Data mining
 Measures - similarities, distances

University of Szeged

Looking for similar data points

- can be important when for example detecting
- plagiarism
- duplicate entries (e.g. from search results)
- recommendation systems (customer A is similar to customer B; product X is similar to product Y)
- What do we mean under similar?
\Rightarrow Objects that are only little distance away from each other.
\Rightarrow How shall we define some distance?

Axioms of distance metrics

- Function $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined over the n-dimensional point pair (a, b) is a distance metric iff it fulfills the following requirements:

1. $d(a, b) \geq 0$ (non-negativity)
2. $d(a, b)=0 \Leftrightarrow a=b$ (positive definiteness)
3. $d(a, b)=d(b, a)$ (symmetry)
4. $d(a, b) \leq d(a, c)+d(c, b)$ (triangle inequality).

Relation between distances and similarities

- Tightly connected concepts
- One can easily turn some distance to similarity and vice versa
- e.g. given a distance measure $d(a, b)$, we can define similarity $s(a, b)$ as:
- $s(a, b)=-d(a, b)$
- $s(a, b)=\frac{1}{1+d(a, b)}$
- $s(a, b)=\exp ^{-d(a, b)}$
- $s(a, b)=\cos (d(a, b))$, if $d(a, b)$ is given as an angle

Characterization of distances

- Euclidean vs. non-Euclidean distances
- Euclidean distances: distances are determined by the positions of the data points in the (Euclidean) space
- non-Euclidean distances: distances of points are not directly determined by their positions
- Metric vs. non-metric distances
- Metric distance: all of the axioms of distance metrics hold for them
- Non-metric distance: at least one of the axioms of distance metrics does not hold for them
- Example? d(1PM, 2PM)

Minkowski distance

- generalization of Euclidean distance
- $d(a, b)=\left(\sum_{i=1}^{N}\left(\left|a_{i}-b_{i}\right|^{p}\right)\right)^{1 / p}$
- $p=1 \Rightarrow$ Manhattan distance (ℓ_{1} norm) $\rightarrow 7$ in the example
- $p=2 \Rightarrow$ Euclidean distance (ℓ_{2} norm) $\rightarrow 5$ in the example
- $p=\infty \Rightarrow$ Maximum ($\ell_{\text {max }}$ norm) $\rightarrow 4$ in the example

Cosine similarity

- the cosine of the angle enclosed by vectors \boldsymbol{a} and \boldsymbol{b}
- Pros? Cons?
- $s_{\cos }(a, b)=\cos \Theta=\frac{a^{\top} \boldsymbol{b}}{\|\boldsymbol{a}\|\|\boldsymbol{b}\|}$ (Proof: at the blackboard)
- Scalar product in case of binary data vectors?

Cosine distance

- Derived from cosine similarity as $d_{c o s}=1-s_{\cos }(a, b)$ or $d_{c o s}=\arccos s_{\cos }(a, b)$
- $d(a, b) \geq 0$
- $s_{\cos }(a, a)=1 \Rightarrow d_{\cos }(a, a)=0$
- $s_{\cos }(a, b)=s_{\cos }(b, a) \Rightarrow d_{\cos }(a, b)=d_{\cos }(b, a)$
- Triangle inequality: rotating from a to c then from c to b has to be at least as much as rotating directly from a to b

More 'exotic' distances - Handling inter-dependence among variables

- Mahalanobis distance
- $d_{\text {mah }}(\boldsymbol{a}, \boldsymbol{b})=\sqrt{(\boldsymbol{a}-\boldsymbol{b})^{\top} \Sigma^{-1}(\boldsymbol{a}-\boldsymbol{b})}$, where Σ is the covariance matrix of the variables in the dataset

What is in Mahalanobis distance?

- Euclidean distance once the data is made uncorrelated
- How could one make X uncorrelated? $\left(X \in \mathbb{R}^{n \times d}\right)$
- We can assume that each feature has mean $0 \rightarrow X^{\top} X \propto \Sigma$
- We need $L \in \mathbb{R}^{d \times d}$ such that $\left(L^{\top} X^{\top}\right)(X L)=I$
- It follows that $\Sigma=\left(L L^{\top}\right)^{-1} \equiv \Sigma^{-1}=L L^{\top}$, which means L comes from the Cholesky decomposition of Σ^{-1}

Reminder

1.) $(A B)^{-1}=B^{-1} A^{-1},(A B)^{\top}=B^{\top} A^{\top}$ and $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$
2.) Cholesky decomposition: any symmetric, positive definite matrices (such as Σ) have a special LU decomposition where $U=L^{\top}$

$$
\left[\begin{array}{cc}
4 & -4 \\
-4 & 5
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
-2 & \sqrt{?}
\end{array}\right]\left[\begin{array}{cc}
2 & -2 \\
0 & \sqrt{?}
\end{array}\right]
$$

- How would the squared distance of two uncorrelated points look? $\left(L^{\top}(\boldsymbol{a}-\boldsymbol{b})\right)^{\top}\left(L^{\top}(\boldsymbol{a}-\boldsymbol{b})\right)=(\boldsymbol{a}-\boldsymbol{b})^{\top} \Sigma^{-1}(\boldsymbol{a}-\boldsymbol{b})$

Making data uncorrelated using Cholesky decomposition

Distances for distributions

- Bhattacharyya coefficient $B C=\sum_{x \in X} \sqrt{P(x) Q(x)}$
- We would integrate for continuous variables
- Quantifies the similarity between distributions $B C(P, Q)=1 \Leftrightarrow P=Q$

Bhattacharyya and Hellinger distances

- $B C$ is the basis for various distances
- Bhattacharyya distance: $d_{B}(P, Q)=-\ln B C(P, Q)$
- Does not obey triangle inequality
- Hellinger distance: $d_{H}(P, Q)=\sqrt{1-B C(P, Q)}$
- Can be regarded as a special form of Euclidean distance $\left(\frac{1}{\sqrt{2}}\|\sqrt{P(X)}-\sqrt{Q(X)}\|_{2}\right)$
- E.g. for $P \sim \operatorname{Bernoulli(0.2)~and~} Q \sim \operatorname{Bernoulli}(0.6)$ we have $B C(P, Q)=\sqrt{0.12}+\sqrt{0.32}=0.912$ and $d_{H}(P, Q)=\sqrt{1-0.912}=0.296$

More exotic distances - Variable length feature vectors

- Feature vectors of variable length (e.g. in case of proteins and genes)
- How similar/different are the two strings AAGCTAA and GGCTA?
- Edit distance: determines the number of deletion and insertion operations needed to transform string a into form b
- Many alternations are known (e.g. weighted error types, Levenshtein distance)
- Can be solved with dynamic programming in time o(mn) (where m and n are the lengths of the two words)
- Tight connection with the Longest Common Subsequence (LCS) problem
- $d_{E D}(a, b)=|a|+|b|-2|\operatorname{LCS}(a, b)|=7+5-2 * 4=4$

Edit distance - example

- $D[0, j]=j, \forall j \in\{0,1, \ldots, n\}$
- $D[i, 0]=i, \forall i \in\{0,1, \ldots, m\}$
$D[i, j]=\min \left\{\begin{array}{l}d(i-1, j)+1, \text { for deletion } \\ d(i, j-1)+1, \text { for insertion } \\ d(i-1, j-1)+2(1-a(i)==b(j)), \text { for replacement }\end{array}\right.$
$\Rightarrow d_{E D}(a, b)=D[m, n]$

A	5	4	5	6	5	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{4}$
T	4	5	6	5	4	$\mathbf{3}$	4	5
C	3	4	5	4	$\mathbf{3}$	4	5	6
G	2	3	4	$\mathbf{3}$	4	5	6	7
G	1	$\mathbf{2}$	$\mathbf{3}$	2	3	4	5	6
\wedge	$\mathbf{0}$	1	2	3	4	5	6	7
	\wedge	A	A	G	C	T	A	A

Does edit distance fulfills the metric axioms?

- \forall edits are weighted non-negatively $\Rightarrow d_{E D}(a, b) \geq 0$
- $d_{E D}(a, a)=|a|+|a|-2 *|\operatorname{LCS}(a, a)|=0$
- $d_{E D}(a, b)=d_{E D}(b, a)$ as insertion and deletion operations are weighted equally and inverses of each other
- Triangle inequality: bringing a into form b in such a way that it is first transformed into c needs at least as many deletions and insertions as transforming it directly into form b

Jaccard similarity

- $s_{J a c c}(A, B)=\frac{|A \cap B|}{|A \cup B|}$
- Example

$$
\text { - } s_{\text {Jacc }}(A, B)=2 / 10=0.2
$$

- Similarity of multisets

$$
\begin{aligned}
A & =\{x, x, x, y\} \\
B & =\{x, x, y, y, z\} \Rightarrow s_{\text {Jacc }}(A, B)=\frac{|\{x, x, y\}|}{|\{x, x, x, y, y, y\}|}=3 / 6
\end{aligned}
$$

Jaccard and Dice distances

- $d_{\text {Jacc }}(A, B)=1-s_{\text {Jacc }}(A, B)$
- one relative of Jaccard similarity: Dice coefficient
- $s_{\text {Dice }}(A, B)=\frac{2|A \cap B|}{|A|+|B|}$
- $d_{\text {Dice }}(A, B)=1-\frac{2|A \cap B|}{|A|+|B|}$

