) = \left(\sum_{i=1}^{N} (|a_i - b_i|^p)\right)^{1/p}$$

• $p=1\Rightarrow$ Manhattan distance $(\ell_1 \text{ norm}) \rightarrow 7$ in the example

• $p = 2 \Rightarrow$ Euclidean distance (ℓ_2 norm) \rightarrow 5 in the example

•
$$p = \infty \Rightarrow$$
 Maximum (ℓ_{max} norm) \rightarrow 4 in the example

Cosine similarity

- the cosine of the angle enclosed by vectors ${\pmb a}$ and ${\pmb b}$
- Pros? Cons?
- $s_{cos}(a, b) = \cos \Theta = \frac{a^{\mathsf{T}} b}{\|a\| \|b\|}$ (Proof: at the blackboard)
- Scalar product in case of binary data vectors?

Cosine distance

- Derived from cosine similarity as $d_{cos} = 1 s_{cos}(a, b)$ or $d_{cos} = \arccos s_{cos}(a, b)$
- $d(a,b) \geq 0$
- $s_{cos}(a, a) = 1 \Rightarrow d_{cos}(a, a) = 0$
- $s_{cos}(a,b) = s_{cos}(b,a) \Rightarrow d_{cos}(a,b) = d_{cos}(b,a)$
- Triangle inequality: rotating from *a* to *c* then from *c* to *b* has to be at least as much as rotating directly from *a* to *b*

More 'exotic' distances – Handling inter-dependence among variables

• Mahalanobis distance

What is in Mahalanobis distance?

- Euclidean distance once the data is made uncorrelated
- How could one make X uncorrelated? $(X \in \mathbb{R}^{n \times d})$
 - We can assume that each feature has mean $0 \to X^\intercal X \propto \Sigma$
 - We need $L \in \mathbb{R}^{d \times d}$ such that $(L^{\intercal}X^{\intercal})(XL) = I$
 - It follows that $\Sigma = (LL^{\intercal})^{-1} \equiv \Sigma^{-1} = LL^{\intercal}$, which means L comes from the *Cholesky decomposition* of Σ^{-1}

Reminder

1.) $(AB)^{-1} = B^{-1}A^{-1}$, $(AB)^{\intercal} = B^{\intercal}A^{\intercal}$ and $(A^{\intercal})^{-1} = (A^{-1})^{\intercal}$ 2.) Cholesky decomposition: any symmetric, positive definite matrices (such as Σ) have a special LU decomposition where $U = L^{\intercal}$

$$\begin{bmatrix} 4 & -4 \\ -4 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ -2 & \sqrt{?} \end{bmatrix} \begin{bmatrix} 2 & -2 \\ 0 & \sqrt{?} \end{bmatrix}$$

• How would the squared distance of two uncorrelated points look? $(L^{T}(a - b))^{T}(L^{T}(a - b)) = (a - b)^{T}\Sigma^{-1}(a - b)$

Making data uncorrelated using Cholesky decomposition

Distances for distributions

- Bhattacharyya coefficient $BC = \sum_{x \in X} \sqrt{P(x)Q(x)}$
 - We would integrate for continuous variables
 - Quantifies the similarity between distributions $BC(P, Q) = 1 \Leftrightarrow P = Q$

Bhattacharyya and Hellinger distances

• BC is the basis for various distances

- Bhattacharyya distance: $d_B(P,Q) = -\ln BC(P,Q)$
 - Does not obey triangle inequality

• Hellinger distance: $d_H(P,Q) = \sqrt{1 - BC(P,Q)}$

- Can be regarded as a special form of Euclidean distance $(\frac{1}{\sqrt{2}}\|\sqrt{P(X)}-\sqrt{Q(X)}\|_2)$
- E.g. for $P \sim Bernoulli(0.2)$ and $Q \sim Bernoulli(0.6)$ we have $BC(P, Q) = \sqrt{0.12} + \sqrt{0.32} = 0.912$ and $d_H(P, Q) = \sqrt{1 0.912} = 0.296$

More exotic distances – Variable length feature vectors

- Feature vectors of variable length (e.g. in case of proteins and genes)
 - How similar/different are the two strings **AAGCTAA** and **GGCTA**?
- Edit distance: determines the number of deletion and insertion operations needed to transform string *a* into form *b*
- Many alternations are known (e.g. weighted error types, Levenshtein distance)
- Can be solved with dynamic programming in time o(mn) (where m and n are the lengths of the two words)
- Tight connection with the Longest Common Subsequence (LCS) problem
- $d_{ED}(a, b) = |a| + |b| 2|LCS(a, b)| = 7 + 5 2 * 4 = 4$

Edit distance – example

•
$$D[0,j] = j, \forall j \in \{0, 1, ..., n\}$$

• $D[i, 0] = i, \forall i \in \{0, 1, ..., m\}$

$$D[i,j] = \min \begin{cases} d(i-1,j)+1, \text{ for deletion} \\ d(i,j-1)+1, \text{ for insertion} \\ d(i-1,j-1)+2(1-a(i)==b(j)), \text{ for replacement} \end{cases}$$

$\Rightarrow d_{ED}(a,b) = D[m,n]$								
A	5	4	5	6	5	4	3	4
Т	4	5	6	5	4	3	4	5
С	3	4	5	4	3	4	5	6
G	2	3	4	3	4	5	6	7
G	1	2	3	2	3	4	5	6
^	0	1	2	3	4	5	6	7
	^	Α	A	G	С	Т	A	A

Does edit distance fulfills the metric axioms?

- \forall edits are weighted non-negatively $\Rightarrow d_{ED}(a, b) \ge 0$
- $d_{ED}(a, a) = |a| + |a| 2 * |LCS(a, a)| = 0$
- d_{ED}(a, b) = d_{ED}(b, a) as insertion and deletion operations are weighted equally and inverses of each other
- Triangle inequality: bringing *a* into form *b* in such a way that it is first transformed into *c* needs at least as many deletions and insertions as transforming it directly into form *b*

Jaccard similarity

•
$$s_{Jacc}(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

• Example

• Similarity of multisets

•
$$A = \{x, x, x, y\},\ B = \{x, x, y, y, z\} \Rightarrow s_{Jacc}(A, B) = \frac{|\{x, x, y\}|}{|\{x, x, x, y, y, z\}|} = 3/6$$

Jaccard and Dice distances

•
$$d_{Jacc}(A,B) = 1 - s_{Jacc}(A,B)$$

• one relative of Jaccard similarity: Dice coefficient

•
$$s_{Dice}(A,B) = \frac{2|A \cap B|}{|A|+|B|}$$

•
$$d_{Dice}(A, B) = 1 - \frac{2|A \cap B|}{|A| + |B|}$$

