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1 | ABOUT THIS BOOK

This book was primarily written as a teaching material for computer
science students at the University of Szeged taking the course and/or
interested in the field of Data Mining. Readers are expected to de-
velop an understanding on how the most popular data mining algo-
rithms operate and under what circumstances they can be applied to
process large-scale ubiquitous data. The book also provides mathe-
matical insights, so that readers are expected to develop an ability to
access the algorithms from an analytical perspective as well.

1.1 How to Use this Book

The field of data mining is so diverse that trying to cover all its as-
pects would be infeasible by all means. Instead of aiming at exhaus-
tiveness, the goal of the book is to provide a self-contained selection
of important concepts and algorithms related some of the crucial
problems of data mining. The book is intended to illustrate the con-
cepts both from mathematical and programming perspective as well.
It covers and distills selected topics from two highly recommended
textbooks:

• Jure Leskovec, Anand Rajaraman, Jeff Ullman: Mining of Massive
Datasets1, 1 Leskovec et al. 2014

• Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to
Data Mining2 2 Tan et al. 2005, Leskovec et al. 2014

The book assumes only a minimal amount of prerequisites in the
form of basic linear algebra and calculus. If you are comfortable with
the concept of vectors, matrices and the basics of derivation, you are
ready to start reading the book.

Mathematical concepts that go beyond the minimally assumed
knowledge are going to be introduced near the place where they
are referenced. If you feel yourself comfortable with the concepts
discussed in the Math review sections of the book, it is a safe choice
to skip them and occasionally revisit them if you happen to struggle
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with recalling the concepts they include. In order to increase the
visibility of important technical concepts highlighting is employed.
Highlighted concepts are also those that are included in the index at
the end of the document.

Chapter 2 provides a gentle introduction to GNU Octave, which
is a MATLAB-like interpreted programming language best suited
for numerical computations. Throughout the book, you will find
Octave code snippets in order to provide a better understanding of
the concepts and algorithms being discussed. The same advise holds
for Chapter 2 as well for the Math review sections, i.e. if you have
reasonable familiarity with using Octave (or MATLAB perhaps), you
can decide to skip that section without any unpleasant feelings.

Chapter 3 defines the scope of data mining and also a few im-
portant concepts related to it. Upcoming chapters of the book deal
with one specific topic at a time, such as measuring and approximat-
ing similarity efficiently, dimensionality reduction, frequent pattern
mining, among others.



2 | PROGRAMMING BACKGROUND

This chapter gives an overview to the Octave programming lan-
guage, which provides a convenient environment for illustrating a
wide range of data mining concepts and techniques. The readers of
this chapter will

• understand the programming paradigm used by Octave,

• comprehend and apply the frequently used concept of slicing,
broadcasting and vectorization during writing code in Octave,

• be able to produce simple visualization for datasets,

• become aware about the possible alternatives to using Octave.

2.1 Octave

Scientific problems are typically solved by relying on numerical anal-
ysis techniques involving calculations with matrices. Implementing
such routines would be extremely cumbersome and requires a fair
amount of expertise in numerical methods in order to come up with
fast, scalable and efficient solutions which also provide numerically
stable results.

Luckily, there exist a number of languages which excel in these
areas, for example MATLAB, GNU Octave, Scilab and Maple, just
to name a few of them. Out of these alternatives, MATLAB probably
has the most functionalities but it comes at a price since it is a pro-
prietary software. Octave, on the other hand offers nearly as much
functionality as MATLAB does with the additional benefit that it is
maintained within the open source GNU ecosystem. The open source
nature of GNU Octave 1 is definitely a huge benefit. GNU Octave 1 John W. Eaton, David Bateman, Søren

Hauberg, and Rik Wehbring. GNU
Octave version 4.2.0 manual: a high-
level interactive language for numerical
computations, 2016. URL http://

www.gnu.org/software/octave/doc/

interpreter

enjoys the widest support among the open source alternatives of
MATLAB. The syntax of the two languages are nearly identical, with
a few differences2.

2 https://en.wikibooks.org/wiki/

MATLAB_Programming/Differences_

between_Octave_and_MATLAB

Learning Objectives:
• Getting to know Octave

• Learning about broadcasting

• Understanding vectorization

http://www.gnu.org/software/octave/doc/interpreter
http://www.gnu.org/software/octave/doc/interpreter
http://www.gnu.org/software/octave/doc/interpreter
https://en.wikibooks.org/wiki/MATLAB_Programming/Differences_between_Octave_and_MATLAB
https://en.wikibooks.org/wiki/MATLAB_Programming/Differences_between_Octave_and_MATLAB
https://en.wikibooks.org/wiki/MATLAB_Programming/Differences_between_Octave_and_MATLAB
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2.1.1 Getting Octave

Octave can be downloaded from the following URL: https://www.
gnu.org/software/octave/download.html. After installation, a sim-
ple terminal view and a GUI gets installed as well. As depicted in
Figure 2.1, a central component in the graphical interface is the Com-
mand Window. The Command Window can be used invoke commands
and calculate them on-the-fly. The graphical interface also incorpo-
rates additional components such as the File browser, Workspace and
Command History panels for ease of use.

Figure 2.1: A screenshot from the
graphical interface of Octave.

Even though the standalone version of Octave offers a wide
range of functionalities in terms of working with matrices and
plotting, it can still happen that the core functionality of Octave is
not enough for certain applications. In that case the Octave-Forge
https://octave.sourceforge.io/ project library is the right place
to look for any additional extensions, which might fulfill our special
needs. In case we find some of the extra packages interesting all we
need to do is invoking the command

pkg install -forge package_name

in an Octave terminal, where package_name is the name of the addi-
tional package that we want to obtain.

2.1.2 The basic syntax of Octave

First things first, start with the program everyone writes first when
familiarizing with a new programming language, Hello world!. All
what this simple code snippet does is that it prints the text Hello
world! to the console. The command can simply be written in the
Octave terminal and we will immediately see its effect thanks to the

https://www.gnu.org/software/octave/download.html
https://www.gnu.org/software/octave/download.html
https://octave.sourceforge.io/
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interpreted nature of Octave.

printf(’Hello world!\n’)

>>Hello world!

CODE SNIPPET

Figure 2.2: Hello world! in Octave

According to the Octave philosophy, whenever something can be
expressed as a matrix, think of it as such and express it as a matrix.
For instance if we want to iterate over a range of n integers, we can
do it so by iterating over the elements of a vector (basically a ma-
trix of size 1× n) as it is illustrated in Figure 2.3. Figure 2.3 further
reveals how to use conditional expressions.

for k=1:10

if mod(k, 2) == 0

printf("%d ", k)

endif

endfor

printf(’\n’)

>>2 4 6 8 10

CODE SNIPPET

Figure 2.3: An example for using a for
loop and conditional execution with an
if construction to print even numbers
between 1 and 10.

Note the 1:10 notation in Figure 2.3 which creates a vector with
elements ranging from 1 to 10 (both inclusive). This is the mani-
festation of the general structure looking start:delta:end, which
generates a vector constituting of the members of an arithmetic series
with its first element being equal to start, the difference between
two consecutive elements being delta and the last element not ex-
ceeding end. In the absence of an explicit specification of the delta

value it is assumed to be 1. Can you write an Octave code
which has equivalent functionality
to the one seen in Figure 2.3, but
which does not use conditional if
statement?

?
2.1.3 Writing functions

Just like in most programming languages, functions are an essential
component of Octave. Nonetheless Octave delivers a wide range of
already defined mostly mathematical functions, such as cos(), sin(),
exp(), roots(), etc., it is important to know how to write our custom
functions.

The basic syntax of writing a function is summarized in Figure 2.4.
Every function that we define on our own has to start with the key-
word function which can be followed by a list of variables we would
like our function to return. Note that this construction offers us the
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flexibility of listing more variables to return at a time. Once we de-
fined which variables are expected to be returned, we have to give
our function a unique name that we would like to reference it, and
list its arguments as it can be seen in Figure 2.4. After that, we are
free to do whatever calculations we would like our function to per-
form. All we have to make sure that by the time calculations ex-
pressed in the body of the function get executed, the variables that
we have identified as the ones that would be returned get assigned
the correct values according to the function. We shall indicate the end
of a function by using the endfunction keyword.

function [return-variable(s)] = function_name (arg-list)

body

endfunction

CODE SNIPPET

Figure 2.4: The general syntax for
defining a function

Figure 2.5 provides an example realization of the general schema
for defining a function provided in Figure 2.4. This simple function
returns the sum and the difference of its two arguments.

function [result_sum, result_diff] = add_n_subtract(x, y)

if all(size(x)==size(y))

result_sum=x+y;

result_diff=x-y;

else

fprintf(’Arguments of incompatible sizes.\n’)

result_sum=result_diff=inf;

endif

endfunction

[vs, vd] = add_n_subtract([4, 1], [2, -3])

>> vs = 6 -2

vd = 2 4

[vs, vd] = add_n_subtract([4, 1], [2, -3, 5])

>> Arguments of incompatible sizes.

vs = Inf

vd = Inf

CODE SNIPPET

Figure 2.5: A simple function receiving
two matrices and returning both their
sum and difference.Since it only makes sense to perform arithmetic operations on

operands with compatible sizes (i.e. both of the function arguments
has to be of the same size), we check this property of the arguments
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in the body of the function in Figure 2.5. If the sizes of the arguments
match each other exactly, then we perform the desired operations,
otherwise we inform the user about the incompatibility of the sizes
of the arguments and return with such values (infinity) which tell us
that the function could not be evaluated properly. In Section 2.1.5 we
will see that Octave is not that strict about arithmetic operations due
to its broadcasting mechanism which tries to perform an operation
even when the sizes of its arguments are not directly compatible with
each other. Finally, the last two commands in Figure 2.5 also illustrate
how to retrieve multiple values from such a function which returns
more than just one variable at a time.

Besides the previously seen ways of defining functions, Octave
offers another convenient way for it, through the use of anonymous
functions. Anonymous functions are similar to what are called as
lambda expressions in other programming languages. Anonymous
functions according to the documentation of Octave ”are useful for
creating simple unnamed functions from expressions or for wrapping
calls to other functions“. A sample anonymous function can be found
in Figure 2.6.

squared_sum = @(x,y) x^2 + y^2;

squared_sum(-2,3)

>>13

CODE SNIPPET

Figure 2.6: An example of a simple
anonymous function which returns the
squared sum of its arguments (assumed
to be scalars instead of vectors).

2.1.4 Arithmetics and indexing

As mentioned earlier, due to the Octave philosophy variables are
primarily treated as matrices. As such, the ∗ operator refers to matrix
multiplication. Keep in mind that whenever applying multiplication
or division, the sizes of the operands must be compatible with each
other in terms of matrix operations. Whenever two operands are
not compatible in their sizes, an error saying that the arguments of
the calculation are non-conformant will be invoked. The easiest way
to check prior to performing calculations if the shapes of variables
are conformant is by calling the size method over them. It can be
the case that we want to perform an elementwise calculation over
matrices. We shall indicate our intention with the dot (.) operator,
e.g., elementwise multiplication (instead of matrix multiplication)
between matrices A and B is denoted by A. ∗ B (instead of A ∗ B).

As for indexing in Octave, a somewhat uncommon indexing con-
vention is employed as elements are indexed starting with 1 (as
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octave:16> M=reshape(1:10,2,5)

M =

1 3 5 7 9

2 4 6 8 10

octave:17> M(:,[2,4,5])

ans =

3 7 9

4 8 10

octave:18> M(:,[5,2,4])

ans =

9 3 7

10 4 8

CODE SNIPPET

Figure 2.7: An illustration of indexing
matrices in Octave.

opposed to 0 which is frequently encountered in most other pro-
gramming languages). Figure 2.7 includes several examples of how
indexing can be used to select certain elements from a matrix.

Figure 2.7 reveals a further useful property of Octave. Even if the
result of a computation does not get assigned to a variable (or multi-
ple variables) using the = operator, the result of the lastly performed
computation is automatically saved into an artificial variable, named
ans (being a shorthand for answer). This variable acts as any other
user created variable, so invoking something like 2*ans is totally fine
in Octave. Note however, that any upcoming command invoked in
Octave will override the value stored in the artificial variable ans, so
in case we want to reutilize the results of a certain calculation, then
we should definitely assign that result to a dedicated variable for
future use.

2.1.5 Broadcasting

Recall the function from Figure 2.5. At that point we argued that
arguments must match their sizes in order arithmetic operations to
make sense. That is, we can add and subtract two 5× 6 matrices if we
want, however, we are unable to perform such an operation between
a 5× 6 and a 5× 7 matrices for instance.

What Octave does in such situations is that it automatically at-
tempts to apply broadcasting. This means that Octave tries to make
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%% generate 10000 100-dimensional observations

X=rand(10000, 100);

tic

mu=mean(X);

X_centered=X;

for l=1:size(X,1)

X_centered(l,:) -= mu;

end

toc

>>Elapsed time is 0.153826 seconds.

CODE SNIPPET

Figure 2.8: Centering the dataset with
for loop

the most sense out of operations that are otherwise incompatible
from an algebraic point of view due to a mismatch in the sizes of
their operands. Octave will certainly struggle with the previous ex-
ample of trying to sum 5x6 and 5x7 matrices, however, there will be
situations when it will provide us with a result even though our cal-
culation cannot be performed from a linear algebraic point of view.

For instance, given some matrix A ∈ Rn×m and a (column) vector
b ∈ Rm×1, the expression A− b⊺ is treated as if we were to calculate

A− 1b⊺, with 1 denoting a vector in Rn×1 full of ones, i.e.


1
...
1

. The

outer product 1b⊺ simply results in a matrix which contains the (row)
vector b⊺ in all of its rows and which has the same number of rows
as matrix A.

tic

X_centered_broadcasted=X-mean(X);

toc

>>Elapsed time is 0.013844 seconds.

CODE SNIPPET

Figure 2.9: Centering the dataset relying
on broadcasting

Figure 2.9 illustrates broadcasting in action when we subtract the
row vector that we get by calculating the column-wise mean values of
matrix X and subtracting this row vector from every row of matrix X
in order to obtain a matrix which has zero expected value across all
of its columns. For an arbitrarily sized matrix A,

what would be the effect of the
command A-3? How would you
write it down with standard linear
algebra notation?

?
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2.1.6 Vectorization

Vectorization is the process when we try to express some sequential
computation in the form of matrix operations. The reason to do so is
that this way we can observe substantial speedup, especially if our
computer enjoys access to some highly-optimized, hence extremely
fast matrix libraries, such as BLAS (Basic Linear Algebra Subpro-
grams), LAPACK (Linear Algebra PACKage), ATLAS (Automatically
Tuned Linear Algebra Software) or Intel MKL (Math Kernel Library).
Luckily, Octave can build on top of such packages, which makes it
really efficient when it comes to matrix calculations.

Suppose we are interested in the columnwise sums of some matrix
X ∈ Rm×n. That is, we would like to know sl = ∑m

k=1 xkl for every
1 ≤ l ≤ n. A straightforward implementation can be found in Fig-
ure 2.10, i.e., where we write two nested for loops to iterate over all
the xkl elements of matrix X and for each index while incrementing
the appropriate cumulative counter sl .

X=rand(10000, 100);

tic

col_sum = zeros(1, size(X, 2));

for k=1:size(X,1)

for l=1:size(X,2)

col_sum(l) += X(k,l);

endfor

endfor

toc

>>Elapsed time is 9.45435 seconds.

CODE SNIPPET

Figure 2.10: Calculating the columnwise
sum of a matrix with a for loop.

We can, however, observe that matrix multiplications are also
inherently applicable to express summations. This simply follows
from the very definition of matrix multiplication, i.e., if we define
Z = XY for any two matrices X ∈ Rm×n and Y ∈ Rn×p, we have
zij = ∑n

k=1 xikykj. The code snippet in Figure 2.11 utilizes exactly this
kind of idea upon speeding up substantially the calculation of the
columnwise sums of our matrix by left multiplying it with a vector
of all ones. By comparing the reported running times of the two
implementations, we can see that the vectorized implementation has
a more than 5000-fold speedup compared to the one which explicitly
uses for loops during the calculation even in the case of a moderately
sized 10000× 100 matrix.
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tic

vectorized_col_sum = ones(1, size(X,1)) * X;

toc

>>Elapsed time is 0.00158882 seconds.

CODE SNIPPET

Figure 2.11: Calculating the columnwise
sum of a matrix in a vectorized fashion
without a for loop.Note that we could have come up with a ’semi-vectorized’ im-

plementation for calculating the columnwise sum of our matrix as
illustrated in Figure 2.12. In this case we are simply making use of
the fact that summing up the row vectors in our matrix also provides
us with the columnwise sums of our matrix. This way we can man-
age to remove one of the unnecessary for loops, but we are still left
with one of them. This in-between solution for eliminating needless
loops from our implementation gives us a medium speedup, i.e.,
this versions runs nearly 60-times slower than the fully vectorized
one, however, it is still more than 100-times faster compared to the
non-vectorized version.

tic

semi_vectorized_col_sum=zeros(1,size(X,2));

for k=1:size(X,1)

semi_vectorized_col_sum += X(k,:);

end

toc

>>Elapsed time is 0.091974 seconds.

CODE SNIPPET

Figure 2.12: Calculating the columnwise
sum of a matrix in a semi-vectorized
fashion with single a for loop.As another example, take the code snippets in Figure 2.13 and

Figure 2.14, both of which transforms a 10000× 100 matrix such that
after the transformation every row vector has a unit norm. Similar
to the previous example, we have a straightforward implementation
using a for loop (Figure 2.13) and a vectorized one (Figure 2.14). Just
as before, running times are reasonably shorter in the case of the
vectorized implementation.

The main take-away is that vectorized computation in general
not only provides a more concise implementation, but one which is
orders of magnitude faster compared to the non-vectorized solutions.
If we want to write efficient code (and most often – if not always – we
do want), then it is crucial to identify those parts of our computation
which can be expressed in a vectorized manner.
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X=rand(10000, 100);

tic

X_unit=X;

for l=1:size(X,1)

X_unit(l,:) /= norm(X(l,:));

end

toc

>>Elapsed time is 0.283947 seconds.

CODE SNIPPET

Figure 2.13: Transforming vectors in a
matrix to unit-norm by relying on a for

loop.

tic

norms=sqrt(sum(X.*X, 2));

X_unit_vectorized=X./norms;

toc

>>Elapsed time is 0.0134549 seconds.

CODE SNIPPET

Figure 2.14: Transforming vectors in
a matrix to unit-norm in a vectorized
fashion without a for loop.Writing a vectorized implementation might take a bit more effort

and time compared to its non-vectorized counterpart if we are not
used to it in the beginning, however, do not hesitate to spend the
extra time cranking the math, as it will surely pay off in the running
time of our implementation. Can you think of a vectorized way

to calculate the covariance matrix
of some sample matrix X? In case
the concept of a covariance matrix
sounds unfamiliar at the moment,
it can be a good idea to look at
Figure 3.5.

?2.2 Plotting

There is a wide variety of plotting functionalities in Octave. The
simplest of all is the plot function, which allows us to create simple
x-y plots with linear axes. It takes two vectors of the same length
as input and draws a curve based on the corresponding indices in
the two vector arguments. Figure 2.15 illustrates the usage of the
function with its output being included in Figure 2.16.

x=-3:.01:4; % create a vector in [-3,4] with a step size 0.1

plot(x, 2*x.^3)

xlabel(’x’)

ylabel("f(x)=2x^3")

CODE SNIPPET

Figure 2.15: Code for drawing a simple
function f (x) = 2x3 over the range
[−3, 4].
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Figure 2.16: The resulting output of
the code snippet in Figure 2.15 for
plotting the function f (x) = 2x3 over
the interval [−3, 4].

For the demonstration of further plotting utilities of Octave, con-
sider the tiny example dataset found in Table 2.1 containing height
and weight information of 8 people. Prior to running any core data
mining algorithm on a dataset like that, it is often a good idea to fa-
miliarize with the data first. Upon getting to know the data better,
one typically checks out how the observations are distributed.

Possibly the simplest way to visualize the (joint) empirical distri-
bution for a pair of random variables (or features in other words).
One can visualize the empirical distribution of the feature values by
creating a so called scatter plot based on the observed feature values.
The Octave code and its respective output are included in Figure 2.17

and Figure 2.18, respectively.
By applying a scatter plot, one inherently limits himself/herself

to focus on a pair of random variables, which is impractical for truly
high-dimensional data that we typically deal with. Dimensionality
reduction techniques, to be discussed in more detail later in Chap-
ter 6 are possible techniques to aid the visualization of datasets with
high number of dimensions.

height (cm) weight (kg)

187 92

172 77

200 101

184 92

162 70

176 81

172 68

166 55

Table 2.1: Example dataset containing
height and weight measurements of
people.
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scatter(D(:,1), D(:,2))

xlabel(’height (cm)’)

ylabel(’weight (kg)’)

CODE SNIPPET

Figure 2.17: Code for drawing a scatter
plot of the heights of the people from
the sample to be found in Table 2.1.
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Figure 2.18: Scatter plot of the heights
and weights of the people from the
sample to be found in Table 2.1.

The other frequently applied visualization form is for histograms,
which aim to approximate some distribution by drawing an empirical
frequency plot for the observed values. The way it works is that
it divides the span of the random variable into a fixed number of
equal bins and count the number of individual observations that fall
within a particular range. This way, the more observations fall into
a specific range, the higher bar is going to be displayed for that. A
visual illustration of it and the corresponding Octave code which
created it can be found in Figure 2.19 and Figure 2.20, respectively.

hist(D(:,1),4)

xlabel(’height (cm)’)

ylabel(’frequency’)

CODE SNIPPET

Figure 2.19: Code for drawing a his-
togram of the heights of the people
from the sample to be found in Ta-
ble 2.1.
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Figure 2.20: Histogram of the heights of
the people from the sample to be found
in Table 2.1.

2.3 A brief comparison of Octave and numpy

In the recent years, Python has gained a fair amount of popularity as
well. Python is similar to Octave in that it is also a script language.
However, Python is intended to be a more general purpose pro-
gramming language compared to Octave and it was not primarily
designed for numerical computations. Thanks to the huge number
of actively maintained libraries for Python, it is now also possible
to perform matrix computations with the help of numpy and scipy
packages (among many others).

It also has to offer similar functionalities to that of Octave in terms
of data manipulation, including matrix calculations. In order to ob-
tain the same core functionalities of Octave, which is of primarily
interest for this book, one need to install and get to know a handful
of non-standard Python packages, all with its own idiosyncrasy. For
this reason, we will use Octave code throughout the book for illustra-
tive purposes.

Since there are relatively few major differences, someone fairly
familiar with Octave can relatively quickly start writing Python code
related to matrices. Perhaps the most significant and error-prone
difference in the syntax of the two languages is that the ∗ operator
denotes regular matrix multiplication in Octave (and its relatives such
as Matlab), whereas the same operator when invoked for numpy
multidimensional arrays acts as elementwise multiplication. The
latter is often referenced as the Hadamard product and denoted by ◦.

Recall that in Octave, whenever one wants to perform some ele-
mentwise operation, it can be expressed with an additional dot (.)
symbol as already mentioned in Section 2.1.4. For instance, .∗ de-
notes elementwise multiplication in Octave. In order to see the differ-
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X = [1 -2; 3 4];

Y = [-2 2; 0 1];

X*Y % perform matrix multiplication

>>ans =

-2 0

-6 10

X.*Y % perform elementwise multiplication

>>ans =

-2 -4

0 4

CODE SNIPPET

Figure 2.21: Comparing matrix-style
and elementwise multiplication of
matrices.ence between the two kinds of multiplication in action, see the code

snippet in Figure 2.21.

2.4 Summary of the chapter

Readers of this chapter are expected to develop familiarity with nu-
merical computing, including the basic syntax of the language and
also its idiosyncracies related to indexing, broadcasting and vector-
ization which allows us to write efficient code thanks to the highly
optimized and parallelized implementation of the linear algebra
packages Octave relies on in the background.



3 | BASIC CONCEPTS

In this chapter we overview the main goal of data mining. By the
end of the chapter, readers are expected to

• develop an understanding on the ways datasets can be repre-
sented,

• show a general sensitivity towards the ethical issues of data min-
ing applications,

• be able to distinguish the different measurement scales of random
variables and illustrate them,

• produce and efficiently implement summary statistics for the
random variables included in datasets,

• get familiar with basic concepts of information theory,

• understand the importance, apply and implement various data
manipulation techniques.

Data mining is a branch of computer science which aims at pro-
viding efficient algorithms that are capable of extracting useful
knowledge from vast amounts of data. As an enormous amount
of data gets accumulated by the everyday activities, such as watch-
ing videos on YouTube, ordering products via Amazon, sending
text messages on Twitter. As interacting with our environment gets
tracked in an ever-increasing pace even for our most basic every day
activities, there are a variety of ways in which data mining algo-
rithms can influence our lives.

Needless to say, there exists enormous application possibilities in
applying the techniques of data mining with huge economic poten-
tial as well. As a consequence data has often been coined as the new
oil1, due to the fact that having access to data these days can generate 1 https://www.economist.com/leaders/

2017/05/06/the-worlds-most-

valuable-resource-is-no-longer-

oil-but-data

such an economic potential to businesses as fossil energy carrier used
to do so. Handling the scale of data that is generated raises many

Learning Objectives:
• Goal of data mining

• Bonferroni principle

• Simpson’s paradox

• Data preprocessing techniques

• Basic concepts from information
theory

https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
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interesting questions both in terms of scientific and engineering na-
ture. In the following, we provide a few examples illustrating the
incredible amount of data that is continuously being accumulated.

As an illustration regarding the abundance of data one can think
of the social media platform Twitter. On an average day Twitter users
compose approximately half a billion short text messages, meaning
that nearly 6,000 tweets are posted every single second on average.
Obviously, tweets are not uniformly distributed over time, users be-
ing more active during certain parts of the day and particular events
triggering enormous willingness to write a post. As an interesting
trivia, the highest tweet-per-second (TPS) rate ever recorded up to
2018 dates back to August 2013, when 143,199 TPS was recorded2. 2 https://blog.twitter.com/

engineering/en_us/a/2013/new-

tweets-per-second-record-and-how.

html

Needless to say, analyzing this enormous stream of data can open up
a bunch of interesting research questions one can investigate using
data mining and knowledge discovery 3. 3 Morstatter et al. 2013, Gligoric et al.

2018As another example relating to textual data, Google revealed that
its machine translation service is fed 143 billion words every single
day4 as of 2018. To put this amount of text into context – according to 4 https://www.businessinsider.de/

sundar-pichai-google-translate-

143-billion-words-daily-2018-7
Wikipedia5 – this roughly corresponds to 75,000 copies of the world’s

5 https://en.wikipedia.org/wiki/

List_of_longest_novels#List

longest novel which consists of 10 volumes and nearly 2 million
words.

As an even more profound example, one can think of the experi-
ments conducted at the Large Hadron Collider (LHC) operated by
CERN, the European Organization for Particle Physics. There are
approximately 1 billion particle collisions registered in every second
which yield an enormous amount of 1 Petabyte (1015 bytes) of data.
As this amount of data would be unreasonable and wasteful to store
directly, the CERN Data Centre distills it first so that 1 Petabyte of
data to archive accumulates over a period of 2–3 days (instead of a
single second) as the end of 2017. As a consequence 12.3 Petabyte
of data was archived to magnetic tapes during October 2017 alone
and the total amount of permanently archived data surpassed 200

Petabytes in the same year6. 6 https://home.cern/about/updates/

2017/12/breaking-data-records-bit-

bit

3.1 Goal of data mining

Most real world observations can be naturally thought of as some
(high-dimensional) vectors. One can imagine for instance each cus-
tomer of a web shop as a vector in which each dimension of the vec-
tor is assigned to some product and the quantity along a particular
dimension indicates the number of items that user has purchased so
far from the corresponding product. In the example above, the possi-
ble outcome of a data mining algorithm could group customers with
similar product preferences together.

https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://www.businessinsider.de/sundar-pichai-google-translate-143-billion-words-daily-2018-7
https://www.businessinsider.de/sundar-pichai-google-translate-143-billion-words-daily-2018-7
https://www.businessinsider.de/sundar-pichai-google-translate-143-billion-words-daily-2018-7
https://en.wikipedia.org/wiki/List_of_longest_novels#List
https://en.wikipedia.org/wiki/List_of_longest_novels#List
https://home.cern/about/updates/2017/12/breaking-data-records-bit-bit
https://home.cern/about/updates/2017/12/breaking-data-records-bit-bit
https://home.cern/about/updates/2017/12/breaking-data-records-bit-bit
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The general goal of data mining is to come up with previously un-
known valid and relevant knowledge from large amounts of datasets.
For this reason data mining and knowledge discovery is sometimes
referred as synonyms, the schematic overview of which is summa-
rized in Figure 3.1.

Figure 3.1: The process of knowledge
discovery

3.1.1 Correlation does not mean causality

A common fallacy when dealing with datasets is to use correlation
and causality interchangeably. When a certain phenomenon is caused
by another, it is natural to see high correlation between the random
variables describing the phenomena being in a causal relationship.
This statement is not necessarily true in the other direction, i.e., just
because it is possible to notice a high correlation between two ran-
dom variables it need not follow that any of the events have a causal
effect on the other one.
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Figure 3.2: Example of a spurious
correlation. Original source of the plot:
http://www.tylervigen.com/spurious-

correlations

Figure 3.2 shows such a case when high correlation between two
random variables (i.e., the number of people drowned and the mar-
riage rate in Kentucky) is very unlikely to be in causal relationship
with each other.

http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations
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3.1.2 Simpson’s paradox

Simpson’s paradox also reminds us that we shall be cautious when
drawing conclusions from some dataset. As an illustration for the
paradox, inspect the hypothetical admittance rates of an imaginary
university as included in Table 3.1. The admittance statistics are
broken down with respect the gender of applicants and the major
that they applied for.

Applied/Admitted
Female Male

Major A 7/100 3/50

Major B 91/100 172/200

Total 98/200 175/250

Table 3.1: Example dataset illustrating
Simpson’s paradox

At first glance, it seems that females have a harder time getting
admitted to the university overall, as their success rate is only 49%
(98 admitted out of 200), whereas males seem to get admitted more
seamlessly with a 70% admittance rate (175 out of 200). Looking at
these marginalized admittance rates, decision makers of this univer-
sity might suspect that there might be some unfair advantage given
to male applicants.

Looking at the admittance rates broken down to each major on
the other hand, shows us a seemingly contradictory pattern. For
Major A and B female applicants show a 7% and 91% success rate,
respectively, compared to the 6% and 86% success rate for males. So,
somewhat counter-intuitively, females have a higher acceptance rate
than males on both major A and B, yet their aggregated success rate
falls behind that of males. Before reading onwards, can you come up
with an explanation for this mystery?

In order to understand what is causing this phenomenon, we
have to observe that females and males have a different tendency
towards applying for the different majors. Females tend to apply
in an even fashion as there are 100–100 applicants for both Major A
and B, however, for the males there is a preference towards Major B,
which seems to be an easier way to go for in general. Irrespective of
the gender of the applicant, someone who applied to Major B was
admitted with 87.7% chance, i.e., (91+172)/(100+200), whereas the
gender-agnostic success rate is only 6.7% for Major A, i.e., only 10

people out of the 150 applicants were admitted for that major.
The law of total probability tells us how to come up with proba-

bilities that are ’agnostic’ towards some random variable. In a more
rigorous mathematical language, defining some observation-agnostic
probability is called marginalization and the probability we obtain as
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marginal probability.
Let us define random variable M as a person’s choice for a major

to enroll to and G as the gender a person. Formally, given these two
random variables, the probability for observing a particular realiza-
tion m for variable M can be expressed as a sum of joint probabilities
over all the possible values g that random variable G can take on.
Formally, P(M = m) = ∑

g∈G
P(M = m, G = g).

Another concept we need to be familiar with is the conditional
probability of some event M = m given G = g. This is defined

as P(M = m|G = g) = P(M=m,G=g)
P(G=g) , i.e., the fraction of the joint

probability of the two events divided by the marginal probability of
the event on which we wish to condition on. If we introduce another
random variable S which indicates if an application is successful
or not, we can express the following equalities by relying on the
definition of the conditional probability

P(S = s|M = m, G = g) · P(M = m|G = g) =

=
P(S = s, M = m, G = g)

P(M = m, G = g)
· P(M = m, G = g)

P(G = g)
=

=
P(S = s, M = m, G = g)

P(G = g)
=

= P(S = s, M = m|G = g).

This means that the probability of a person being successfully admit-
ted to a particular major given his/her gender can be decomposed
into the product of two conditional probabilities, i.e.,

1. the probability of being successfully admitted given the major
he/she applied for and his/her gender and

2. the probability of applying for a particular major given his/her
gender.

Recalling the law of total probability, we can define probability that
someone is successfully admitted given his/her gender as

P(S = s|G = g) = ∑
m∈{A,B}

P(S = s, M = m|G = g) =

= ∑
m∈{A,B}

P(S = s|M = m, G = g) · P(M = m|G = g).

Based on that, the admittance probability that for females emerges
as

P(S = success|G = f emale) =
7

100
· 100

200
+

100
200
· 91

100
=

98
200

= 0.49,

whereas that for males is

P(S = success|G = male) =
3

50
· 50

250
+

172
200
· 200

250
=

175
250

= 0.7.



36 data mining

This break-down for the probability of the success for the different
genders unveils that the probability that we observe in the major-
agnostic case can deviate from the probability for success that we get
for the major-aware case. The reason for the discrepancy was due
to the fact that females had an increased tendency for applying to
the major which was more difficult to get in. Once we look at the
admittance rates for the two majors separately, we can see, that –
contrarily to our first impression based on the aggregated data –
female applicants were more successful during their applications.

3.1.3 Bonferroni’s principle

Bonferroni’s principle reminds us that if we repeat some experiment
multiple times, we can easily observe some phenomenon to occur fre-
quently purely originating from our vast amount of data that we are
analyzing. As a consequence, it is of great importance that whenever
we notice some seemingly interesting pattern of high frequency, to
be aware of the number of times we were about to observe that given
pattern purely due to chance. This way we can mitigate the effects of
creating false positive alarms, i.e., claiming that we managed to find
something interesting when this is not the case in reality.

Let us suppose that all the people working at some imaginary fac-
tory are asocial at their workspace, meaning that they are absolutely
uninterested in becoming friends with their co-workers. The manager
(probably unaware of the employees not willing to make friendships)
decides to collect pairs of workers who could become soul mates.
The manager defines potential soul mates as those pair of people
who order the exact same dishes during lunchtime at the factory can-
teen where the workers can choose between s soups, m main dishes
and d many desserts. For simplicity let us assume that the canteen
serves s = m = d = 6 kind of meals each for w = 1, 200 workers and
the experiment runs over one week. The question is, how many po-
tential soul mates would we find under these conditions by chance?

Let us assume that the employees do not have any dietary restric-
tions and have no preference among the dishes the canteen can offer,
for which reason they select their lunch every day randomly. This
means that there are s · m · d = 63 = 216 many equally likely dif-
ferent combinations of lunches for which reason, the probability of
a worker choosing a particular lunch configuration (a soup, main
course, dessert triplet) is 6−3 ≈ 0.0046.

It turns out that the probability of two workers choosing the same
lunch configurations independently have the exact same probability
as one worker going for a particular lunch. Since every employee
has 216 options for the lunch, the number of different ways a pair
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of people can arrange their lunch is 2162. As any of the 216 possible
lunch configurations can be the one they match on, the probability of
two workers ordering the same dishes is again 216

2162 = 216−1 ≈ 0.0046.
This means that out of 1,000 pairs of people, we would expect to see
less than 5 cases when the same meals are ordered.

This seems like a tolerable amount of false positive alarms which
is produced by people simply behaving by chance. However, if we
add that the fact that there are w = 1200 people employed in the
factory, we immediately find a much higher number of erroneously
identified soul mates. The 1200 employees form (1200

2 ) = 1200∗1199
2 =

719, 400 pairs of workers, hence the number of unjustifiable soul
mates we identify per day amounts to 3, 300 per a day. Which is
above 21, 000 false matches over the period of one week (disregarding
the fact that over the course of multiple days, we would certainly
identify certain pairs of people more than once, so we would register
less than 21, 000 unique cases).

3.1.4 Ethical issues of data mining

Since data mining algorithms affect our every day lives in numer-
ous ways, it is of utmost importance to strive for designing such
algorithms that are as fair as possible, e.g., they do not privilege or
disadvantage certain individuals based on their gender or nationality
even in an implicit manner. 7 7 https://arstechnica.com/

information-technology/2016/02/

the-nsas-skynet-program-may-be-

killing-thousands-of-innocent-

people/

As the decisions made or augmented by data mining algorithms
are ubiquitous and often high-impact, it is crucial to create as ac-
countable and transparent algorithms as possible. By carefully se-
lecting the input for the data mining algorithms can go a long way.
Imagine that a company wants to aid its recruiting procedure by re-
lying on a data mining solution which gives recommendation on the
expected success of the candidates during the interview based on
historic data. Arguably, the gender of an applicant should be inde-
pendent from his or her merits and qualifications. As such it makes
sense to not to feed such an algorithm with the gender of the appli-
cants as input. Yet another solution is to provide the algorithm an
even proportion of successful and unsuccessful applicants from each
gender, in order to minimize the chances for a preference towards
any gender to be developed by the algorithm. Additionally, one can
incorporate additional soft or hard constraints into any algorithm, so
that they behave in a more adequate and ethical manner. Can you think of real word use

cases of data mining problems
where ethical issues can arise?

?

https://arstechnica.com/information-technology/2016/02/the-nsas-skynet-program-may-be-killing-thousands-of-innocent-people/
https://arstechnica.com/information-technology/2016/02/the-nsas-skynet-program-may-be-killing-thousands-of-innocent-people/
https://arstechnica.com/information-technology/2016/02/the-nsas-skynet-program-may-be-killing-thousands-of-innocent-people/
https://arstechnica.com/information-technology/2016/02/the-nsas-skynet-program-may-be-killing-thousands-of-innocent-people/
https://arstechnica.com/information-technology/2016/02/the-nsas-skynet-program-may-be-killing-thousands-of-innocent-people/


38 data mining

3.2 Representing data

The most convenient way to think of the datasets that the majority
of data mining algorithms operate upon is the tabular view. In this
analogy the problem at hand can be treated as (a potentially gigantic)
spreadsheet with several rows – corresponding to data objects – and
columns, each of which includes observed attributes with respect the
different aspects of these data objects.

Different people tend to think of this gigantic spreadsheet differ-
ently, hence different naming conventions coexist among practitioners
which are listed in Table 3.2.

Data object Data attribute

record field
data point dimension

sample/measurement variable
instance/sample attribute, feature

Table 3.2: Typical naming conventions
for the rows and columns of datasets.

Another important aspect of the datasets we work with is the
measurement scale of the individual columns in the data matrix
(each corresponding to a random variable). A concise summary of
the different measurement scales and some of the most prototypical
statistics which can be calculated for them is included in Table 3.3.

Type of attribute Description Examples Statistics

C
at

eg
or

ic
al Nominal Variables can

be checked for
equality only

names of
cities, hair
color

mode, entropy,
correlation, χ2-
test

Ordinal > relation can
be interpreted
among variables

grades, {fail,
pass, excel-
lent}

median, per-
centiles

N
um

er
ic

al Interval The difference
of two variables
can be formed
and interpreted

shoe sizes,
dates, ◦C

mean, devia-
tion, significance
(e.g. F,t-) tests

Ratio Ratios can be
formed from
values of the
variables of this
kind

age, length,
temperature
in Kelvin

percent, geomet-
ric/harmonic
mean, variation

Table 3.3: Overview of the different
measurement scales.
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3.2.1 Data transformations

It is often a good idea to perform some preprocessing steps on the
raw data we have access to. This means that we perform some trans-
formation over the data matrix, either in a column or a row-oriented
manner.

3.2.2 Transforming categorical observations

First of all, as we would like to treat observations as vectors (a se-
quence of scalars), we should find a way to transform nominal obser-
vations into numeric values. As an example, let us assume that for a
certain data mining problem we have to make a decision about users
based on their age and nationality, e.g. a data instance might look
like (32, Brazilian) or (17, Belgian). Here we cover some of the
most commonly used techniques for turning nominal feature values
into numerical ones.

In our case, nationality is a categorical – more precisely a nomi-
nal – variable. One option is to simply deterministically map each
distinct value of the given feature a separate integer which then iden-
tifies it and simply replace them consistently based on this mapping.
Table 3.4 (b) contains such a transformation for the data from Ta-
ble 3.4 (a). While we can certainly obtain scalar vectors that way, this
is not the best idea since, this would suggest that there exists an or-
dering between different nationalities, which arguably is not the case.
Hence, alternative encoding mechanisms are employed most often.

Encoding categorical values with the one-hot-encoding schema
is a viable technique, in which an n-ary categorical variable, that
is a categorical variable with n distinct feature values, is split into
n different binary features. This way we basically map the exact
categorical value into a vector of dimensions n, which has exactly one
position at which a value 1 is stored, indicative of the value taken
by the variable, and has zeros in all other positions. This kind of
transformation is illustrated in Table 3.4 (c).

Encoding an n-ary categorical variable with n distinct binary fea-
tures carries the possible danger of falling into the so called dummy
variable trap which happens when you can infer the value of a ran-
dom variable without actually seeing it. When n distinct variables
are created for an n-ary variable, this is exactly the case as observing
n− 1 out of these newly created variables, one can tell with absolute
certainty the exact value for the remaining nth variable. This phenom-
ena is coined as the phenomenon of multicollinearity which causes
the dummy variable trap. In order to avoid it, a common technique
is to simply drop one of the n binary features, hence getting rid of
the problem of multicollinearity. Table 3.4 (d) illustrates the solution
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ID Age Nationality

1 23 Brazilian
2 55 Belgian
3 31 Brazilian
4 72 Korean
...

...
...

(a) Sample data with categorical variable
(Nationality) prior to transformation

ID Age Nationality

1 23 1

2 55 2

3 31 1

4 72 3

...
...

...

(b) Sample data with categorical variable
(Nationality) mapped to numeric values

ID Age BEL BRA KOR

1 23 0 1 0

2 55 1 0 0

3 31 0 1 0

4 72 0 0 1

...
...

...
...

...
(c) Sample data with categorical variable
(Nationality) transformed as one-hot en-
coding

ID Age BEL BRA

1 23 0 1

2 55 1 0

3 31 0 1

4 72 0 0

...
...

...
...

(d) Sample data with categorical variable
(Nationality) transformed as reduced
dummy variable

Table 3.4: Illustration of the possible
treatment of a nominal attribute. The
newly introduced capitalized columns
correspond to binary features indicating
whether the given instance belongs to
the given nationality, e.g., whenever the
BRA variable is 1, the given object is
Brazilian.

of applying a reduced set of dummy variables after simply dropping
one of the binary random variables for one of the nationalities.

Introducing new features proportional to the number of distinct
values some categorical variable can take, however, might carry an-
other potential problem, i.e., this way we can easily experience an
enormous growth in the dimensionality for the representation of
our data points. This can be dangerous for which reason it is often
the case that we do not introduce a separate binary feature for every
possible outcome of a categorical variable, however, bin them into
groups of feature values and introduce a new meta-feature for every
bin instead, decreasing the number of newly created features that
way. More sophisticated schemas can be thought of, however, it turns
out that hashing feature values, i.e. mapping n different outcome
variables to m ≪ n distinct ones using a hash function, can produce
surprisingly good results in large scale data mining and machine
learning applications 8 with theoretical guarantees 9. 8 Weinberger et al. 2009

9 Freksen et al. 2018

Can you recall why does handling
the nominal attribute in the exam-
ple dataset in Figure 3.4 (a) makes
more sense as illustrated in 3.4 (c)
(splitting) as opposed to the strat-
egy presented in 3.4 (b) (mapping)?
Can you list situations when the
strategy in 3.4 (b) is less problem-
atic?

?

3.2.3 Transforming numerical observations

Once we have numerical features, one of the simplest and most
frequently performed data transformation is mean centering data.
Mean centering involves making all of the variables in your dataset
behave such that they have an expected value of zero. This way the
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pkg load statistics

M = mvnrnd([6 -4], [6 1; 1 .6], 50);

Mc=M-mean(M); % mean centering the data

Ms=Mc./std(Mc); % standardize the data

L=chol(inv(cov(Ms)))’;

Mw=Ms*L; % whitening the data

Mm=(M-min(M))./(max(M)-min(M)); % min-max normalize the data

Mu=Mc./sqrt(sum(Mc.^2,2)); % unit normalize the data

CODE SNIPPET

Figure 3.3: Various preprocessing steps
of a bivariate dataset

transformed values represent the extent to which they differ from
the prototypical mean observation. In order to perform the transfor-
mation, one has to calculate µ, being the mean of the untransformed
random variable, and subtract this quantity from every observation
of the corresponding random variable. The Octave code performing
this kind of transformation and its corresponding geometrical effect
is included in Figure 3.3 and Figure 3.4 (b), respectively.

Upon standardizing a (possibly multivariate) random variable
X, we first subtract µ, the empirical mean from all the observations.
Note that this step is identical to mean centering up to this point. As
a subsequent step, we then need to rescale the random variable by
the variable–wise standard deviation σ.

By doing so, we express observations as z–scores, which tells us
the extend to which a particular observation differs from its typically
observed value, i.e., its mean expressed in units of the standard de-
viation. The geometric effects of standardizing a bivariate variable is
depicted in Figure 3.4 (c) and the corresponding Octave code is found
in Figure 3.3.

Example 3.1. For simplicity, let’s deal with a univariate random variable
in this first example, H for the height of people. Suppose we have a sample of
X = {75, 82, 97, 110, 46} thus having

µ =
75 + 82 + 97 + 110 + 46

5
=

410
5

= 82.

The standard deviation of the sample is defined by the quantity

s =

√
∑n

i=1(Xi − µ)2

n− 1
.

For the given sample, we thus have

s =

√
(75− 82)2 + (82− 82)2 + . . . + (46− 82)2

5− 1
≈ 24.56
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(f) Unit-normed (and centered) data

Figure 3.4: Various transformations
of the originally not origin centered
and correlated dataset (with the thick
orange cross as the origin).
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The process of eliminating the correlation from the data is also
called whitening. The process of whitening transforms a set of data
points with an arbitrary covariance structure into such set of points
that their covariance matrix becomes the identity matrix, i.e., the in-
dividual dimensions have a variance of one uniformly, and pairwise
covariances between pairs of distinct dimensions become zero.

Now suppose that we have a matrix X ∈ Rn×m with a covariance
matrix C ∈ Rm×m. Without loss of generality, we can assume that
X is already mean centered. Assuming so means that X⊺X ∝ C, i.e.,
the result of the matrix product X⊺X is directly proportional to the
empirical covariance matrix calculated over our set of observations.
Indeed, if we divide X⊺X by the number of observations n (or n− 1),
we would exactly obtain the biased (unbiased) estimation for the
covariance matrix.

Now the question is what transformation L ∈ Rm×m do we have
to apply over X so that the covariance matrix we obtain for the trans-
formed dataset XL equals the identity matrix? An identity matrix
(denoted by I) is such a matrix which has non–zero elements only in
its main diagonal and those non–zero elements are uniformly ones.

What this means is that initially, we have X⊺X ∝ C, and we are
searching for some linear transformation L, such that (XL)⊺(XL) ∝ I
is the case. Let us see, how is this possible.

(XL)⊺(XL) = (L⊺X⊺)(XL) ▷ because (AB)⊺ = B⊺A⊺∀A, B

= L⊺(X⊺X)L ▷ by associativity of matrix multiplication

= L⊺CL. ▷ by our assumption

This means that the linear transformation L, which makes our data
matrix X decorrelated has to be such that L⊺CL = I. This also means
that LL⊺ = C−1 – with C−1 denoting the inverse of matrix C. The
latter observation is derived as:

L⊺CL = I (3.1)

CL = L⊺−1 ▷ left multiply by L⊺−1 (3.2)

C = L⊺−1L−1 ▷ right multiply by L−1 (3.3)

C = (LL⊺)−1 ▷ since ∀A, B(AB)−1 = B−1 A−1 and A⊺−1 = A−1⊺

(3.4)

C−1 = LL⊺. (3.5)

What we get then is that the linear transformation L that we are
looking for is such that when multiplied by its own transpose gives
us the inverse of the covariance matrix of our dataset, i.e., C−1. Ma-
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Scatter matrices and covariance matrices are related concepts for
providing descriptive statistics of datasets. Both matrices quantify the
extent to which pairs of random variables from a multivariate dataset
deviate from their respective means.
The only difference between the two is that the scatter matrix quan-
tifies the above information in a cumulative manner, whereas in the
case of covariance matrix, an averaged quantity normalized by the
number of observations in the dataset is reported. By definition the
scatter matrix of a data matrix X is given by

S =
n

∑
i=1

(xi − µ)(xi − µ)⊺,

with xi and µ denoting the ith multivariate data point and the mean
data point, respectively. Similarly the covariance matrix is given as

C =
1
n

n

∑
i=1

(xi − µ)(xi − µ)⊺ =
1
n

S.

A matrix M is called symmetric if M = M⊺ holds, i.e., the matrix
equals its own transpose. Symmetry of both S and C trivially fol-
lows from their respective definitions and the fact that for any matrix
(AB)⊺ = B⊺A⊺.
A matrix M is a positive (semi)definite one whenever the inequality

y⊺My ≥ 0

relation holds. This property naturally holds for any scatter matrix
S, since y⊺Sy is nothing else but a sum of squared numbers as illus-
trated below.

y⊺Sy =y⊺
( n

∑
i=1

(xi − µ)(xi − µ)⊺
)

y =

n

∑
i=1

y⊺(xi − µ)(xi − µ)⊺y =

n

∑
i=1

(y⊺(xi − µ))2 ≥ 0

As the definition of the covariance matrix only differs in a scalar
multiplicative factor, it similarly follows that expressions of the form
y⊺Cy, involving an arbitrary vector y and covariance matrix C can
never potentially become negative.

MATH REVIEW | SCATTER AND COVARIANCE MATRIX

Figure 3.5: Scatter and covariance
matrix
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trix L can be obtained by relying on the so-called Cholesky decompo-
sition.

In linear algebra, Cholesky decomposition is a matrix factorization
method, which can be applied for symmetric, positive (semi)definite
matrices. We say that a matrix M is symmetric, if it equals to its own
transpose, i.e., M = M⊺. A matrix is called positive (semi)definite, if
y⊺My ≥ 0 (for every y ̸= 0).
If the above two conditions hold, then M can be decomposed in a
special way into the product of two triangular matrices, i.e.,

M = LL⊺,

where L denotes some lower triangular matrix and L⊺ is the trans-
pose of L (hence an upper triangular matrix). A matrix is said to be
lower (upper) triangular if it contains non-zero elements only in its
main diagonal and below (above) it and the rest of its entries are all
zeros.

MATH REVIEW | CHOLESKY DECOMPOSITION

Figure 3.6: Cholesky decomposition

Example 3.2. Determine the Cholesky decomposition of the matrix

M =

[
4 2
2 1.25

]
.

We know that the matrix we decompose M into has to be a lower and
upper triangular matrix such that they are the transpose of each other. That
explicitly being written out means that

M =

[
4 2
2 1.25

]
=

[
l11 0
l21 l22

] [
l11 l21

0 l22

]
=

[
l2
11 l11 · l21

l21 · l11 l2
21 + l2

22

]
.

From this, we immediately see that the value for l11 has to be chosen as√
m11 =

√
4 = 2. This means that we are one step closer to our desired

decomposition. By substituting the value we determined for l11, we get

M =

[
4 2
2 1.25

]
=

[
2 0

l21 l22

] [
2 l21

0 l22

]
=

[
4 2 · l21

2 · l21 l2
21 + l2

22

]
,

from where we can conclude that l21 = m12
l11

= 2
2 = 1 is the proper choice.

This time we got one further step closer to find the correct values for the
lower and upper triangular matrices that we are looking for. If we substitute
now the value determined for l21 we now have

M =

[
4 2
2 1.25

]
=

[
2 0
1 l22

] [
2 1
0 l22

]
=

[
4 2 · 1

2 · 1 1 + l2
22

]
.
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We can now conclude that l22 =
√

1.25− 1 =
√

0.25 = 0.5, hence we
managed to decompose the original matrix M into the product of a lower
and upper triangular matrices which are being transposes of each other in
the following form:

M =

[
4 2
2 1.25

]
=

[
2 0
1 0.5

] [
2 1
0 0.5

]
.

3.3 Information theory and its application in data mining

We next review important concepts from information theory and
their potential utilization when dealing with datasets.

3.3.1 Mutual information

Mutual information between two random variables X and Y is for-
mally given as

MI(X; Y) = (H(X) + H(Y))− H(X, Y), (3.6)

i.e., it is the difference between the sum of the Shannon entropy for
the individual variables, H(X) and H(Y), and their joint entropy,
H(X, Y).

After manipulating the formula in Eq. (3.6) a bit, we get that

MI(X; Y) = ∑
x∈X

∑
y∈Y

P(X = x, Y = y) log
P(X = x, Y = y)

P(X = x)P(Y = y)
. (3.8)

What mutual information tells us about a pair of random variables
X and Y is the amount of uncertainty which can be eliminated once
the true value of either of the random variables is revealed to us. In
other words, knowing about the outcome of a random variable, this
is the amount of uncertainty which remains regarding the remaining
random variable.

Example 3.3. Imagine there are two random variables describing the
weather conditions (W) and the mood of our boss (M). Throughout a se-
ries of 100 days, we jointly keep track of the daily weather and the mood of
our boss and we record the contingency table10 given in Table 3.5. 10 Contingency tables store the obser-

vation statistics of multiple random
variables.

M=happy M=blue Total

W=sunny 38 7 45
W=rainy 12 43 55

Total 50 50 100

Table 3.5: An example contingency
table for two variables.

As illustrated by Table 3.5, without knowing anything about the weather
conditions, we are totally clueless about the mood of our boss on average
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Shannon entropy is a quantity which tells us about the expected
unpredictability of some random variable X. When X is a discrete
random variable, it is formally defined as

H(X) = ∑
x∈X

P(X = x) log2
1

P(X = x)
. (3.7)

The logarithmic part in Eq. (3.7), as illustrated in Figure 3.8, can be
thought as a quantity which measures how surprised we get when
we observe an event with probability P(X = x). Indeed, if we assume
that observing a certain event has probability 1.0, we should not get
surprised at all since log2

1
1 = 0. On the other hand, if we observe

something with an infinitesimally small value ϵ, we should definitely
become very surprised by the observation of such an event, which is
also reflected by the quantity lim

ϵ→0
log2

1
ϵ = ∞.

Summing this quantity over the possible range of X and weighting
each term with the probability of observing that value can be inter-
preted as an expected amount of surprise.
When we have more than just a single random variable, say X and
Y, the concept of entropy can naturally be expanded to get their
so-called joint entropy, i.e.,

H(X, Y) = ∑
x∈X

∑
y∈Y

P(X = x, Y = y) log2
1

P(X = x, Y = y)
.

MATH REVIEW | SHANNON ENTROPY

Figure 3.7: Shannon entropy

since the marginal distribution of the mood random variable behaves totally
unpredictably, i.e.,

P(M = happy) = P(M = blue) = 0.5.

This unpredictably is also reflected by the fact that the entropy of the random
variable M takes its maximal possible value, i.e.,

H(M) = −0.5 log2 0.5− 0.5 log2 0.5 = 1.

Analogous calculations result in H(W) = 0.993, H(M, W) = 1.690 and
MI(M, W) = 0.303.

3.3.2 Applying mutual information to data mining: Feature selection

Imagine that we are performing classification, that is, we are given
a series of multidimensional vectors that describe objects based on
their predictive features, based on which, our goal is to infer some
special categorical target variable about the objects. For instance,
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Figure 3.8: The amount of surprise
for some event as a function of the
probability of the event.

we might be given information about the customers of a financial
institution who apply for a loan, and we want to decide in advance
for an upcoming applicant who is described by the feature vector xi

whether this customer is a safe choice to provide the loan for. In that
case, the categorical variable that we are about to predict would be a
binary one, indicating whether the applicant is likely going to be able
to repay the load (class label Yes) or not (class label No).

While solving a classification problem, we might want to reduce
the number of predictive features or simply order them according
to their perceived utility towards predicting the target class variable.
The goal of feature selection is to choose the best subset of the pre-
dictors/features for our data mining application. Calculating mutual
information is one of the many options to quantify the usefulness of
predictive features towards a target variable (often denoted by Y in
the literature).

Molina et al. [2002]11 provides a thorough survey of the alternative 11 Luis Carlos Molina, Lluís Belanche,
and Àngela Nebot. Feature selection
algorithms: A survey and experimental
evaluation. In Proceedings of the 2002
IEEE International Conference on Data
Mining, ICDM ’02, pages 306–, Wash-
ington, DC, USA, 2002. IEEE Computer
Society. ISBN 0-7695-1754-4. URL
http://dl.acm.org/citation.cfm?id=

844380.844722

approaches for finding the best performing subset of the predictive
features for a given task. Note that the task of feature selection is a
hard problem, since when we have m features, there are exponen-
tially many (2m) possibilities to formulate subsets of features, for
which reason heuristics to speed up the process are employed most
of the times.

3.3.3 Applying mutual information to data mining: Feature discretization

When representing our data with continuous features, it is sometimes
also desired to turn the continuous features into discrete ones. This
process is called feature discretization, meaning that instead of mea-
suring the actual numeric values for a particular random variable,
we transform its range into discrete bins and create a feature value

http://dl.acm.org/citation.cfm?id=844380.844722
http://dl.acm.org/citation.cfm?id=844380.844722
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which indicates which particular interval of values a particular ob-
servation falls into. That is, instead of treating the salary of a person
as a specific numeric value, we can form three bins of the salaries
observed in our dataset (low, medium and high) and represent the
salaries of the individuals by the range it falls.

The question is now, how to determine the intervals which form
the discrete bins for a random variable? There are multiple answers
to this question. Some of the approaches are uninformed (also called
unsupervised) in the sense that the bins we split the range of our ran-
dom variable is formed without considering that the different feature
values might describe such data points that belong to a different tar-
get class variable y ∈ Y. These simple forms of feature discretization
might strive for determining such bins of feature ranges that an equal
amount of observations belong into each bin. A different form of
partitioning can go along the formulation of bins with equal widths.
These forms of equipartitioning approaches all have their potential
drawbacks that information theory–based approaches can remedy.

A more principled way for feature discretization relies on mutual
information. We can quantify with the help of mutual information
the effects of performing discretization over X when assuming dif-
ferent values as boundaries for our bins. By calculating the various
mutual information scores that we get if we perform the discretiza-
tion fo X at various thresholds, we can select the boundary that is the
most advantageous.

The mutual information–based feature discretization operates by
calculating mutual information between a categorical class label Y
and the discretized versions of X that we obtain by binning the ob-
servation into discrete categories at different thresholds. The choice
for the threshold providing us with the highest mutual information
can be regarded as the most meaningful way to form the different
discrete intervals of our initially numeric variable X. Notice that this
mutual information–based approach is more informed compared to
the simple unsupervised equipartitioning approach, since it also re-
lies on the class labels of the observations Y, not only the distribution
of X. For this reason the mutual information–based discretization
belongs to the family of informed (or supervised) discretization tech-
niques.

Example 3.4. Imagine that we have some numeric feature that we have
10 measurements from originating from 10 distinct instances. The actual
numeric values observed for the 10 data points are depicted in Figure 3.9.
Besides the actual values feature X takes on for the different observations,
Figure 3.9 also reveals their class label Y. This information is encoded by the
color of the dots representing each observation.

Let us compare the cases when we form the two bins of the feature X to be
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31 Figure 3.9: Sample feature distribution
with observations belonging into two
possible classes (indicated by blue and
red).

(−∞, x] and (x, ∞), with x either being 1 or 3. As a first step, we need to
calculate the contingency tables for the two potential locations of spitting X.
The contingency tables for the two cases are included in Table 3.6, and they
inform us about the number of feature values that fall into a given range of
X broken down for the different class labels.

Class label Y
Red Blue

X ≤ 1 2 3

X > 1 1 4

(a) Using threshold X ≤ 1

Class label Y
Red Blue

X ≤ 3 2 4

X > 3 1 3

(b) Using threshold X ≤ 3

Table 3.6: Sample dataset for illustrating
feature discretization using mutual
information.

We can now calculate the different mutual information scores correspond-
ing to the cases of discretizing X using the criteria X ≤ 1 or X ≤ 3. By
denoting the discretized random variable that we derive from X by using a
threshold for creating the bins to be t ∈ {1, 3} by Xt, we get that

MI(X1, Y) =
2

10
log2

4
3
+

3
10

log2
6
7
+

1
10

log2
2
3
+

4
10

log2
8
7
≈ 0.0349

and

MI(X3, Y) =
2

10
log2

10
9
+

4
10

log2
20
21

+
1

10
log2

5
6
+

3
10

log2
15
14
≈ 0.0058.

We arrived to the above results by applying Eq. (3.8) for the data derived
from the contingency tables in Table 3.6. Based on the values obtained for
MI(X1, Y) and MI(X3, Y), we can conclude that – according to our sample
– performing discretization using the threshold t = 1 is a better choice. Can you find another data point

from Figure 3.9, using which as a
boundary for discretization per-
forms even better than the choice of
t = 1?

?
3.4 Eigenvectors and eigenvalues

The concepts of eigenvectors and eigenvalues frequently reoccur
during our discussion of various topics later on related to e.g. di-
mensionality reduction (Chapter 6) and graph-based data mining
approaches (Chapter 8). In order to ease the understanding of those
parts, we revisit here these important concepts next briefly.

Given a square matrix M ∈ Rn×n, an eigenvalue–eigenvector pair
for M satisfies the following equality

Mx = λx, (3.9)
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for some scalar λ and n-dimensional vector x. Note that any n × n
matrix has n (not necessarily distinct) eigenvalue–eigenvector pairs.
To this end, we shall index the different eigenvalues and eigenvectors
a matrix has as λi, xi (1 ≤ i ≤ n). In the general case, the λi values
can be complex as well, however, matrices that we consider in this
book can always be assumed to have real eigenvalues.

Intuitively, an eigenvector of matrix M is such a vector, the direc-
tion of which does not get altered – modulo to reflection perhaps
– relative to its original orientation. Although the direction of the
eigenvectors remains intact, their magnitude can change. The rate
with which an eigenvector changes is exactly its corresponding eigen-
value. This means that if an eigenvector x has a corresponding eigen-
value of 2, then all the components of the matrix–vector product Mx
would be twice the original coordinates of x.

It turns out that the eigenvalues for matrix M are such values λ,
which satisfy that det(M − λI) = 0, where I denotes the identity
matrix and det refers to the determinant of its argument.

We can see, that the definition of an eigenvalue according to
Eq. (3.9) implies that the equation

(M− λI)x = 0 (3.10)

also has to hold, with 0 marking the vector of all zeros. This kind of
homogeneous system of linear equation can be trivially solved by
x = 0. This solution is nonetheless a trivial one, which works for any
M. If we wish to avoid obtaining such a trivial – hence uninteresting
– solution, the rows of (M− λI) should not be linearly independent.
Had (M − λI) be of full rank (meaning that it consisted of linearly
independent rows), the only solution which would satisfy Eq. (3.10)
would be the trivial one. The way to ensure (M − λI) not to be of
full rank, is to require det(M − λI) = 0 to hold. Determinants can
be viewed as polynomials, hence the eigenvalues of M are the roots
of the polynomial that we obtain from the determinant of the matrix
M− λI. The polynomial that we can construct from the determinant
of matrix (M − λI) is called tha characteristic polynomial of M.
Essentially, the λ eigenvalues for M are the roots of the characteristic
polynomial derived from M.

Example 3.5. As a concrete example, let us determine the eigenpairs of the

matrix M =

[
5 1
4 8

]
. Based on the previous discussion, the eigenvalues of

M need to be such that the determinant of the matrix

M− λI =

[
5− λ 1

4 8− λ

]
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equals zero. Calculating the determinant of a 2x2 matrix is easy, as all we
need to do is to multiply its elements across its diagonal and subtract the
product of the elements in the off-diagonal, leaving us with the polynomial

p(λ) = (5− λ)(8− λ)− 1 ∗ 4 = λ2 − 13λ + 36.

Finding the roots of the above quadratic equation, we get that λ1 = 4 and
λ2 = 9. If we substitute back, we get that the eigenvector x accompanying
the eigenvalue λ = 4 has to fulfill[

1 1
4 4

]
x = 0,

which is a system of two linear equations and two unknowns.
Since we deliberately constructed our system of equation such that it

consist of linearly dependent row coefficients, we are free to choose one of the
variables in x to any value. Let us hence arbitrarily set x2 to 1.

What it means – because of the x1 + x2 = 0 and 4x1 + 4x2 = 0
requirements in our system of equations – is that x1 = −x2, meaning that

the eigenvector corresponding the eigenvalue 4 is x =

[
−1

1

]
.

Note that not only vector x but any other cx with c ∈ R, say

[
2.2
−2.2

]
,

would yield a valid solution to the above linear system of equations. In
order to avoid this ambiguity, a common practice is to think of and report
eigenvectors such that they have a unit norm. What it means, that the
canonical way of reporting the eigenvector that we just found is to divide
all of its components by its norm, i.e.,

√
2 in the given example. What it

means is that one of the eigenvalue–eigenvector pairs for matrix M is(
4,

[−1√
2

1√
2

])
.

After a similar line of thought, we get for the other eigenvalue that[
−4 1

4 −1

]
x = 0

also has to hold. By choosing x2 to be 1, we get that x1 has to be 1
4 . This

means that the eigenvector corresponding to the eigenvalue 9 for matrix M

is

[
1
4
1

]
, or in its unit normalized canonical form

[ 1√
17
4√
17

]
≈
[

0.2425
0.9701

]
.

Let us now also see how can we obtain the eigenpairs of matrix M
using Octave. Figure 3.10 and Figure 3.11 provides two alternative
ways for doing so.
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Figure 3.10 illustrates the usage of the convenient built-in function
of Octave for calculating eigenproblems. The default behavior of the
function eig is that it returns the eigenvalues of its argument in the
form of a vector. In case we also want to know the eigenvectors cor-
responding to the particular eigenvalues, we can also do so, by using
not only the default return value of the function, but the tuple of ma-
trices it can also return. In the latter case the matrix returned second
contains the eigenvalues of the argument in its main diagonal, and
the matrix returned at position one contains one (unit-normalized)
eigenvector in each of its columns. The eigenvalue in the same posi-
tion in the second returned matrix corresponds to the eigenvalue in
the same column from the first returned matrix.

M=[5 1; 4 8];

# obtaining only the eigenvalues of M

eigenvals = eig(M)

>> eigenvals =

4

9

# obtaining both the eigenvectors and eigenvalues of M

[eigenvecs, eigenvals] = eig(M)

>> eigenvecs =

-0.70711 -0.24254

0.70711 -0.97014

eigenvals =

Diagonal Matrix

4 0

0 9

CODE SNIPPET

Figure 3.10: Eigencalculation using
Octave

We provide an alternative way for calculating the eigenpairs of the
same matrix M in Figure 3.11. Notice how the provided calculation
connects to the calculation provided in Example 3.5. In Figure 3.11,
the function roots is used for finding the roots of a polynomial deter-
mined by its coefficients of decreasing degree and the function null

finds (unit-normalized) vectors in the null space of its argument. Re-
call that a null space of some matrix A are such vectors x for which
Ax = 0 holds. Can you anticipate the values for

eig_vals, eig_vec1 and eig_vec2

in Figure 3.11? Hint: looking back
at Example 3.5 and Figure 3.10 can
help a lot in giving the right answer
(potentially modulo to a multiplier
-1 for eig_vec1 and eig_vec2)?

?
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eig_vals=roots([1 -13 36]);

eig_vec1=null(M-eig_vals(1)*eye(size(M)));

eig_vec2=null(M-eig_vals(2)*eye(size(M)));

CODE SNIPPET

Figure 3.11: An alternative way of
determining the eigenpairs of matrix M
without relying on the built-in Octave
function eig.

3.5 Summary of the chapter

This chapter introduced the basic concepts and fundamental tech-
niques for data representation and transformation in data mining.
At the end of the chapter, we revisited the problem of eigencalcu-
lation for matrices, a technique that we will refer to multiple times
throughout the remainder of the book.



4 | DISTANCES AND SIMILARITIES

Readers of this chapter can learn about different ways of quan-
tifying similarity between pairs of objects. In particular, by the end of
the chapter one should

• recall and explain various similarity measures,

• justify their choice towards a specific similarity measure for partic-
ular kinds of datasets.

Determining (dis)similarity between pairs of objects have clear
application possibilities. Imagine you own a web shop and a certain
user buys some product X. We can easily recommend our users
further products they might be interested in purchasing by simply
having a good notion of similarity between the objects. As another
possible use case where having a good notion of similarity can be
helpful, is looking for plagiarism. In that case, having a high degree
of similarity between two essays submitted for evaluation might be
a good sign for breaching the code of conduct by the authors of such
essays.

Intuitively, and thinking in geometric terms, we can say that the
closer two points are located to each other, the more similar they are.
As we start thinking about closeness, it is natural to introduce dis-
tance metrics. Formally, a function d : Rk ×Rk → R defined over
the k-dimensional point pair (a, b) is a distance metric if the following
axioms hold:

1. d(a, b) ≥ 0 (non-negativity)

2. a = b⇔ d(a, b) = 0 (positive definiteness)

3. d(a, b) = d(b, a) (symmetry)

4. d(a, b) ≤ d(a, c) + d(c, b) for any point c (triangle inequality).

Example 4.1. Let us verify that the distance defined as the cardinality
of symmetric set difference fulfills the axioms of distance metrics. As a

Learning Objectives:
• Distance metrics

• Mahalanobis distance

• Cosine distance

• Minkowski distance

• Jaccard distance

• Edit distance

• Distances for distributions
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reminder, the symmetric difference between two sets A and B is defined as
A△B = (A \ B) ∪ (B \ A). Supposing A = {a, b, c} and B = {b, c, d, e},
the symmetric difference of the two sets is then the set A△B = {a, d, e},
i.e., the set of those elements that are present in exactly one of the input
arguments.

1. The non-negativity trivially holds as the result of symmetric set differ-
ence is another (possibly empty) set, the cardinality of which is always
non-negative.

2/a ⇒ When set A = B holds, both A \ B = B \ A = ∅, hence the
distance equals the cardinality of the empty set, i.e., 0. Note that the
second property is not just an implication, but an equivalence for which
reason the opposite direction has to be verified as well.

2/b ⇐ Given that the distance is 0, we need to see that A = B has to hold.
In order to see that, notice that

|A△B| = |A \ B|+ |B \ A| by definition of △
= (|A| − |A ∩ B|) + (|B| − |A ∩ B|) by definition of \
= (|A ∪ B|+ |A ∩ B|)− 2|A ∩ B| from the Inclusion-Exclusion Principle

= |A ∪ B| − |A ∩ B|.

This means that whenever |A△B| = 0, |A ∪ B| = |A ∩ B| also has to
hold, which is only true when A = B.

3 The symmetry follows from the definition of the distance and the commu-
tativity of addition, i.e.,

|A△B| = |A \ B|+ |B \ A| = |B \ A|+ |A \ B| = |B△A|.

4 Finally, we have to show that the triangle inequality holds for any sets
A, B and C.

|A△B|+ |B△C| =
(|A|+ |B| − 2 · |A ∩ B|) + (|B|+ |C| − 2 · |B ∩ C|) =

|A|+ |C|+ 2 · |B| − 2 · |A ∩ B| − 2 · |B ∩ C| ≥
|A|+ |C| − 2 · |B ∩ C| ≥

|A|+ |C| ≥
|A|+ |C| − 2 · |A ∩ C| = |A△C|.

For those who like visual arguments, Figure 4.1 can also provide evidence
for the triangle inequality being fulfilled. The intuitive explanation here is
that in the Venn diagram, there is no are which would be covered by green
stripes (corresponding to A△C) and not covered by either of blue stripes
(corresponding to A△B) or red stripes (corresponding to B△C).
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A

B
C

Figure 4.1: Illustration for the symmet-
ric set difference fulfilling the triangle
inequality.

We now list a few of the most important distances. We should
stress, however, that there is a wide variety of further distances that
we cannot cover here due to space constraints. Readers with a keen
interest in various additional distances can find a comprehensive list
to read in 1. 1 Deza and Deza 2009

4.1 Minkowski distance

Minkowski distance of order p between two data points x, y ∈ Rk is
formally defined as

dp(x, y) =
( k

∑
i=1
|xi − yi|p

) 1
p

(4.1)

The Minkowski distance of order p between two vectors x and y
is basically the p-norm of their difference x − y. It is instructive to
imagine unit circles for various p values as depicted in Figure 4.2 in
order to gain a better intuition of different norms and the Minkowski
distance of different orders.

It is worth noting that the norm for p < 1 is non-convex as also
illustrated by Figure 4.2. It is also easy to see that when p < 1, the
triangle inequality is not met.

Example 4.2. Imagine the following three points a =

[
0
0

]
, b =

[
1
1

]
and
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p=Inf

Figure 4.2: Unit circles for various p
norms.

c =

[
1
0

]
and let the order p be 0.1. As for the pairwise Minkowski distances

of order 0.1 we then get

dp=0.1(a, b) = (10.1 + 10.1)10 = 210 = 1024

dp=0.1(a, c) = (10.1 + 00.1)10 = 110 = 1

dp=0.1(b, c) = (00.1 + 10.1)10 = 110 = 1,

which values do not conform with the triangle inequality as the distance
from a to b is larger than the sum of distances between a and c and c to
b. What this (un)intuitively suggests is that you can find shorter routes
between two points than simply directly going from the source point to the
target destination by stopping at some – appropriately chosen – intermediate
location.

Minkowski distance is most frequently applied for order p ≥ 1,
primarily because convexity and triangle equality is assured in those
cases. Three particular choices for p are so typical that for them, there
is also a special name, i.e.,

• for p = 1, we get the Manhattan distance (or the city block dis-
tance)

• for p = 2, we get the Euclidean distance

• for p = ∞, we get Chebyshev distance.

Example 4.3. Given points a =

[
2
1

]
and b =

[
6
4

]
as depicted in Fig-

ure 4.3, calculate the Minkowski distance of order p ∈ {1, 2, 2.5, ∞}.
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a=(2;1)

b=(6,4)

(6,1)

Figure 4.3: Example points for illus-
trating the Minkowski distance for
different values of p.

dp=1(a, b) = (41 + 31)1 = 7

dp=2(a, b) = (42 + 32)0.5 =
√

25 = 5

dp=2.5(a, b) = (42.5 + 32.5)0.4 = 47.590.4 ≈ 4.69

dp=∞(a, b) = max(4, 3) = 4.

Notice, that the p = ∞ case (i.e., the Chebyshev distance) boils
down to the maximum of the absolute values of the dimension-wise
coordinate differences between the two points. To understand intu-
itively, why this is the case when p = ∞, assume that m is the largest
coordinate-wise difference in absolute value, that is

m = max
1≤i≤k

|xi − yi|.

As p approaches infinity, we observe that the sum in the general
definition of Minkowski distance is getting dominated by the term
mp. Since the contribution of all the other tems not related to m can
be neglected as p goes to infinity, the entire expression in Eq. (4.1)

boils down to (mp)
1
p = m. Notice that even if the same amount of

maximum absolute difference m happens to be the difference for
l > 1 dimensions, we end up getting the same result, as in that case
Eq. (4.1) can be expressed as

(lmp)
1
p = l

1
p (mp)

1
p ,

which is simply due to the fact that lim
p→∞

l
1
p = lim

p→∞
p
√

l = 1. Exam-

ple 4.3 further reveals the monotonity of the Minkowski distance
as the distances we obtain decrease in a monotone fashion as p in-
creases.
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4.2 Mahalanobis distance

The way Minkowski distance calculates distances is that it aggregates
the dimension-wise discrepancies between data points, while assum-
ing that the individual dimensions are totally independent of each
other. The different dimensions, however, are most often correlated
with each other to a varying degree. Due to the correlation being
present between variables, Minkowski distance has the potential
of “overcounting” dissimilarity between data points in some sense.
Simultaneously, even a small difference along a dimension can be
viewed as a large deviation for a certain pair of observations, if that
particular deviation happens for such a dimension, where data points
do not typically tend to differ in our dataset.

Figure 4.4 contains a small example dataset for which relying on
such a distance function which motivates the incorporation of the
correlation between the different features into the quantification of
the distance between pairs of data points. Although point B from
Figure 4.4 is located closer to point A as opposed to point C in the
Minkowski notation of distances, it still sounds reasonable to argue
for point B being more dissimilar to point A than point C.

Mahalanobis distance provides a theoretically motivated way
for calculating distance in a way which guarantees that the dissim-
ilarities that we sum up along the different dimensions are indeed
independent of each other. This is achieved by incorporating a trans-
formation which performs the whitening of our dataset (cf. Sec-
tion 3.2.3) into the calculation of pairwise distances.
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A

B

C

d(A,C) < d(A,B)?

Figure 4.4: Motivation for the Maha-
lanobis distance.

As we have seen it earlier in Eq. (3.5) Section 3.2.3, we can trans-
form multidimensional observations by such a matrix L, where L
is the lower-triangular matrix originating from the Cholesky de-
composition of the inverse of the covariance matrix of our dataset.
Mahalanobis distance is defined between two vectors according to the
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formula

dM(x, y) =
√
(x− y)⊺Σ−1(x− y), (4.2)

where Σ−1 denotes the inverse of the covariance matrix of the data
from which observations x and y come from. Based on the formula in Eq. 4.2,

can you tell in what way does the
Mahalanobis distance relate to some
well-known probability distribu-
tion?

?
Inspecting the formula of Mahalanobis distance, we can notice

that it resembles Minkowski distance of order p = 2, i.e., standard
Euclidean distance. Indeed, if the covariance matrix of our dataset
happens to be the identity matrix I – a matrix of all ones in its di-
agonal and zeros otherwise –, then the formula in Eq. (4.2) exactly
simplifies down to the Euclidean norm. This is because the Σ−1 term
cancels out from Eq. (4.2) in the case when Σ = I.

When the covariance matrix of some dataset is the identity matrix,
it means that there is no correlation between the different coordinates
anyway and the variances across all the dimensions are identical. As
the inverse of the identity matrix is itself, Eq. (4.2) boils down to

√
(x− y)⊺(x− y) =

√
∥x− y∥2

2 =

√√√√ k

∑
i=1

(xi − yi)2 = ∥x− y∥2,

which is exactly the Euclidean distance between x and y.
Let us notice, how Eq. (4.2) can be equivalently expressed as

∥L⊺x− L⊺y∥2 = ∥L⊺(x− y)∥2 =√
(x− y)⊺LL⊺(x− y) =

√
(x− y)⊺Σ−1(x− y),

implying that Mahalanobis distance is essentially a special form
of the Euclidean distance, where the vectors of the original space
are first transformed into such a representation by matrix L, which
makes the individual variables independent of each other. This be-
havior of the Mahalanobis distance is illustrated in Figure 4.5.
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Σ=[10 3; 3 4], µ=[0 0], n=500

Figure 4.5: Illustration of the Maha-
lanobis distance.

Can you think of some practical
difficulties that can arise for calcu-
lating the Mahalanobis distance?

?
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4.3 Cosine distance

The cosine distance is derived from the cosine similarity. Cosine
similarity quantifies the cosine of the angle enclosed by a pair of
vectors as illustrated in Figure 4.6 and can it is calculated based on
the formula

cos(θ) =
x⊺y
∥x∥∥y∥ . (4.3)

We get cosine distance by taking the arccos function over the result
of Eq. (4.3). Taking the arccos basically means that we are measuring
the distance between two vectors as arccos(cos(θ)), i.e., the angle
enclosed by the two vectors. As a consequence, the larger the angle
between a pair of vectors is, the larger their distance becomes. After
all, the cosine distance is insensitive to the difference between the
vectors in any other sense other than the rotational angle needed to
get from the orientation of one to that of the other.

In Figure 4.6, we can see that the distance between the blue and
red vectors is definitely non-zero in the Minkowski sense. The cosine
distance between these two vectors is zero, however, as they point
to the same direction, meaning that the angle enclosed by them is
zero. This also suggest us that the cosine distance does not fulfill
the x = y ⇔ d(x, y) = 0 property of metrics, however it obeys
the milder property of x = y ⇒ d(x, y) = 0. Figure 4.6 further Can you think of examples when

measuring the dissimilarity of data
points is better done by calculat-
ing their cosine distance instead
of the Minkowski (e.g. Euclidean)
distance?

?
reveals that even though the Minkowski distance between the red
and black vectors is smaller than that of the red and blue vectors,
their cosine distances behave in the opposite manner. This is because
cosine distance disregards the differences in the norm of the vectors
and purely focuses on their orientation.
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2

3

4

0 1 2 3 4

Figure 4.6: Illustration of the cosine
distance

In order to see why Eq. (4.3) holds, one can rely on the Law of
cosines summarized in Eq. (4.4). Thinking in terms of vector spaces,
given two vectors a and b, we get a triangle the three vertices are
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For any triangle with sides a, b and c, the Law of cosines says that the
equality

c2 = a2 + b2 − 2ab cos (θ) (4.4)

holds, where θ denotes the angle enclosed by sides a and b. Dis-
regarding the 2ab cos (θ) term, this equality is very likely to be
reminiscent for most readers, since its omission leaves us with the
well-known Pythagorean theorem. Indeed, when the angle enclosed
by side a and b of the triangle is a right angle, the last term on the
right side of the equation cancels out, exactly leaving us with the
Pythagorean formula for right-angled triangles with hypotenuse c
and legs a, b.

MATH REVIEW | LAW OF COSINES

Figure 4.7: Law of cosines

the origin and the endpoints determining the two vectors. Now, the
lengths of the three sides of this triangle are going to be ∥a∥, ∥b∥ and
∥a− b∥. If we denote by θ the angle enclosed by a and b and apply
the Law of cosines, what we get is that

∥a− b∥2 = ∥a∥2 + ∥b∥2 − 2∥a∥∥b∥ cos (θ). (4.5)

Relying on the fact that ∥v∥2 = v⊺v for any vector v, we can
rewrite Eq. (4.5) as

(a− b)⊺(a− b) = a⊺a + b⊺b− 2∥a∥∥b∥ cos θ,

which equals

a⊺a + b⊺b− 2a⊺b = a⊺a + b⊺b− 2∥a∥∥b∥ cos θ. (4.6)

From that point, simple reordering of the two sides of Eq. (4.3) yields
us Eq. (4.3).

Example 4.4. Suppose we have three 4-dimensional points

x1 =


√

2
−1
2
3

 , x2 =


√

2
2
−1√

2

 , x3 =


−
√

2
1
−2
3

 .

Let us calculate the pairwise cosine distances between these points. In
order to do so, we first calculate the norms of the individual vectors:

∥x1∥2 =
√

x⊺1 x1 =

√√
2

2
+ (−1)2 + 22 + 32 =

√
2 + 1 + 4 + 9 =

√
16 = 4,
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∥x2∥2 =
√

x⊺2 x2 =

√√
2

2
+ 22 + (−1)2 +

√
2

2
=
√

2 + 4 + 1 + 2 =
√

9 = 3,

∥x3∥2 =
√

x⊺3 x3 =

√
(−
√

2)2 + 12 + (−2)2 + 32 =
√

2 + 1 + 4 + 9 =
√

16 = 4.

Next, we need to calculate the pairwise dot product between the vectors:

x⊺1 x2 =
√

2 ·
√

2+ (−1) · 2+ 2 · (−1)+ 3 ·
√

2 ≈ 2.243,

x⊺1 x3 =
√

2 · (−
√

2)+ (−1) · 1+ 2 · (−2)+ 3 · 3 = 2,

x⊺2 x3 =
√

2 · (−
√

2)+ 2 · 1+ (−1) · (−2)+
√

2 · 3 ≈ 6.243.

We can get the cosine distance for a pair of vectors if we take the arccos
of the fraction of their product and the product of their norms, i.e.,

dcos(x1, x2) = arccos (2.243/12) ≈ 79.23◦,

dcos(x1, x3) = arccos (2/16) ≈ 82.82◦,

dcos(x2, x3) = arccos (6.243/12) ≈ 58.65◦.

Based on our calculations so far, we can conclude now that vectors x2 and
x3 are the closest ones to each other.

4.4 Jaccard similarity

Jaccard similarity (also referred as Jaccard coefficient) is a similar-
ity score that is suited for measuring the overlap between objects
described as sets. Given two sets X and Y, it is defined as

simJaccard(X, Y) =
|X ∩Y|
|X ∪Y| . (4.7)

As such, the Jaccard coefficient quantifies the relative cardinality of
intersection between a pair of sets by normalizing with the cardinal-
ity of their union. The fraction gets maximized when the two sets
contain the exact same elements, in which case the nominator and
the denominator become the same, resulting in a similarity score of
one. Unless X = Y holds, |X ∩ Y| < |X ∪ Y| surely needs to hold, for
which reason the Jaccard similarity never exceeds 1.0. As an example,
the two sets illustrated by their Venn diagrams in Figure 4.8 has a
Jaccard similarity of 2

10 .
The smallest possible value the Jaccard similarity can take between

two points is obviously zero: this happens when there is absolutely
no overlap between the two sets it is calculated for. This means that

0 ≤ simJaccard(X, Y) ≤ 1,

for every set X and Y. It reaches the value 1 only if the two sets are
the same and has value 0 if the two set has no elements in common.
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Figure 4.8: An example pair of sets X
and Y.

Jaccard similarity can be extended to multisets as well, i.e., to such
cases, when the set is allowed to store its members multiple times.
In such a case the formula for this generalized Jaccard similarity

becomes simJaccard(A, B) =
∑
i

min(Xi ,Yi)

∑
i

max(Xi ,Yi)
, where Xi and Yi denotes the

presence of item i in set X and Y, respectively.
The Dice similarity is a very close variant of the Jaccard coeffi-

cient, which is calculated according to the formula

simDice(X, Y) =
2|X ∩Y|
|X|+ |Y| . (4.8)

There is a close relation between the Dice and the Jaccard coefficients
according to

simDice(X, Y) =
2 · simJaccard(X, Y)

1 + simJaccard(X, Y)
, (4.9)

meaning that once someone calculates the Jaccard coefficient between
two sets, it is needless to do the calculation for the Dice coefficient
as well, since by substituting into Eq. (4.9), one can directly get the
answer.

Since the two measures are so closely related to each other, it suf-
fices to deal with one of them in the followings. The similarity that
we are going to analyze from closer is going to be Jaccard similarity.

Example 4.5. It is quite typical to represent textual documents as sets, i.e.,
based on the words or character n-grams that are found is some particular
text. In this sense any text, e.g. an essay or a novel, can be viewed as a
(multi)set of the n-grams (also called shingles) that can be found in the
text. This means for instance that choosing n = 3, the sentence ’I am
happy.’ is represented by the following set of character trigrams: {’I a’, ’ am’,
’am ’, ’m h’, ’ ha’, ’hap’, ’app’, ’ppy’, ’py.’}.

Note that the choice for n when determining shingles can be deci-
sive in accessing similarity between two sets describing documents. If
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we choose n to be too low, then most documents will become highly
similar to each other. In the most extreme case, when n = 1, doc-
uments would simply be described by the set of characters they
contain. As such, it is very likely that every document would have
a large set of intersecting characters. On the other hand, by selecting
n to be a fairly large number, we would hardly find any overlapping
shingles between document pairs.

The so-called hashing trick is often applied to shingles. What
hashing trick does is that it partitions distinct shingles into equiv-
alence classes and instead of modeling documents by their actual
character n-grams, documents get represented by the equivalence
classes of their character n-grams. Identifying shingles by their hash
values can serve the purpose of saving us memory as we are no
longer distinguishing every single character n-gram.

For deriving a distance from either of the similarities discussed in
this section, we can simply subtract from the maximum possible sim-
ilarity value, i.e., 1.0 their true similarity in order to get a distance.

4.5 Edit distance

Edit distance measures the dissimilarity between a pair of strings,
i.e., given two character sequences S1 and S2, it tells us the number of
insertion and deletion operations which has to be performed in order
to turn string S1 into S2. For instance, given the character sequences
S1 = lean and S2 = lap, their edit distance is 3. To see why, notice the
following derivation

lean delete e−−−−→ lan delete n−−−−→ la
insert p−−−−→ lap.

In some sense, it can be thought as a difference between multi-
sets as well, i.e., we have to turn the characters in S1 into those of S2,
however, we can save us the effort of rewriting certain characters, i.e.,
those which can be found in both strings in the same order. We can
think of the order-preserving overlapping characters as the “inter-
section” between the two strings. More precisely, this intersection is
called the longest common subsequence between the two strings.
Having introduced the concept of longest common subsequence, we
can define edit distance as being

ED(S1, S2) = |S1|+ |S2| − 2 · LCS(S1, S2),

with |Si| denoting the number of characters to be found in string
Si and the function LCS(S1, S2) tells us the longest common subse-
quence between its two arguments. Which distance defined for sets

does edit distance resembles the
most?

?Edit distance can naturally be extended with the operation of
swapping a character to another one, which simply means that some
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character x can be rewritten into character y in a single operation.
Swapping a character is nothing else but deleting x first and inserting
y, so a frequent choice is to assign a cost of 2 for such an operation.
Another extension possibility of this idea is to introduce character
sensitive replace costs. This way it becomes possible to penalize such
character replacements more which are less likely to take place.

In order to efficiently calculate the edit distance between S1 and
S2, each having a length of n and m characters, we can notice that
for the i-long prefix of S1 and the j-long prefix of S2, the following
recurrence holds for the edit distance that we denote by ED:

• ED(0, j) = j, ∀j ∈ {0, 1, . . . , n}

• ED(i, 0) = i, ∀i ∈ {0, 1, . . . , m}

ED(i, j) = min


ED(i− 1, j) + 1, for deletion
ED(i, j− 1) + 1, for insertion
ED(i− 1, j− 1) + cost(S1[i], S2[j]), for swapping

with cost(S1[i], S2[j]) denoting the cost of directly swapping the ith

character of S1 into the jth character of S2. We can assume that the
cost is such that cost(x, y) = 0 whenever x = y. As mentioned
earlier chosing a constant cost of 2 for any x ̸= y is a reasonable and
frequent choice.

Example 4.6. Determine the edit distance between S1 = GGCTA
and S2 = AAGCTAA with the cost function being defined such that
cost(x, y) = 2 for all x ̸= y and cost(x, y) = 0, otherwise.

A 5 4 5 6 5 4 3 4
T 4 5 6 5 4 3 4 5

C 3 4 5 4 3 4 5 6

G 2 3 4 3 4 5 6 7

G 1 2 3 2 3 4 5 6

^ 0 1 2 3 4 5 6 7

^ A A G C T A A

Note that the characters in the longest common subsequence of S1 and
S2 are highlighted green. Since |S1| = 5, |S2| = 7 and LCS(S1, S2) = 4,
we were supposed to obtain an edit distance of 5 + 7− 2 · 4 = 4, which
is exactly the number that we calculated lastly when filling out the table
containing the result(s) of the (sub)problems according to the recursive
problem formulation.

We shall note that there are multiple further variants of edit dis-
tance. For instance certain implementations allow for the operation
of transposition in which two consecutive characters can be swapped
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for unit cost, such that for instance ED(bear, baer) = 1. Obviously a
transposition operation can be expressed as a composition of a dele-
tion and an insertion operation (in either order) with a total cost of
2 units. As such, the edit distance which allows for transposition is
going to assign smaller (although not strictly smaller) values for any
pair of input strings.

4.6 Distances for distributions

We finally turn our attention to distances that are especially used
for measuring dissimilarity between probability distributions. These
distances can be used for example for feature selection 2, but they can 2 Euisun Choi and Chulhee Lee. Feature

extraction based on the Bhattacharyya
distance. Pattern Recognition, 36(8):
1703 – 1709, 2003. ISSN 0031-3203.
doi: https://doi.org/10.1016/S0031-
3203(03)00035-9. URL http://www.

sciencedirect.com/science/article/

pii/S0031320303000359

also be used to measure the distance data points that are described
by probability distributions.

The distances covered in the followings all work for both categori-
cal and continuous distributions. Here, we discuss the variants of the
distances for the discrete case only. We shall add, however, that the
definitions provided next can be easily extended to the continuous
case if we replace the summations by calculating integrals over the
support of the random variables.

These distances can be both applied at the feature level as well as
at the level of instances, i.e., the columns and rows of our data ma-
trix, respectively. Here, we will illustrate the usage of these distances
via the latter case, i.e., we would like to determine the similarity of
objects that can be characterized by some categorical distribution. In
the followings, we will assume that we are given with two categorical
probability distributions P(X) and Q(X) for the random variable X.

4.6.1 Bhattacharyya and Hellinger distances

Bhattacharyya distance is defined as

dB(P, Q) = − ln BC(P, Q) (4.10)

with BC(P, Q) denoting the Bhattacharyya coefficient, which can be
calculated according to the formula

BC(P, Q) = ∑
x∈X

√
P(x)Q(x). (4.11)

The Bhattacharyya coefficient is maximized when P(x) = Q(x) for
all x ∈ X, in which case the coefficient simply equals ∑

x∈X
P(x) = 1.0.

This is illustrated via the example of two Bernoulli distributions P
and Q in Figure 4.9. Recall that the Bernoulli distribution is a dis-
crete probability distribution which assigns some fixed amount of

http://www.sciencedirect.com/science/article/pii/S0031320303000359
http://www.sciencedirect.com/science/article/pii/S0031320303000359
http://www.sciencedirect.com/science/article/pii/S0031320303000359
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Figure 4.9: The visualization of the
Bhattacharyya coefficient for a pair of
Bernoulli distributions P and Q.

probability mass p for the random variable taking the value 1 and a
probability mass of 1− p for the random variable being equal to 0.

Bhattacharyya coefficient hence can be treated as a measure of
similarity, i.e., the more similar two distributions are, the closer
their Bhattacharyya coefficient is to one. This behavior of the Bhat-
tacharyya coefficient further implies that whenever two distributions
are the same, their Bhattacharyya distance is going to be equal to
zero, as ln 1 = 0. The Bhattacharyya distance naturally obeys symme-
try which follows from the commutative nature of multiplication and
summation involved in the calculation of the distance.

Triangle inequality, however, does not hold to the Bhattacharyya
distance. This is because the non-linear nature of the logarithm being
applied in Eq. (4.10). The term involving the logarithm severely pun-
ishes cases, when its arguments are small, i.e., close to zero, and adds
an infinitesimally small penalty, whenever P(x) ≈ Q(x) holds.

Example 4.7. In order to illustrate that the triangle inequality does not
hold for the Bhattacharyya distance, consider the two Bernoulli distributions
P ∼ Bernoulli(0.2) and Q ∼ Benroulli(0.6) that are visualized in
Figure 4.10 (a). Applying the formula for the Bhattacharyya distance from
Eq. (4.10), we get

dB(P, Q) = − ln(
√

0.2 ∗ 0.6 +
√

0.8 ∗ 0.4) = 0.092.

If triangle inequality hold, we would need to have

dB(P, R) + dB(R, Q) ≥ dB(P, Q)

for any possible R.
However, this is clearly not the case as also depicted in Figure 4.10 (b),

where we can see that it is possible to find such a distribution R that the
Bhattacharyya distance dB(P, Q) exceeds the sum of Bhattacharyya dis-
tances dB(P, R) and dB(R, Q).
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Indeed, the sum of Bhattacharyya distances gets minimized for R ∼
Bernoulli(0.4), i.e., when R lies “half way” between the distributions P and
Q. In that case we get

dB(P, R) + dB(R, Q) =− ln(
√

0.2 ∗ 0.4 +
√

0.8 ∗ 0.6)

− ln(
√

0.4 ∗ 0.6 +
√

0.6 ∗ 0.4) = 0.045,

which is smaller than the previously calculated Bhattacharyya distance
dB(P, Q) = 0.092.
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(a) Two Bernoulli distributions P and Q.
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(b) The direct Bhattacharyya distance of P
and Q and that as a sum introducing an
intermediate distribution R.

Figure 4.10: Illustration for the Bhat-
tacharyya distance not obeying the
property of triangle inequality.

Hellinger distance is a close relative of the Bhattacharyya distance
for which triangle inequality holds and which is formally defined as

dH(P, Q) =
√

1− BC(P, Q), (4.12)

with BC(P, Q) denoting the same Bhattacharyya coefficient as al-
ready defined in Eq. (4.11).

Figure 4.11 (b) illustrates via the distributions from Example 4.7
that – contrarily to the Bhattacharyya distance – the Hellinger dis-
tance fulfills the triangle inequality. Hellinger distance further differs
from Bhattacharyya distance in its range, i.e., the former takes values
from the interval [0, 1], whereas the latter takes values between zero
and infinity.

An equivalent expression for the Hellinger distance reveals its rela-
tion to the Euclidean distance, i.e., it can be alternatively expressed as

dH(P, Q) =
1√
2

∥∥∥√P−
√

Q
∥∥∥

2
, (4.13)

treating some multivariate probability distributions of P and Q with
k possible outcomes as vectors in the k-dimensional space. In order to
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(a) The two Bernoulli distributions P and Q
from Example 4.7.
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Figure 4.11: Illustration for the
Hellinger distance for the distribu-
tions from Example 4.7.

see the equivalence between Eq. (4.12) and Eq. (4.13), notice that∥∥∥√P−
√

Q
∥∥∥2

2
=
(√

P−
√

Q
)⊺(√

P−
√

Q
)

(4.14)

=
√

P
⊺√

P +
√

Q
⊺√

Q− 2
√

P
⊺√

Q (4.15)

= ∑
x∈X

P(x) + ∑
x∈X

Q(x)− 2 ∑
x∈X

√
P(x)Q(x) (4.16)

=2
(

1− ∑
x∈X

√
P(x)Q(x)

)
(4.17)

=2
(

1− BC(P, Q)
)

. (4.18)

4.6.2 Kullback-Leibler and Jensen-Shannon divergences

Kullback-Leibler divergence (KL divergence for short) is formally
given as

KL(P∥Q) = ∑
x∈X

P(x) log
P(x)
Q(x)

.

Whenever P(x) = 0, we say that the P(x) log P(x)
Q(x) term in the sum

cancels out, so there is no problem with the log 0 in the expression.
In order the KL divergence to be defined, Q(x) = 0 has to imply

P(x) = 0. Should the previous implication not hold, we cannot
calculate KL divergence for the pair of distributions P and Q. Recall
that a similar implication in the reverse direction is not mandatory,
i.e., P(x) = 0 does not have to imply Q(x) = 0 in order the KL
divergence between distributions P and Q to be quantifiable.

The previous property of KL divergence tells us that it is not a
symmetric function. Indeed, not only there exist distributions P
and Q for which KL(P∥Q) ̸= KL(Q∥P), but it is also possible that
KL(P∥Q) is defined, whereas KL(Q∥P) is not.
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It is useful to know that KL divergence can be understood as a
difference between the cross-entropy of distributions P and Q and the
Shannon entropy of P, denoted as

KL(P∥Q) = H(P; Q)− H(P).

Cross entropy is a similar concept to Shannon entropy introduced
earlier in Section 3.3.1. Notice the slight notational difference that
we employ for cross entropy (H(P; Q)) and joint entropy (H(P, Q))

discussed earlier in Section 3.3.1. Formally, cross entropy is given as

H(P; Q) = − ∑
x∈X

P(x) log Q(x),

which quantifies the expected surprise factor for distribution Q as-
suming that its possible outcomes are observed according to distri-
bution P. In that sense, it is capable of quantifying the discrepancy
between two distributions. This quantity is not symmetric in its ar-
guments, i.e., H(P; Q) = H(Q; P) does not have to hold, which again
corroborates the non-symmetric nature of the KL divergence.

Cross entropy gets minimized when P(x) = Q(x) holds for ev-
ery x from the support of the random variable X. It can be proven
by using either the Gibbs inequality or the log sum inequality that
H(P; Q) ≥ H(P) holds for any two distributions P and Q, which
implies that KL(P∥Q) ≥ 0, with the equation being true when
P(X) = Q(X) for every value of X. The latter observation follows
from the fact that H(P; P) = H(P).

Jensen-Shannon divergence (JS divergence for short) is derived
from KL divergence, additionally obeying the symmetry property.
It is so closely related to KL divergence that it can essentially be
expressed as an average of KL divergences as

JS(P, Q) =
1
2
(KL(P∥M) + KL(Q∥M)) ,

with M denoting the average distribution of P and Q, i.e.,

M =
1
2
(P + Q) .

Example 4.8. Imagine Jack spends 75%, 24% and 1% of his spare time
reading some book, going to the cinema and hiking. Two of Jack’s colleagues
– Mary and Paul – devote their spare time according to the probability
distributions [0.60, 0.30, 0.10] and [0.55, 0.40, 0.05] for the same activities.
Let us quantify which colleague of Jack likes to spend their spare time the
least dissimilar to Jack, i.e., whose distribution lies the closest to that of
Jack’s.

For measuring the distances between the distributions, let us make use
of the different distances that we covered in this chapter, including the ones
that are not specially designed to be used for probability distributions.
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The results of the calculations are included in Table 4.1 and the code
snippet written in vectorized style that could be used to reproduce the results
can be found in Figure 4.13. A crucial thing to notice is that depending
which notion of distance we rely on, we arrive to different answers regarding
which colleague of Jack has a more similar preference for spending their
sparse time. What this implies that data mining algorithms which rely on
some notion of distance might result in different outputs if we modify how
we define the distance between the data points.

The penultimate row of Table 4.1 and the one before it also highlights the
non-symmetric nature of KL divergence.
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Paul Figure 4.12: Visualization of the dis-

tributions regarding the spare time
activities in Example 4.8. R, C and H
along the x-axis refers to the activi-
ties reading, going to the cinema and
hiking, respectively.

Mary Paul

city block distance 0.300 0.400

Euclidean distance 0.185 0.259

Chebyshev distance 0.150 0.200

cosine distance 0.204 0.324

Bhattacharyya distance 0.030 0.026
Hellinger distance 0.171 0.160

KL(Jack∥colleague) 0.091 0.094

KL(colleague∥Jack) 0.163 0.114
JS divergence 0.027 0.025

Table 4.1: Various distances between
the distribution regarding Jack’s leisure
activities and his colleagues. The
smaller values for each notions of
distances is highlighted in bold.

4.7 Euclidean versus non-Euclidean distances

In the previous sections, we have familiarized with a series of dis-
tance concepts. Some of them were measuring the “actual, physical”
distance between data points in a representation where taking the
average of two points was possible and made sense. Such distances
are referred to as Euclidean distances. There were, however, other
distances which operated over objects the average of which could not
be easily interpreted or defined. This other group of distances form Try to categorize the various dis-

tances discussed over the chapter
whether they belong to the Eu-
clidean or the non-Euclidean family
of distances.

?
the family of non-Euclidean distances.
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j = [0.75 0.24 0.01]; %distribution for Jack

% distributions for Jack’s colleagues

Colls = [0.60 0.30 0.10; 0.55 0.40 0.05];

e_d = norm(j-Colls, ’rows’)’; % Euclidean distances

cb_d = norm(j-Colls, 1, ’rows’)’; % city block distances

c_d = norm(j-Colls, Inf, ’rows’)’; % Chebyshev distances

normalized_j = j / norm(j);

normalized_Colls = Colls ./ norm(Colls, ’rows’);

cosine_distances = acos(normalized_j * normalized_Colls’);

BC = sqrt(j)*sqrt(Colls)’; % Bhattacharyya coefficient

bd = -log(BC); % Bhattacharyya distance

hd = sqrt(1-BC); % Hellinger distance

M = 0.5 * (j+Colls);

KL = @(P,Q) sum(P.*log(P./Q), 2)

kl_forward = KL(j, Colls);

kl_backward = KL(Colls, j);

js = 0.5 * (KL(j, M) + KL(Colls, M));

CODE SNIPPET

Figure 4.13: Sample code to calculate
the difference distance/divergence
values for the distributions from Exam-
ple 4.8.
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4.8 Summary of the chapter

This chapter introduced the concepts of distances and similarities
between data points and introduced a series of distances frequently
applied in data mining approaches. Readers of this chapter are ex-
pected to know the different characteristics of the different distances
and to be able to argue for a particular choice of distance upon deal-
ing with a dataset.



5 | FINDING SIMILAR OBJECTS EFFICIENTLY

Readers of this chapter can learn about different ways of quan-
tifying similarity between pairs of objects. In particular, by the end of
the chapter one should

• understand and argue for the need of approximate methods to
measure for the similarity of objects,

• assess these approximate methods for measuring similarity from a
probabilistic perspective.

5.1 Locality Sensitive Hashing

Supposed we have n elements in our dataset, finding the item which
is the most similar to every item in the dataset takes (n

2) = O(n2)

comparisons. For large values of n, this amount of comparison is
definitely beyond what is practically manageable.

What we would like to do, nonetheless, is to form roughly equally-
sized bins of items in such a way that similar items make it to the
same bin with high probability, while dissimilar points are assigned
to the same bin infrequently with low probability. Naturally, we want
to obtain this partitioning of the items without the need to calculate
all (or even most) of the pairwise distances. If we manage to come up
with such a partitioning mechanism, then it obviously suffices to look
for points of high similarity within the same bin for every points.

Example 5.1. Suppose you want to find the most similar pairs of book
in a library consisting of 106 books. In order to do so, you can perform
(106

2 ) ≈ 5 · 1011 (500 billion) comparisons if you decide to systematically
compare books in every possible way. This is just too much expense.

If you manage to partition the data into, say, 100 equal parts in a way
that it is reasonable to assume that the most similar pairs of books are as-
signed within the same partition, then you might consider performing a rea-
sonably reduced number of pairwise comparisons, i.e., 100 · (104

2 ) ≈ 5 · 109.

Learning Objectives:
• Locality sensitive hashing (LSH)

• AND/OR constructions for LSH

• Bloom filters
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As the above example illustrated, the general rule of thumb is
that if we are able to divide our data into k (roughly) equally-sized
partitions and restrict the pairwise comparisons conducted to only
those pairs of objects which are grouped to the same partition, a k-
fold speedup can be achieved. The question still remains though,
how to partition our object in a reasonable manner. We shall deal
with this topic next for the Jaccard distance first.

5.1.1 Minhash functions

In this setting, we have a collection of data points that can be de-
scribed by sets of attributes characterizing them. As an example, we
might have documents being described by the collection of words
which they include or restaurants having a particular set of fea-
tures and properties (e.g. expensive, children friendly, offering free
parking). We can organize these binary relations in a characteris-
tic matrix. Values in a characteristic matrix tell us whether a certain
object (represented as a row) has a certain property (represented by
columns). Ones and zeros in the characteristic matrix represent the
presence and absence of properties, respectively.

C=[1 0 0 1; 0 0 1 0; 1 1 1 0; 0 1 1 1; 0 0 1 0; 1 0 1 0];

>> C =

1 0 0 1

0 0 1 0

1 1 1 0

0 1 1 1

0 0 1 0

1 0 1 0

CODE SNIPPET

Figure 5.1: Creating the characteristic
matrix of the sets

In Figure 5.2 we illustrate how can we permute the rows of the
characteristic matrix in Octave. The method randperm creates us a
random ordering of the integers that we can use for reordering our
matrix. The way permutation [6 1 3 4 2 5] can be interpreted is
that the first row of the reordered matrix will contain the sixth row
from the original matrix, the second row of the reordered matrix will
consist of the first row of the original matrix and so on.

The following step we need to perform is to determine the posi-
tion of the first non-zero entry in the permuted characteristic matrix,
which is essentially the definition of the minhash value for a set
given some random reordering of the characteristic matrix.
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rand(’seed’, 1) % ensure repoducibility of the permutation

% create a permutation vector with the size of the

% the number of rows in the characteristic matrix

idx = randperm(size(C,1))

>> idx =

6 1 3 4 2 5

C(idx, :) % let’s see the results of the permutation

>> ans =

1 0 1 0

1 0 0 1

1 1 1 0

0 1 1 1

0 0 1 0

0 0 1 0

CODE SNIPPET

Figure 5.2: Creating a random permuta-
tion of the characteristic matrix

In our Octave code we will make use of the fact that the elements
we are looking for are known to be the maximal elements in the char-
acteristic matrix. Hence, we can safely use the max function which is
capable of returning not only the column-wise maxima of its input
matrix, but their location as well. Conveniently, this function returns
the first occurrence of the maximum value if it is present multiple
times, which is exactly what we need for determining the minhash
value of a set for a given permutation of the characteristic matrix.

In Figure 5.3 we can see that invoking the max function returns
us all ones for the max_values. This is unsurprising as the matrix in
which we are looking for the maximal values consist of only zeros
and ones. More importantly, the max_indices variable tells us the
location of the first occurrences of the ones in the matrix for every
column. We can regard every element of this output as the minhash
function value for the corresponding set in the characteristic matrix
given the current permutation of its rows.

[max_values, max_indices] = max(C(idx, :))

>> max_values =

1 1 1 1

max_indices =

1 3 1 2

CODE SNIPPET

Figure 5.3: Determine the minhash
function for the characteristic matrix
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We should add that in a real world implementation of minhashing
– when we have to deal with large-scale datasets – we do not explic-
itly store the characteristic matrix in a dense matrix format as it was
provided in the illustrative example.

The reason is that since most of the entries of the characteristic
matrix are typically zeros, it would be hugely wasteful to store them
as well. Instead, the typical solution is to store the characteristic
matrix in a sparse format, where we only need to store the non-zero
indices for every row. Ideally and most frequently, the amount of
memory consumed for storing the indices for the non-zero indices
take orders of magnitude less compared to the explicit full matrix
representation.

The other practical observation we should make is that actually
swapping rows of the characteristic matrix when performing permu-
tation is another source of inefficiency. Instead, what we should do
is to leave the characteristic matrix intact and generate an alias iden-
tifier for each row. This alias identifier acts as a virtual row index for
a given row. From the running example above, even though the first
row of the characteristic matrix would stay in its original position, we
would treat this row as if it was row number 6, which comes from
the permutation indices we just generated.

Initially, we set the minhash value for every set to be infinity.
Then upon investigating a particular row of the characteristic matrix,
whichever set contains a one for that given row, we update their cor-
responding minhash values found so far by the minimum of the alias
row identifier of the current row and the current minhash value of
the given set. After processing every row of the (virtually) permuted
characteristic matrix, we would be given with the correct minhash
values for all of the sets represented in our characteristic matrix.

Example 5.2. Let us derive how would the efficient calculation of the min-
hash values look like from iteration to iteration for the sets in the characteris-
tic matrix given by

C =



S1 S2 S3 S4

1(2) 1 0 0 1
2(5) 0 0 1 0
3(3) 1 1 1 0
4(4) 0 1 1 1
5(6) 0 0 1 0
6(1) 1 0 1 0


.

As for the permutation of the rows, we used the same permutation vector as
before, i.e., [6, 1, 3, 4, 2, 5], meaning that the rows of the characteristic matrix
in their original order will function as the second, fifth, third, fourth, sixth
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Algorithm 1: Efficient calculation of
the minhash values for multiple sets
stored in characteristic matrix C and a
given permutation of rows π.

Require: Characteristic matrix C ∈ {0, 1}k×l and its permutation of
row indices π.

Ensure: minhash vector m
1: function CalculateMinhashValue(C, π)
2: m← [∞]l

3: for row_index=1 to k do
4: virtual_row_index ← π[row_index]
5: for set_index=1 to l do
6: if C[row_index, set_index] == 1 then
7: m[set_index]← min(m[set_index], virtual_row_index)
8: end if
9: end for

10: end for
11: return m
12: end function

and first rows in the (virtually) permuted matrix, respectively. These virtual
row indices will be denoted by the row aliases which are put in front of every
row of the characteristic matrix for convenience in a parenthesis right after
the original row numbers.

Iteration row alias S1 S2 S3 S4

0 ∞ ∞ ∞ ∞
1 2 2 = min(2, ∞) ∞ ∞ 2 = min(2, ∞)

2 5 2 ∞ 5 = min(5, ∞) 2
3 3 2 = min(3, 2) 3 = min(3, ∞) 3 = min(3, 5) 2
4 4 2 3 = min(4, 3) 3 = min(4, 3) 2 = min(4, 2)
5 6 2 3 3 = min(6, 3) 2
6 1 1 = min(1, 2) 3 1 = min(1, 3) 2

Table 5.1: Step-by-step derivation of
the calculation of minhash values for a
fixed permutation.

After the last row is processed, we obtain the correct minhash values for
sets S1, S2, S3, S4 as 1, 3, 1, 2, respectively. These minhash values can be
conveniently read off from the last row of Table 5.1 and they are identical
with the Octave-based calculation included in Figure 5.4.

Now that we know how to calculate the minhash value of a set
with respect to a given permutation of the characteristic matrix, let us
introduce the concept of minhash signatures. A minhash signature is
nothing else but a series of minhash values stacked together accord-
ing to different (virtual) permutations of the characteristic matrix.

Before checking out the next code
snippet, could you extend the pre-
vious code snippets in order to
support the creation of minhash
signatures?

?
An important property of minhash signatures is that for any pair

of sets (A, B), we get that the relative proportion of times their min-
hash values match each other is going to be equal to their Jaccard
similarity j, given that we perform all the possible permutations of
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signature = zeros(8, size(C,2));

for k=1:size(signature, 1)

[max_values, max_indices] = max(C(randperm(size(C,1)),:));

signature(k,:) = max_indices;

end

>> signature =

1 3 1 2

1 4 1 3

1 1 1 2

2 4 1 3

3 2 1 2

1 1 1 2

1 1 1 3

2 1 1 1

CODE SNIPPET

Figure 5.4: Determine the minhash
function for the characteristic matrix

the elements of the sets. We never make use of this result directly,
since performing every possible permutations would be computa-
tionally prohibitive. A more practical view of the same property is
that assuming that we generated just a single random permutation
of the elements of the sets, the probability that the two sets will end
up having the same minhash value exactly equals their actual Jaccard
similarity j, i.e.,

P(h(A) = h(B)) = j. (5.1)

Assume that |A ∩ B| = m and |A△B| = n holds, i.e., the inter-
section and the symmetric difference between the two sets are m and
n, respectively. From here, it also follows that |A ∪ B| = n + m. This
means that there are n + m rows in the characteristic matrix of sets
A and B which can potentially influence the minhash value of the
two sets, constituting (n + m)! possible permutation possibilities in
total. If we now consider the relative proportion of those permuta-
tions which result in such a case when one of the m elements in the
intersection of the two sets precede any of the remaining (n + m− 1)
elements in a random permutation, we get

m(n + m− 1)!
(n + m)!

=
m

(n + m)
=
|A ∩ B|
|A ∪ B| = j.

5.1.2 Analysis of LSH

In order to analyze locality sensitive hashing from a probabilistic
perspective, we need to introduce some definitions and notations



82 data mining

first.
We say that some hash function h is a member of the (d1, d2, p1, p2)-

sensitive hash functions, if for any pair of points (A, B) the following
properties hold

1. P(h(A) = h(B)) ≥ p1, whenever d(A, B) < d1

2. P(h(A) = h(B)) ≤ p2, whenever d(A, B) > d2.

What this definition really requires is that whenever the distance
between a pair of points is substantially low (or conversely, whenever
their high), then their probability of being assigned with the same
hash value should also be high. Likewise, if their pairwise distance
if substantially large, their probability of being assigned to the same
bucket should not be large.

Example 5.3. Based on that definition and our previous discussion on the
properties of the Jaccard similarity (hence the distance as well), we can con-
clude that the minhash function belongs to the family of (0.2, 0.4, 0.8, 0.6)-
sensitive functions.

Indeed, any set with a Jaccard distance at most 0.2 (which equals a Jac-
card similarity of at least 0.8), the probability that they will receive the same
minhash function for some random permutations is at least 0.8. Likewise, for
any pairs of sets with a Jaccard distance larger that 0.4 (equivalently with
their Jaccard similarity not exceeding 0.6), the probability of assigning them
identical minhash value is below 0.6 as well.

If we have a simple locality sensitive function belonging to the
family of hash functions of certain sensitivity, we can create com-
posite hash functions based on them. A good idea to do so might
be to calculate a series of hash functions first, just like we did it for
minhash signatures.

Now instead of thinking of such a minhash signature of length k –
calculated based on k independent permutation of the characteristic
matrix – let us treat these signatures as b independent bands, each
consisting of r minhash values, hence k = rb. A sensible way to
combine the k independent minhash values could be as follows:
investigate every band of minhash values and align two objects into
the same bucket if there exists at least one band of minhash values
over which they are identical to each other for all the r rows of a
band. This strategy is illustrated by Figure 5.5. According to the LSH
philosophy, when searching for pairs of objects of high similarity, it
suffices to look for such pairs within each of the buckets, since we are
assigning objects to buckets in a way that similar objects will tend to
be assigned into the same buckets.

Let us now investigate the probability of assigning two objects
with some Jaccard similarity j into the same bucket when employing
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rows

bandsb

r

n elements

buckets Figure 5.5: Illustration of Locality
Sensitive Hashing. The two bands
colored red indicates that the minhash
for those bands are element-wise
identical.

b bands of r rows in the above described manner. Recall that due
to our previous observations related to the Jaccard similarity, when
b = r = 1 we simply get that the results of Eq. (5.1). The question is
now, how shall we modify our expectations in the general case, when
both b and r are allowed to differ from 1.

Observe first that the probability of obtaining the exact same min-
hash values for a pair of objects over r random permutations is sim-
ply jr, that is

P(h1(A) = h1(B), h2(A) = h2(B), . . . , hr(A) = hr(B)) = jr. (5.2)

From Eq. (5.2), we get that the probability of having at least one
mismatch between the pairwise minhash values of the two objects
over r permutations of the characteristic matrix equals 1− jr.

Finally, we can notice that observing at least one band of identical
minhash values out of b bands for a pair of objects is just the comple-
ment event of observing only such bands that mismatch on at least
one position. This means that our final probability of assigning two
objects into the same bucket in the general case, when we treat min-
hash signatures of length k = rb as b independent bands of r minhash
values can be expressed as

1− (1− jr)b. (5.3)

As we can see from Eq. (5.3), r and b has opposite effects for the
probability of assigning a pair of objects to the same bucket. In-
creasing b increases the probability for a pair of sets of becoming a
candidate that we shall check for their actual similarity, whereas in-
creasing r decreases the very same probability. When we increase b,
we are essentially allowing for more trials to see an identical band
of r minhash values. On the other hand, when we increase r, we are
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imposing a more stringent condition on when a band is regarded
identical. Hence additional rows within a band act in a restrictive
manner, whereas additional bands have a permissive effect when
assigning objects to bands. Each subfigure within Figure 5.6

corresponds to a different choice of
b ∈ {1, 2, . . . , 10}. Can you argue
which curve corresponds to which
value of b?

?
Notice how the previously found probability can be motivated by

a coin toss analogy. Suppose we are tossing a possibly biased coin
(that is the probability of tossing a head and a tail are not necessarily
0.5 each) and tossing a head is regarded as our lucky toss. Now the
probability we are interested corresponds to the probability of tossing
at least one head out of b tosses for which the probability of tossing a
tail equals 1− jr. This probability can be exactly given by Eq. (5.3).
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r=7 and b=1:10

Figure 5.6: Illustration of the effects
of choosing different band and row
number during Locality Sensitive
Hashing for the Jaccard distance. Each
subfigure has the number of rows per
band fixed to one of {1, 3, 5, 7} and the
values for b range in the interval [1, 10].

Can you make an argument which
curves of Figure 5.6 are reasonable
to be compared with each other?
(Hint: Your suggestion for which
curves are comparable with each
other might span across multiple
subplots.)

?

Figure 5.6 visualizes different values of Eq. (5.3) as a function of
varying b and r values. Notice that for the top-left subfigure (with
r = 1), only the permissive component of the formula takes its effect,
which results in extreme lenience towards data points being assigned
to the same bucket even when their true Jaccard similarity found
along the x-axis is infinitesimal. The higher value we pick for r, the
more pronouncedly this phenomenon can be observed.

We now have a clear way for determining the probability for two
sets with a particular Jaccard similarity to be assigned to the same
bucket, hence to become such a pair of candidates that we regard to
be worthwhile for investigating their exact similarity. Assume that
we have some application, where we can determine some similarity
threshold J, say, 0.6 which corresponds to such a value above which
we would like to see pairs of sets to be assigned to the same bucket.
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With the hypothetical threshold of 0.6. in mind, Figure 5.7 depicts
the kind of probability distribution we would like to see for assign-
ing a pair of objects to the same bucket as a function of their actual
(Jaccard) similarity.
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Figure 5.7: The ideal behavior of our
hash function with respect its prob-
ability for assigning objects to the
same bucket, if our threshold of critical
similarity is set to 0.6.

Unfortunately, we will never be able to come up with a hash func-
tion which would behave as a discontinuous step function similar
to the idealistic plot in Figure 5.7. Our hash function will, however,
surely assign at least a tiny non-zero probability mass for pairs of
objects being assigned to the same bucket even in such cases, when it
is otherwise not desired, i.e., their similarity falls behind the expected
threshold J. This kind of error is what we call the false positive
error, since we are erroneously treating dissimilar object pairs pos-
itively by assigning them into the same bucket. The other possible
error is the false negative error when we fail to assign substantially
similar pairs of objects into the same bucket. The false positive and
false negative error region is marked by red vertical and green hori-
zontal stripes in Figure 5.8, respectively.
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Jaccard similarity

(a) Applying 3 bands and 4 rows per band.
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(b) Applying 4 bands and 3 rows per band.

Figure 5.8: The probability of assigning
a pair of objects to the same basket with
different number of bands and rows per
bands.

Example 5.4. Figure 5.8 (a) and (b) illustrates the probability for assign-
ing a pair of objects to the same bucket when 12 element minhash signa-
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tures are treated as a composition of 4 bands and 3 rows within a band
(Figure 5.8 (a)) and 3 bands and 4 rows within a band (Figure 5.8 (b)).
Note how different the sizes are for the areas striped by red and green. This
demonstrates how one can control for the false positive and false negative
rate by changing the values of b and r.

There will always be a tradeoff between the two quantities, in the
sense that we can decrease one kind of the error rates at the expense
of increasing the other kind and vice versa. Intuitively, if we wish to
reduce the amount of false negative error, we need to be more per-
missive for assigning pairs of objects to the same bucket. Becoming
more permissive, however, will not only increase the probability for
truly similar pairs of points being assigned to the same bucket only,
but potentially for dissimilar ones as well.

Assume that we have r independent hash functions h1, h2, . . . , hr,
each being a member of the family of (d1, d2, p1, p2)-sensitive hash
functions. If we construct a composit hash function h′ which as-
signs identical hash value for a pair of objects if they receive the
same atomic hash values for all of the hi, 1 ≤ i ≤ r independent
(d1, d2, p1, p2)-sensitive hash functions, then the h′ hash function
belongs to the family of (d1, d2, pr

1, pr
2)-sensitive hash functions.

Supposing now that we have b independently trained hash func-
tions each belonging to the family of (d1, d2, p1, p2)-sensitive hash
functions. By creating a composite hash function h′ which assigns
two objects the same hash value if they are assigned the same hash
value by either of h1, h2, . . . , hb, the resulting hash function h′ will be-
long to the family of (d1, d2, 1− (1− p1)

b, 1− (1− p2)
b)-sensitive hash

functions. Our original idea was to perform
AND-constructions of the atomic
hash functions first, followed by
OR-constructions. What would be
the rule for assigning a pair of ob-
jects into the same bucket if the two
different kinds of amplifications
were performed in reverse order
(i.e., OR-amplifications followed by
AND-amplifications)?

?

AND/OR-amplifications can be regarded as a generalization of
the kind of sensitivity analysis we have conducted so far. Note that
AND/OR-amplifications can be nested in an arbitrarily complex
manner and order. According to our original idea, we proposed treat-
ing our minhash signature as a series of AND-amplified atomic hash
functions, for the outputs of which we applied OR-amplifications.

By introducing a general characterization on the effects towards
the sensitivity of composit hash functions, we can easily analyze
any complex composit hash functions as illustrated by the following
example.

Example 5.5. We have argued previously that the minhash function belongs
to the family of (0.2, 0.6, 0.8, 0.4)-sensitive hash functions. In fact, it is true
that the minhash function is a (d1, d2, 1− d1, 1− d2)-sensitive function for
any choice of 0 ≤ d1 < d2 ≤ 1.
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What would be the sensitivity of the composite hash function that we
obtain by applying AND-construction with r = 3 followed by an OR-
construction using b = 4?

The composite hash function that we derived in the previous way from
a (0.2, 0.6, 0.8, 0.4)-sensitive atomic hash function belongs to the family of
(0.2, 0.6, 0.943, 0.232)-sensitive hash functions. The p1 sensitivity of the
composite hash function can be simply derived as

0.943 = 1− (1− 0.83)4,

The value for p2 can be calculated in a similar manner, by replacing 0.8 with
0.4.

Figure 5.9 depicts the behavior of the LSH approach with respect the
above specified parameters towards the probability of assigning pairs of
objects to the same bucket. Note that it would also be possible to perform
the different compositions in the reverse order, the results of which is also
included in Figure 5.9.
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Figure 5.9: The probability curves
when performing AND-construction
(r = 3) followed by OR-constructions
(b = 4). The curves differ in the order
the AND,-and OR-constructions follow
each other.

Can you argue which curve in Fig-
ure 5.9 corresponds to performing
AND-amplifications followed by
OR-constructions? If clueless, try
invoking the code snippet in Fig-
ure 5.10.

?
a=@(p, s) p.^s % responsible for AND-constructions

o=@(p, b) 1-(1-p).^b % responsible for OR-constructions

j=0:0.05:1; % the range of Jaccard similarity

plot(j, o(a(j, 3), 4), j, a(o(j, 4), 3))

CODE SNIPPET

Figure 5.10: Illustration of combining
AND/OR-amplifications in different
order.

5.1.3 LSH for cosine distance

We have seen previously a locality sensitive hash function for the
Jaccard distance. A natural question to ask ourselves, how can we
provide similarly nice hash functions for distances of different nature
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beyond the Jaccard distance. We now turn our attention to the cosine
distance and come up with a hash function for it.

The idea behind the hash function used for cosine distance is
based on projecting vectors onto randomly drawn hyperplanes. Fig-
ure 5.11 provides a brief sketch regarding the relation between the
dot product and projections of vectors onto hyperplanes, which can
be safely skipped by readers who feeling themselves familiar enough
about it.

The dot product (or inner product) between tho vectors x, y ∈ Rd is
simply the sum of their coordinatewise product,

x⊺y =
d

∑
i=1

xiyi. (5.4)

Dot product occur at many important places, e.g., as we saw it in
Section 4.3, it is related to the cosine of the angle enclosed by two
vectors. Additionally, dot product is related to the perpendicular
projection of vector x onto vector y, which is given by

x⊥y =
x⊺y
y⊺y

y. (5.5)

The way we can interpret Eq. (5.5) is that the orthogonal projection
of x onto y points to the orientation of y, and its length equals that of
the dot product of the two vectors.
A slightly different view of the dot product hence is the following: it
equals the signed distance of vector x from the hyperplane which is
normal to y. Now the sign of dot product tells us on which ’side’ of
the hyperplane defined by y vector x is located at. If the dot product
is positive, it means that x lies in the positive half-space. Likewise,
when it is negative we can conclude that x is located at the nega-
tive half-space. Finally, if the dot product is zero then x is exactly
positioned on the hyperplane to which y is normal to.

MATH REVIEW | DOT PRODUCT

Figure 5.11: Dot product

We need to construct next an analogous counterpart of the min-
hash signatures that we were relying on for the Jaccard distance. If
we can do so, we can pretty much apply all the analysis that we pre-
viously gave for it in terms of false positive and negative rates. Let
us define for the case of cosine similarity a singleton hash function
which takes as input some x ∈ Rd as

hs(x) = sign(s⊺x), (5.6)

with sign referring to the sign function and s ∈ Rd being a randomly
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sampled normal vector to some hyperplane in Rd.
When applying one such hash function to a pair of vectors (x, y),

then the probability for the two vectors receiving the same hash value
introduced in Eq. (5.6) equals

P(hs(x) = hs(y)) =
180− θ

180
, (5.7)

where θ denotes the angle enclosed by vectors x and y.
Properties of the dot product discussed in Figure 5.11 explains

why this geometric probability holds. The larger the angle between
two vectors, the more likely that a randomly drawn hyperplane could
behave as an ’intruder’, i.e., lie in between the two vectors. Similarly,
if the angle enclosed by a pair of vectors is small, then the chances for
drawing such a hyperplane which splits the space such that the two
vectors are located at the different half-spaces is also small.

Figure 5.12 nicely illustrates that the probability of drawing such
a hyperplane which separates the two endpoints of vectors x and y
is proportional to the angle enclosed by them, or equivalently, the
probability of the two vectors not to be separated is proportional to
180− θ as stated in Eq. (5.7).

θθ180-θ180-θ

ss11

ss22
xx

yy

Figure 5.12: Illustration of the geometric
probability defined in Eq. (5.7). Ran-
domly drawn hyperplanes s1 and s2 are
denoted by dashed lines. The range of
the separating angle and one such hy-
perplane (s1) is drawn in red, whereas
the non-separating range of angle and
one such hyperplane (s2) are in blue.

Based on the previous observations, we can conclude that the
hash function introduced in Eq. (5.6) belongs to the family of hash
functions with (d1, d2, (180− d1)/180, (180− d2)/180) sensitivity.
In order to get a similar construction to minhash signatures all we
need to do is to calculate and concatenate the hash function defined
in Eq. (5.6) k times, by generating a different random hyperplane
to project the data points onto. Such vectors of concatenated hash
functions are often referred to as sketches. The following example
illustrates how accurately the relative proportion of sketch values can
help us infer an approximation towards the angle enclosed by a pair
of vectors as a function of the number of the random hyperplanes to
project vectors onto.
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Example 5.6. Suppose we have two 3-dimensional vectors

x =

 2
−1
2

 , y =

4
1
3

 .

According to Chapter 4.3, we know that their true angle can be obtained
as

acos

(
x⊺y

∥x∥2|y∥2

)
,

the calculation of which tells us that the angle θ enclosed by x and y equals
30.81 degrees.

Figure 5.13 demonstrates how accurate the approximation towards to
true angle between the two vectors gets as a function of the number of
hyperplanes the vectors are projected onto. It can be noticed that the ap-
proximation for the true angle between the vectors – that we derive from the
relative proportion of times their hash functions according to different ran-
dom projections as defined in Eq. (5.6) are the same – converges to the actual
angle enclosed by them as we increase the number of hyperplanes the vectors
are projected onto.
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Figure 5.13: Approximation of the
angle enclosed by the two vectors as
a function of the random projections
employed. The value of the actual angle
is represented by the horizontal line.

In practice the kind of vectors s that are involved in calculating
the hash value of vectors are often chosen to consist of values either
+1 or −1. That is a frequent choice for s is s ∈ {+1,−1}d, which is
convenient as this way calculating their dot product with any vector
x simplifies to taking a (signed) sum of the elements of vector x.

5.2 Approaches disallowing false negatives

As our previous discussion highlighted, locality sensitive hashing
would always produce a certain fraction of object pairs which have
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a high degree of similarity, nonetheless fail to get assigned into the
same bucket. Likewise, there are going to be object pairs that are spu-
riously regarded as being similar by the algorithm, despite having
a large distance between them. There are certain kinds of applica-
tions, where the former kind of problems, i.e., false negative errors
are simply intolerable.

One domain where false negatives could be highly undesired
is related to criminal investigations. Suppose police investigators
found the fingerprints of a burglar. When looking for suspects, i.e.,
people whose fingerprint has a high degree of similarity to the one
left behind at the crime scene, it would be inacceptable not to identify
the actual perpetrator as a suspect. Can you think of further scenar-

ios where false negative errors are
highly undesirable?

?It seems that if we want to exclude the possibility of false nega-
tives, we certainly have to calculate the actual similarity between all
the pairs of objects in a systematic manner. Luckily, there exist certain
heuristics-based algorithms that can eliminate calculating the exact
similarity between certain pairs, yet assure that there will be no false
negatives. Suppose we have some similarity threshold S in our mind,
such that we would like to surely find those pairs of objects for which
their similarity is at least S.

The general idea behind these approaches is that for a pair of
objects (x, y), we shall introduce a fast-to-calculate upper bound (s′)
on their actual similarity (s), i.e., s′(x, y) > s(x, y). Whenever our
quickly calculable upper bound fails to surpass the desired minimum
amount of similarity, that is s′(x, y) < S, we can be absolutely sure
that we do not risk anything by omitting the calculation of s(x, y),
i.e., the actual similarity between the object pair (x, y).

5.2.1 Length based filtering

Assume that we are calculating the similarity between pairs of sets
according to Jaccard similarity. We can (over)estimate the true Jaccard
similarity for any pair of sets of cardinalities m and n with m ≤ n
by taking the fraction m

n . This is true as even if the smaller set is a
proper subset of the larger set, the size of their intersection equals
the number of elements in the smaller set (m), whereas the cardi-
nality of their intersection would equal the size of the larger set (n).
Now assuming that m

n is below some predefined threshold S, it is
pointless to actually investigate the true Jaccard similarity as it is also
definitely below S.

Example 5.7. We have two sets A = {2, 1, 4, 7} and B = {3, 1, 2, 6, 5, 8}.
This means that m = 4 and n = 6, which implies that our upper bound
for the true Jaccard similarity of the two sets is 4/6 = 2/3. Now suppose
that our predefined similarity threshold is set to S = 0.6. What this means is
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that we would treat the pair of sets (A, B) as such candidates which have a
non-zero chance of being at least 0.6 similar.

As a consequence, we would perform the actual calculation of their true
Jaccard similarity and get to the answer of

s(A, B) =
|{1, 2}|

|{1, 2, 3, 4, 5, 6, 7, 8}| = 2/8 = 0.25.

As we can see, the pair of sets (A, B) constitutes a false positive pair with
S = 0.6, as they seem to be an appealing pair for calculating their similarity,
but in the end they turned out to have a much smaller similarity compared
to what we were initially expecting.

Notice that should the similarity threshold have been S = 0.7 (instead of
S = 0.6), the set of pairs (A, B) would no longer needed to be investigated
for their true similarity, simply because 2/3 < 0.7, implying that this pair
of sets has zero probability of having a similarity exceeding 0.7.

5.2.2 Bloom filters

Bloom filters are probabilistic data structures of great practical
utility. This data structure can be used in place of standard set imple-
mentations (e.g. hash sets) in situations when the amount objects to
store is possibly so enormous that it would be prohibitive to store all
the objects in main memory. Obviously, by not storing all the objects
explicitly, we pay some price as we will see, since we are not going to
be able to tell with absolute certainty which object have been added
to our data structure so far. However, when using bloom filters, we
can exactly tell if an element has not yet been added to our data struc-
ture so far. Furthermore, given certain information about a bloom
filter, we can also quantify the probability of erroneously claiming
that a certain element has been added to it, when in reality it is not
the case.

5.2.3 The birthday party analogy

One can imagine bloom filters according to the following birthday
party analogy. Suppose we invite an enormous amount of people to
celebrate our birthday. The number of our invitees can be so large
that we might not even be able to enumerate them (just think of invi-
tees indexed by the set of natural numbers). Since we would like to
be a nice host, we ask every invitee in advance to tell us their favorite
beverage, so that we can serve them accordingly. Unfortunately, pur-
chasing the most beloved welcome drink for all our potential guest is
out of practical utility for at least two reasons.

First of all, we invited a potentially infinitely many people. This
means that – in theory – it is possible that we might need to purchase
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infinitely many distinct beverages, which sounds like a very expen-
sive thing to do. Additionally, it could be the case that some of our
invitees will not eventually show up at the party in the end.

We realize that with a list of invitees so enormously large, our
original plan of fulfilling the drinking preferences of all of our po-
tential invitees is hopeless. Instead, what we do is that we create
a shortlist of the most popular beverages, such as milk, soda, cham-
pagne, vodka, apple juice, etc, and ask them to tell us the kind of drink
from our list they would be most happy to drink if they attended our
party. We can look at the responses of our invitees as a surjective
function of their preferences p : I → B, i.e., a mapping which assigns
every element from the set of invitees I to an element of the set of
beverages B. What surjectivity means in this context is that a single
individual would always choose the very same welcome drink, but
the same welcome drink might be preferred by multiple individuals.

For notational convenience, let m and n denote the number of in-
vitees and the different kinds of beverages they can choose from.
Furthermore, we can reasonable assume that m ≫ n holds. Notice
that in the typical scenario, i.e., when the number of people in the
party is far more than the number of beverages they are served, ac-
cording to the pigeonhole principle, there must be certain beverages
which must be consumed by more than a single guest in the party.

Now imagine that we would like to know who were those invitees
who eventually made it to the party. We would like to know this
answer, however, without being intrusive towards our guests and
register them one-by-one, so we figure out the following strategy.
Since everyone informed us in advance about the welcome drink they
would consume upon their arrival at the party, we can simply look
for those beverages that remained untouched by the end of the party
from which fact we will be able to tell with absolute certainty that
nobody who previously claimed to drink any of the beverages which
remained sealed actually was there at our party. Are we going to be able the iden-

tify all the no-show invitees to the
party by the strategy of looking for
untouched bottles of beverages?

?Talking in more formal terms, if a certain beverage b was not
tasted by anyone in the party then we can be absolute certain that no
individual i for which p(i) = b was there at the party. Equivalently,
for a particular invitee i, we can conclude with absolute certainty that
i was not at the party if beverage p(i) remained unopened during the
entire course of the party.

On the other hand, the mere fact that some amount of beverage
p(i) is missing does not imply that invitee i was necessarily attending
the party. Indeed, it can easily be the case that some other invitee
i′ just happens to prefer the same beverage as invitee i does, i.e.,
p(i) = p(i′), and it was invitee i′ who is responsible for the missing
amounts for beverage p(i). Recall that such situations are inevitable
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as long as m < n holds. The behavior of bloom filters is highly
analogous to the previous example.

5.2.4 Formal analysis of bloom filters

The previous analogy illustrated the working mechanisms and the
main strengths and weaknesses of using a bloom filter. To recap, we
have a way to map a possibly infinite set of objects of cardinality n to
a much smaller set of finite values of cardinality m.

We would like to register which elements of our potentially infi-
nite set we have seen over a period of time. Since it would be com-
putationally impractical to store all of the objects that we have came
across so far, we only store their corresponding hash value provided
by a surjective function p. That way we lose the possibility to give
an undoubtedly correct answer saying that we have seen a particular
object, however, we can provide an unquestionably correct answer
whenever we have not encountered a particular object so far.

This means that we are prone to false positive errors, i.e., answer-
ing yes when the correct answer would have been a no. On the other
hand, we can avoid any false negative errors, i.e., using a bloom fil-
ter, we would never say it erroneously that an object has never been
encountered before when it has been in reality.

The question that we investigate next is how to determine the
amount of false positive rate for our bloom filter that we are us-
ing. Going back to the previous birthday party example, we can
assume that function p distributes the set of individuals I evenly, i.e.,
roughly the same proportion of individuals are assigned to any of the
m different beverages.

Notice that the m possible outcomes of function p defines m equiv-
alence classes over the individuals. It follows from this assumption
that all of the equivalence classes can be assumed to be of the same
cardinality. In our particular case, it means that beverages can be
expected to be equally popular, that is, the probability for a random
individual to prefer any of the m beverages can be safely regarded as
being equal to 1

m .
Asking for the false positive rate of a bloom filter after storing a

certain amount of objects in it, is equivalent to asking ourselves in the
birthday party analogy the following question: given that we have
a certain amount of distinct beverages and knowing that a certain
amount of guests were present at the party in the end, what fraction
of the beverages was consumed by at least one guest? Had a guest
tasted a certain kind of beverage, we are no longer able to tell who
the exact person was, hence such cases are responsible for the false
positives.
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In the followings, let m denote the distinct beverages we serve at
the party as before, and introduce the variable G < n for the number
of guests – being a subset of the invitees – who eventually made it
to our party. As we argued before, the probability of a drink to be
tasted by a particular guest uniformly equals 1

m . We are, however,
interested in the proportion of those drinks which were consumed at
least once over G independent trials.

The set of drinks that were consumed at least once can be equiv-
alently referenced as the complement of the set of those drinks that
were not tasted by anyone. Hence the probability of a drink being
consumed can be expressed as the complement of the probability of a
drink not being consumed by anyone. Hence, we shall work out this
probability first.

The probability of a beverage not being consumed by a particular
person is 1− 1

m . The probability that a certain beverage is not con-
sumed by any of the G guests, i.e., over G consecutive independent
trials, can thus be expressed as(

1− 1
m

)G
≈ e−G/m, (5.8)

with e denoting Euler constant. In order to see why the approxima-
tion in (5.8) holds, see the refresher below about Euler constant and
some of its important properties.

So we can conclude that the probability of a particular bever-
age not being consumed over G consecutive trials is approximately
e−G/m. However, as we noted before, we are ultimately interested in
the probability of a beverage being drunk at least once, which is ex-
actly the complement of the previous probability. From this, we can
conclude that the false positive rate of a bloom filter with m buckets
and G objects inserted can be approximated as

1− e−G/m. (5.9)

Notice that in order to keep the false positive errors low, we need to
try to keep G

m as close to zero as possible. There are two ways we can
achieve this, i.e., we might try to keep the value of G low or we could
try to increase m as much as possible. The first option, that is trying
to persuade invitees not to become actual guests and visit the party,
does not sound to be a viable way to go.

However, we could try to increase the number of beverages to the
extent our budget allows us. In terms of bloom filters, this means
that we should try to partition our objects into as many groups as
possible, i.e., we should strive for the allocation of a bitmask which
has as many cells we can afford.

Basically, the false positive rate of the bloom filter is affected by
the average number of objects belonging to a certain hash value em-
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ployed, i.e., G
m . As this fraction gets higher, we should be prepared to

see an increased frequency of false positive alarms.

Euler’s coefficient (often denoted by e) can be defined as a limit, i.e.,

lim
n→∞

(
1 +

1
n

)n
≈ 2.7182818.

Figure 5.15 displays how fast this above sequence converges to the
value of e.
Relying on that limit, we can give good approximations of expres-
sions of the form (

1 +
1
n

)n

for large values of n, i.e., it tends towards the value of the Euler con-
stant e. Analogously, expressions of the form(

1 +
1
n

)k

can be rewritten as [(
1 +

1
n

)n
] k

n

,

which can be reliably approximated by

e
k
n ,

when the value of n is large. The approximation also holds up to
a small modification, when a subtraction is involved instead of an
addition, i.e., [(

1 +
1
n

)n
] k

n

≈ 1

exp
k
n
= e−

k
n .

MATH REVIEW | EULER’S CONSTANT

Figure 5.14: Euler’s constant

Example 5.8. We can easily approximate the value of 0.99100 with the help
of Euler’s coefficient if we notice that 0.99 = 1 − 1

100 , hence 0.99100 =(
1− 1

100

)100
. As n = 100 can be regarded as a large enough number to

give a reliable approximation of the expression in terms of Euler’s coefficient,
we can conclude that 0.99100 ≈ e−1 ≈ 0.36788. Calculating the true value
for 0.99100 up to 5 decimal points, we get 0.36603, which is pretty close to
the approximated value of e−1.

Example 5.9. As another example, we can also approximate the value of
1.002200 relying on Euler’s coefficient. In order to do so, we have to note

that 1.002 = 1 + 1
500 , hence 1.002200 =

((
1 + 1

500

)500) 200
500

. This means
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Figure 5.15: Illustration of the Euler
coefficient as a limit of the sequence
(1 + 1

n )
n.

that 1.002200 can be approximated as 5√e2 ≈ 1.49182. Indeed, the true value
of 1.002200 = 1.49122 (up to 5 decimal points) is again very close to our
approximation.

5.2.5 Bloom filters with multiple hash functions

We can extend the previous birthday party analogy in a way that
every guest is served k welcome drinks. Invitees enjoy freedom in
setting up their compilation of welcome drinks, meaning they can
choose their k beverages the way they wish. For instance, there is
no restriction on the welcome drinks to be distinct, so in theory it
is possible that someone drinks k units of the very same drink. In
terms of a bloom filter what it means is that we employ multiple
independent surjective hash functions to the objects that we wish to
store.

Now that everyone drinks k units of beverages, our analysis also
requires some extensions. When we check whether a certain person
visited our party, we shall check all k beverages he/she applied for
duing our query and if we see any of those k beverages to be untouched
by anyone, we can certainly come to the conclusion that the partic-
ular person did not show up at the party. Simultaneously, a person
might be falsely conjectured to have visited the party, if all the beverages
he/she declared to drink got opened and consumed by someone. Can you think of a reason why

applying multiple hash functions
can increase the probability of false
positive hits?

?It seems that we can decrease the false positive rate when using
the extended version of bloom filters with k independent hash func-
tions, since we would arrive at erroneous positive answers only if for
a given object, k independent hash functions map it to such buckets
that have been already occupied by some other object at least once.
What this suggests is that we should include an exponentiation in

Eq. (5.9) and obtain
(

1− e−G/m
)k

.
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A bit of extra thinking, however, brings us to the observation that
the above way for calculating the false positive rate is too optimistic
as it does not account for the fact that objects are responsible for
modifying the status of more than just one bucket of the bloom filter.
In fact every object has the potential of modifying up to k distinct
buckets.

Recall that the average load factor (G/m) is an important com-
ponent in the analysis of the false positive rate of bloom filters. In
the extended version of bloom filters with k independent hash func-
tions, we can approximate the load factor by Gk

m , hence the final false
positive rate becomes(

1− e−
Gk
m

)k
. (5.10)

As argued previously, we can reduce the false positive rate of a
bloom filter by increasing k, since Eq. (5.10) includes raising a prob-
ability to the kth power, and lim

k→∞
pk = 0, whenever p < 1. Looking

at Eq. (5.10), however, also suggests that the false positive rate can
be affected negatively by increasing the value for k. To see why this
is the case, notice that the false positive rate implicitly depends on
the probability of a bucket not being used, i.e., e−

Gk
m . The larger the

previous value is, or equivalently, the more fraction Gk
m tends to zero,

the better we can reduce the false positive rate. Increasing k in the
nominator certainly acts as a counterforce for the previous fraction
for going towards zero.
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Figure 5.16: False positive rates of a
bloom filter with different load factors
as a function of the hash functions
employed per inserted instances. The
different load factors corresponds to
different average number of objects per
a bucket (G/m).

Figure 5.16 illustrates this dual role of the number of hash func-
tions applied in a bloom filter, k. Even though a higher value of k al-
lows us to check membership in a bloom filter based on a more com-
plex criterion which could reduce false positive rate, it also makes the
average load factor of the bloom filter higher, increasing the chance
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for a false positive answer on the other hand. Inspecting Figure 5.16

reveals us that irrespectful of the initial load factor of the bloom filter
(G/m), increasing the number of hash functions employed beyond 5

does not seem to provide any benefit for reducing the false positive
rate.

5.3 Summary of the chapter

This chapter introduced approximate techniques for identifying
similar objects in potentially large datasets. One way for doing that
is the locality sensitive hashing (LSH) technique using which we can
potentially fail to detect certain pairs of objects with in reality has a
high degree of similarity with each other. Another form of error is
when we needlessly perform pairwise comparisons between pairs of
points that are highly dissimilar to each other otherwise. The former
type of error is that of false positives and the latter form is that of
false negatives. Throughout the chapter we investigated LSH from a
theoretical point of view and quantified its error rate. At the end of
the chapter, we introduced algorithms and a data structure that are
solely affected by false positive errors.

Johnson et al. [2017] introduces a highly efficient software pack-
age1 which is a recommended source for readers who are interested 1 accessible from https://github.com/

facebookresearch/faissin a highly efficient (and hardware accelerated) implementation of
the techniques discussed in this chapter.

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss


6 | DIMENSIONALITY REDUCTION

This chapter introduces dimensionality reduction techniques.
Readers finishing the chapter are expected to

• develop an intuition how dimensionality reduction can help data
mining applications,

• be able to explain the differences between different various dimen-
sionality reduction techniques,

• quantitatively assess the quality of the dimensionality reduction
algorithms,

• understand and argue for the need of a certain kind of dimension-
ality reduction technique for a given dataset.

Data mining applications typically deal with high dimensional
data. From a human mindset, even a space in 100 dimensions is
incredibly hard to imagine, yet it is not uncommon that data mining
applications need to efficiently deal with hundreds of thousands or
even millions of dimensions at a time.

As such each data instance can be conventionally imagined as a
vector in some high-dimensional space, i.e., samples are described by
a collection of observations which can be naturally encoded as a se-
ries of scalars. Section 3.2.1 already discussed how nominal features
are typically turned into numerical features, so we can assume with-
out loss of generality here, that every data point can be described
relying on a series of scalars in the form of a vector.

Decreasing the original dimensionality of our data points can be
motivated in multiple ways. Probably the most profound is that after
decreasing the dimensionality of datasets, we can store them on a
reduced amount of space. Besides this obvious benefit, it is often the
case that by transforming some data into a lower dimensional space
it is possible to get rid of some of the irrelevant noise that is captured
in the high dimensional representation of the data. As such, dealing
with such a variant of some dataset the dimensionality of which is

Learning Objectives:
• The curse of dimensionality

• Principal Component Analysis

• Singular Value Decomposition

• CUR decomposition

• Linear Discriminant Analysis
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reduced, we can not only process it mode effectively, but often obtain
better results when doing so. Think of a few datasets for which

data points are described by vectors
of radically different dimensions.

?
6.1 The curse of dimensionality

It is important to notice that from certain aspects high dimensional
spaces behave counter-intuitively. We can easily convince ourselves
about the strange behavior of high dimensional spaces if we investi-
gate hyperspheres in d dimensions as d tends to infinity.

Hyperspheres are nothing else but the generalization of circles
beyond 2 dimensions. That is such a collection of points for which
the squared sum of coordinates sum up to some pre-defined value r2,
with r denoting the radius of the hypersphere. This definition is in
line with the regular way we define a circle, i.e., the collection of 2D
points x = [x1x2] for which x2

1 + x2
2 = r2.

The volume of a hypershpere in d dimensions and radius r is
given by the formula

Vd(r) =
πd/2

Γ
(

d
2 + 1

) rd, (6.1)

with Γ denoting the Γ function shortly summarized in Figure 6.2.
Recall that Eq. (6.1) is simply the general form of the two dimen-

sional case, i.e., the formula boils down to πr2 when d = 2, since
Γ
(

d
2 + 1

)
is just Γ(2) = 1! = 1 in that case.
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Figure 6.1: Gamma function over the
interval [0.01,6] with integer values
denoted with orange crosses.

Unit hyperspheres are just hyperspheres with unit long radius.
The first strange thing we can notice regarding the volume of such
hyperspheres is that it goes to zero as the dimension of the space
increases. We can see this by looking at Eq. (6.2) and see that the
factorial-like part in the denominator grows strictly quicker than the
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The gamma function is formally defined as

Γ(x) =
∫ ∞

0
ts−1e−tdt.

This function can be viewed as a generalization of the factorial
function beyond non-integer values as well. Indeed, the identity
Γ(i) = (i − 1)! holds for every integer i > 0. As such, the gamma
function has a similar growth rate as the factorial. Its fast increase in
the function value (indicated by blue line) even for moderate inputs
and its connection to the values of the factorial function (indicated by
red crosses) is depicted in Figure 6.1.

MATH REVIEW | GAMMA FUNCTION

Figure 6.2: Gamma function

exponential part in its nominator. Indeed, the volume of the unit
hypersphere is depicted in Figure 6.3 illustrating that the volume of
unit hyperspheres grow up to five dimensions, but drops quickly
beyond that point.
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Figure 6.3: The volume of a unit hyper-
sphere as a function of the dimensional-
ity d.

It is then instructive to compare the volumes of two hyperspheres
in d dimensions (called d-spheres in short) with radii 1 and (1− ϵ),
i.e., the fraction

Vd(1)−Vd(1− ϵ)

Vd(1)
. (6.2)

This quantity gives us the portion of the volume of the d-sphere with
radius 1 lying beyond radius 1− ϵ, that is, close to the surface and
far from the origin. Since the first fractional part in Eq. (6.1) can be
treated as a constant which only scales the result and cancels out
anyway in Eq. (6.2), hence the ratio can be equivalently written as
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1− (1− ϵ)d.
As a consequence, high-dimensional hyperspheres have the in-

triguing property that the majority of their mass is concentrated
around their surface as opposed to being evenly distributed. The
fraction of volume for a unit hypersphere which is in the ϵ neigh-
borhood of its surface is visualized in Figure 6.4 as a function of the
dimensionality of the space. The light blue cross for the ϵ = 0.1 curve
indicates that nearly 90% of the volume of a 20-dimensional unit
sphere has distance at least 1− ϵ = 0.9 units from the origin.
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Figure 6.4: The relative volume of the
1− ϵ sphere to the unit sphere.

Now imagine a hypercube – a square in 2-dimensions and a cube
in 3-dimensions – which has sides of length of 4. Such a hypercube
can accommodate 2d non-intersecting hyperspheres with unit radius
as illustrated in Figure 6.5 by the blue objects. Now imagine, that we
want to squeeze in an additional origin-centered hypersphere which
touches all of the unit hyperspheres.

(a) 2-dimensional case (b) 3-dimensional case

Figure 6.5: The position of a (red)
hypersphere which touches the (blue)
hyperspheres with radius 1.
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Figure 6.6: The radius of the hyper-
sphere in d dimensions which touches
the 2d non-intersecting unit hyper-
spheres located in a hypercube with
sides of length of 4.

One can see it from Figure 6.5 (a) that the line segment going from
the origin to any of the centers of the four unit 2-spheres have length
of
√

2. One of such segments is included in Figure 6.5 (a) with blue
color. As a consequence of the previous observation, the radius of
the hypersphere which touches the unit hyperspheres needs to be√

2− 1.
This observation generalizes inductively to higher dimensions,

i.e., the radius of the d-sphere which touches all the other 2d non-
intersecting unit radius d-spheres will have a radius of

√
d − 1 as

illustrated in Figure 6.6. What this implies is that the touching hy-
persphere would eventually step out of the hypercube with 4 units
of length accommodating the unit hyperspheres once we surpass 9

dimensions.
We discuss a final artifact of high-dimensional spaces, namely, that

pairwise distances between data points become less meaningful as
the dimensionality of the space increases. This is because distances
between pairs of points tend to become very concentrated without
a real variance, that is most of the pairwise distances are end up
having the same (large) value. This impose a problem which is often
referred as the curse of dimensionality. Indeed, if pairwise distances
between points are very similar to each other then talking out nearest
(least distant) pairs of observations become more nebulous.

Figure 6.7 contains the distribution of the pairwise distances be-
tween uniformly sampled points of substantially different dimen-
sions, d ∈ {2, 10, 100, 1000}. Figure 6.7 visually supports the pre-
viously mentioned property, i.e., as d grows the distribution of the
pairwise distances gets more concentrated and its mean value also
increases.
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Figure 6.7: The distribution of the
pairwise distances between 1000 pairs
of points in different dimensional
spaces.

6.2 Principal Component Analysis

The key idea behind principal component analysis (and other dimen-
sionality reduction techniques) is that even though we often face high
dimensional observations, these data points typically lay on a rela-
tively low dimensional manifold. For instance, consider the exemplar
user-item dataset included in Table 6.1, which illustrates how many
times a certain person read a particular newspaper during the course
of one week. We can see that even though the people are initially
represented as 3-dimensional objects (reflecting the number of times
they read a certain newspaper along the different axes), we can still
accurately represent them in two dimensions with a different choice
of axes for our coordinate system. In this simplified example, we
can easily define the optimal axes for the new representation if we
observe the linear dependence between the columns of the sample
matrix in Table 6.1.

Newspaper
A B C

Evelyn 1 1 0

Mark 3 3 0

Peter 0 0 4

Martha 0 0 2

Table 6.1: Example user-item dataset
with a lower than observed effective
dimensionality.

Upon dimensionality reduction, we are mapping the original ob-
servations xi into some “compressed” representation that we denote
by x̃i. Ultimately, we are looking for such a linear mapping in case
of principal component analysis (PCA) which minimizes the dis-
tortion between the original data representation and its compressed
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counterpart. This means that our objective can be expressed as

n

∑
i=1
∥(xi − x̃i)∥2

2. (6.3)

Notice that the above objective value can be equivalently rewritten
as

n

∑
i=1
∥(xi − µ)− (x̃i − µ)∥2

2, (6.4)

where µ simply denotes the average observation in our dataset. Sub-
tracting the mean observation from every data point in the objective
function expressed in Eq. (6.3) simply corresponds to mean centering
the dataset as already discussed in Section 3.2.1.

First, let us try to come up with an approximation of the observed
data with zero degree of freedom, that is try to approximate all ob-
servations xi by a ’static’ x̃ being insensitive to the particular obser-
vation we are assigning it as its image. What this practically means is
that we can rewrite and simplify Eq. (6.4) as

n

∑
i=1

(xi− µ)⊺(xi− µ)− 2(x̃− µ)⊺
n

∑
i=1

(xi− µ) +
n

∑
i=1

(x̃− µ)⊺(x̃− µ). (6.5)

At first sight, Eq. (6.5) might not seem as a simplified version of
Eq. (6.4), however, we can take two crucial observations about Eq. (6.5),
i.e.,

• the first summation does not include x̃, hence it can be treated as
a constant which does not affects the optimum for x̃, meaning that
the entire sum can be dropped without modifying the optimum,

• the summation in the second term evaluates to the zero vector by
the definition of µ, i.e., ∑n

i=1(xi − µ) = 0. As the dot product of any
vector with the zero vector is always going to be zero, the second
term can also be dropped.

What we can conclude based on the previous observations is that
minimizing the original objective for a ’static’ x̃ is equivalent to find-
ing such a value for x̃ which minimizes

n

∑
i=1

(x̃− µ)⊺(x̃− µ) = n∥x̃− µ∥2
2, (6.6)

which can be trivially minimized by the choice of x̃ = µ. What this
result tells us is that if we want to represent all our observations by a
single vector, this vector should be chosen as the average of our data
points, because this one can minimize the overall sum of squared
distances to the original data points.



dimensionality reduction 107

Based on the previous result, let us make a more complex approxi-
mation to our data points in the following form: x̃i = aie + µ. That is,
instead of simply representing every observation by µ, we also intro-
duce an additional offset term aie for each data point. These offsets
are such that all points rely on the same offset direction defined by e,
whereas they have their individual magnitude parameter ai as well.
What this means is that our objective function this time changes to

n

∑
i=1
∥xi − (aie + µ)∥2

2 =
n

∑
i=1
∥(xi − µ)− aie∥2

2, (6.7)

which expression can be brought to the equivalent form of

n

∑
i=1

(xi − µ)⊺(xi − µ)− 2
n

∑
i=1

aie⊺(xi − µ) +
n

∑
i=1

aie⊺eai. (6.8)

Notice that at this point, upon the minimization of Eq. (6.8), we
definitely have infinitely many solutions as the very same aie offsets
(including the optimal one) can be expressed in infinitely many ways.
In order to see why this is the case, just imagine a particular offset,
given by aie. We can now take any non-zero vector e′ pointing to the
same direction of e, say e′ = 2e, and define our original offset aie
simply as 1

2 aie′ = ( 1
2 ai)(2e) = aie. Since we can find an appropriate

coefficient for every non-zero e′ pointing to the same direction as e,
this tells us that up to this point there are indeed infinite solutions
to our problem. To avoid this ambiguity in the solution we search
for, we will require it to be of some predefined length, in particular
we will only be accepting solutions for which ∥e∥ = 1, or equiva-
lently, e⊺e = 1, holds. This kind of optimization, i.e. when we make
certain restrictions on the acceptable solutions is called constrained
optimization that we will elucidate via a simple example now briefly.

Let us see now through a concrete example how constrained op-
timization can be efficiently solved in practice with the help of La-
grange multipliers. The kind of optimization that we solve for obtain-
ing the optimal solution for PCA is similar in vein to the following
simple example. Readers, who want to read a more detailed intro-
ductory tutorial on Lagrange multipliers are encouraged to read
Klien [2004]1. 1 Dan Klien. Lagrange Multipliers

Without Permanent Scarring. August
2004. URL www.cs.berkeley.edu/

~klein/papers/lagrange-multipliers.

pdf

Example 6.1. Let us try to minimize the function f (x, y) = 12x + 9y
given the additional constraint that the minimizer of the function has to be
located on the unit circle. That is, the only feasible solutions are such points
for which x2 + y2 = 1 is met.

It can be noted that without any restrictions on the values of x and y,
the function f (x, y) can be made arbitrarily small, since once x and y tends
to negative infinity the function value also decreases without any bound
towards negative infinity.

www.cs.berkeley.edu/~klein/papers/lagrange-multipliers.pdf
www.cs.berkeley.edu/~klein/papers/lagrange-multipliers.pdf
www.cs.berkeley.edu/~klein/papers/lagrange-multipliers.pdf
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In the case of constrained optimization problems, we are not simply
about to optimize for a certain function f (x), but simultaneously, we
want to do it so, such that we respect certain constraining conditions
– defined by additional functions gi(x) – towards the optimal solu-
tion x. (Non-)linear constrained optimization problems are thus of
the following form

f (x)→ min/max

such that gi(x) = 0 ∀i ∈ {1, . . . , n}

Lagrange multipliers offer a schema for solving such constrained op-
timization problems. The solution first goes by defining the Lagrange
function as

L(x, λ) = f (x)−
n

∑
i=1

λigi(x)

By applying the Karush-Kuhn-Tucker (KKT) conditions we can
obtain a possible solution for our constrained optimization prob-
lem which does not violate the constraints involved in the particular
optimization problem we are solving for.

∇L(x, λ) = 0 (6.9)

λigi(x) = 0∀i ∈ {1, . . . , n} (6.10)

λi ≥ 0 (6.11)

Note that the KKT conditions only provide a necessity condition for
finding an optimal x, i.e., they might as well find such an x which
obey for the conditions and provides a saddle point for f (x) and not
a genuine minimizer/maximizer for it.

MATH REVIEW | CONSTRAINED OPTIMIZATION

Figure 6.8: Constrained optimization

We can find a solution for the above constrained optimization problem
using Lagrange multipliers by treating

f (x, y) = 12x + 9y

and
g(x, y) = x2 + y2 − 1.

The Lagrange function that we construct from these functions is

L(x, y, λ) = 12x + 9y + λ(x2 + y2 − 1)

= 12x + 9y + λx2 + λy2 − λ
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In order to find a potential optimum for the function f respecting the
constraints given by g, we need to find such values of x, y, λ for which the
gradient of the Lagrangian equals the zero vector 0.

As a reminder, the gradient of a function is simply the vector obtained by
taking the partial derivatives of the function with respect its variables. This
means that we are looking for a solution, where

∇L(x, y, λ) =


∂L(x,y,λ)

∂x
∂L(x,y,λ)

∂y
∂L(x,y,λ)

∂λ

 =

 12 + 2λx
9 + 2λy

x2 + y2 − 1

 =

0
0
0

 = 0.

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5-40

-30

-20

-10

0

10

20

30

40

x

y

Figure 6.9: An illustration of the solu-
tion of the constrained minimization
problem for f (x, y) = 12x + 9y with the
constraint that the solution has to lie on
the unit circle.

This gives us a system of equations and rearranging its first two rows
yields that x = − 6

λ and y = − 4.5
λ . Plugging these values into the third

equation and solving for λ gives us the result λ = 7.5. Substituting this
value into the previously determined equations, we get x = − 6

7.5 = −0.8
and y = − 4.5

7.5 = −0.6.

We can verify that the point

[
−0.8
−0.6

]
indeed lies on the unit circle, as

(−0.8)2 + (−0.6)2 = 0.64 + 0.36 = 1. Additionally, as Figure 6.9
illustrates it by the red star marker, this point is indeed, a minimizer of the
function in question with the given constraint.

After the short recap on constrained optimization and Lagrange
multipliers, we can turn back to our discussion on PCA. Looking
back at Eq. (6.8), we can make a similar observation as we did for
Eq. (6.5), namely that the first sum is independent from the param-
eters that we are trying to set optimally, hence omitting it from our
objective does not influence our optimal solution. Unfortunately,
unlike in the case of Eq. (6.5), the second term of Eq. (6.8) will not
evaluate to zero necessarily, so we cannot simply discard that part
this time. On the other hand, we can notice that the last summation
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in Eq. (6.8) can be expressed simply as
n
∑

i=1
a2

i – due to the constraint

that we introduced for e, i.e., that e⊺e = 1 has to hold. Based on
these, we can equivalently express our objective from Eq. (6.7) as

−2
n

∑
i=1

aie⊺(xi − µ) +
n

∑
i=1

a2
i . (6.12)

Taking the partial derivative of Eq. (6.12) with respect ai and setting it
to zero, we get that for the optimal solution

ai = e⊺(xi − µ) (6.13)

has to hold. Plugging in the optimal values that we have just de-
termined for the ai variables into Eq. (6.12) we get an equivalent
expression as

−2
n

∑
i=1

e⊺(xi − µ)(xi − µ)⊺e +
n

∑
i=1

e⊺(xi − µ)(xi − µ)⊺e, (6.14)

that we can rewrite as

−2e⊺
(

n

∑
i=1

(xi − µ)(xi − µ)⊺
)

e + e⊺
(

n

∑
i=1

(xi − µ)(xi − µ)⊺
)

e, (6.15)

since we can move out vector e from the summations in Eq. (6.14).
Now the minimization problem in Eq. (6.15) exactly equals to mini-
mizing

−e⊺
(

n

∑
i=1

(xi − µ)(xi − µ)⊺
)

e,

or equivalently maximizing the previous expression without negating
it, i.e., the solution we are looking for is such that

e⊺
(

n

∑
i=1

(xi − µ)(xi − µ)⊺
)

e (6.16)

gets maximized. We can notice that the expression within the paren-
thesis in Eq. (6.16) simply equals by definition the scatter matrix of
the dataset which was already covered earlier in Figure 3.5 of Sec-
tion 3.2.3.

After a series of observations, we can come to the conclusion that
the minimization of Eq. (6.7) is essentially the same problem as the
maximization of e⊺Se, for such e vectors the (squared) norm of which
equals 1, and S denotes the scatter matrix derived from our observa-
tions. By relying on the method of Lagrange multipliers for solving
constrained optimization problems, we get the necessity (and this
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time also sufficiency) condition for such an optimum which respects
the constraint on e being unit norm as

Se = λe, (6.17)

which result simply suggests that the optimal e must be one of the
eigenvectors of the scatter matrix S.

Recall that an n× n matrix comes with n (eigenvalue, eigenvector)
pairs. Now that we realized that the optimal e has to be an eigenvec-
tor of the scatter matrix, we also know that the expression that we
are optimizing for will take on the value e⊺(λe) = λ(e⊺e), which
simply equals λ, simply because the optimal solution we are looking
for fulfills e⊺e = 1. Since we are maximizing the quadratic expres-
sion e⊺Se, it means that we should choose that eigenvector of S which
corresponds to the highest eigenvalue, i.e., the principal eigenvector.
Since scatter matrices are symmetric and positive (semi)definite, we
can be sure that the eigenvalues are non-negative real values, so that
we can index them in a way that λ1 ≥ λ2 ≥ . . . λn > 0 relations hold.

Figure 3.5 already provided a refresher on the concept of scatter ma-
trices and covariance matrices. At this point we repeat if briefly, that
for a given dataset, the two matrices only differ from each other in a
constant multiplicative factor, i.e., C = 1

n S, with C ∈ Rn×n denoting
the covariance matrix of some dataset X ∈ Rn×m, and S referring to
the scatter matrix.
Notice that both S and C can be viewed as a Gramian matrix, i.e., a
matrix which can be expressed in the form of the product of some
matrix and its transpose. Gramian matrices have a bunch of nice
properties. Every Gramian matrix – being symmetric and positive
semi-definite – always has real and non-negative eigenvalues.

MATH REVIEW | EIGENVALUES OF SCATTER AND COVARIANCE MATRICES

Figure 6.10: Eigenvalues of scatter and
covariance matrices

Example 6.2. Suppose our data matrix is the following

M =


5 4 0
4 5 0
1 1 4
2 5 5


In order to find its 1–dimensional representation according to PCA, we

need to perform the following steps:

0. (optional, but good to have) preprocess the data (e.g., standardize)

1. determine its scatter matrix,



112 data mining

2. find its dominant eigenvector x,

3. project the observations onto x.

The Octave equivalent of the above steps for our example dataset in matrix
M are summarized in Figure 6.11.

M=[5 4 0; 4 5 0; 1 1 4; 2 5 5];

C = cov(M);

[eig_vecs, eig_vals] = eig(C);

>>

eig_vecs =

-0.836080 0.054461 -0.545897

0.272514 0.904842 -0.327105

-0.476136 0.422250 0.771362

eig_vals =

Diagonal Matrix

0.21368 0 0

0 2.96484 0

0 0 10.65482

[dominant_eigenvalue, dominant_column]=max(diag(eig_vals));

dominant_eigenvector = eig_vecs(:, dominant_column);

compressed_data = M * dominant_eigenvector

compressed_variance = var(compressed_data)

>>

compressed_data =

-4.0379

-3.8191

2.2124

1.1295

compressed_variance = 10.655

CODE SNIPPET

Figure 6.11: Calculating the 1–
dimensional PCA representation of
the dataset stored in matrix M.
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6.2.1 An example application of PCA – Eigenfaces

We demonstrate how principal component analysis works via a col-
lection of 5,000 32× 32 pixel gray-scale face images. A sample of 25

such images can be seen in Figure 6.12. The data matrix X that we
work with contains gray scale pixel intensities and it has a shape of
5000× 1024.

Figure 6.12: A 25 element sample from
the 5,000 face images in the dataset.

Since the above described dataset has a covariance matrix of shape
1024× 1024, we can determine 1024 (eigenvalue, eigenvector) pairs.
We can conveniently handle the 1024-dimensional eigenvectors as if
they were 1024 = 32× 32 gray scale images themselves. Figure 6.13

contains the visualization of eigenvectors with eigenvalues of differ-
ent magnitudes. Figure 6.13 reveals that the eigenvectors determined
during PCA can be viewed as prototypical face images that are used for
the reconstruction of any image. The larger eigenvalue corresponds
to an eigenvector of greater utility. From an intuitive point of view, it
also verifies the strategy of projecting the data points to the eigenvec-
tors corresponding to the largest eigenvalues.

Figure 6.14 illustrates to what extent recovery of the original data
is possible when relying on different amounts of eigenvectors. When
data is projected to the single eigenvector with the highest eigenvec-
tor, all the reconstructed faces look the same except for their level of
greyness (see Figure 6.14 (a)). This is not surprising at all, as in this
case, we were trying to recover all the faces with the help of one face
prototype, i.e. the eigenvector corresponding to the largest eigenvec-
tor. As such, the only degree of freedom we have is to control for the
grayness of the reconstructed image. As we involve more eigenvec-
tors in Figure 6.14 (b)–(d), the reconstructed images resemble more
the original ones from Figure 6.12.
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(a) Eigenfaces with eigenvalues
ranked between 1 and 25
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(b) Eigenfaces with eigenvalues ranked
between 1 and 25

(c) Eigenfaces with eigenvalues
ranked between 101 and 125

100 105 110 115 120 125
0.5

0.55

0.6

0.65

0.7

0.75

0.8

λ

(d) Eigenfaces with eigenvalues ranked
between 101 and 125
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(f) Eigenfaces with eigenvalues ranked
between 501 and 525

Figure 6.13: Differently ranked eigen-
faces reflecting the decreasing quality
of eigenvectors as their corresponding
eigenvalues decrease.
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(a) Reconstruction of actual
faces based on the single high-
est ranked eigenvector.

(b) Reconstruction of actual
faces based on the 25 highest
ranked eigenvectors.

(c) Reconstruction of actual
faces based on the 125 highest
ranked eigenvectors.

(d) Reconstruction of actual
faces based on the 525 highest
ranked eigenvectors.

Figure 6.14: Visualizing the amount of
distortion when relying on different
amount of top-ranked eigenvectors.

6.2.2 Choosing the reduced dimensionality for PCA

Our previous example application of utilizing PCA has drawn our
attention on how to choose the reduced dimensionality of our data
when applying PCA. Suppose, we have access to some originally
d–dimensional data, what is the adequate level of reduced dimen-
sionality, d′ < d that we shall go for. In other words, how many top
eigenvectors shall we rely on during applying PCA on our particular
dataset.

Looking at PCA as a form of compressing our data, Figure 6.14

reminds us that the higher level of compression we utilize, i.e. the
less eigenvectors we employ, the more reconstruction loss we have to
face, meaning that the reconstructed data become less similar to their
uncompressed counterparts. Hence, there is a trade-off between how
aggressively we decrease the dimensionality of our original data and
how much our data with reduced dimensionality would resemble the
original data. We can ask ourselves the question, what proportion of
the original variance in the dataset gets preserved after we perform
PCA on the d′ top-ranked eigenvectors.

An important property of every dataset – originating from the
diagonalizability of covariance matrices – is that the sum of their
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dimension-wise variances is always going to equal the sum of the
eigenvalues of their covariance matrix. Based on this useful property
of covariance matrices, we can quantify the amount of variance which
gets preserved when we perform PCA relying on the d′ top-scoring
eigenvalues.

Example 6.3. Based on the previous results, what can we say about the
amount of variance preserved when we perform PCA relying on just the
single top-scoring eigenvector on the small dataset from Example 6.2, i.e.

M =


5 4 0
4 5 0
1 1 4
2 5 5

 .

In Figure 6.11, we have already seen that matrix M has the eigenvalues
λ1 = 10.65482, λ2 = 2.96484, λ3 = 0.21368, with a total of 13.83334.
What this also tells us, is that the total variance along the three dimensions
also equals this quantity. Additionally, if we perform PCA relying on the
single highest eigenvector corresponding to the eigenvalue with the largest
value, the variance of the transformed data will equal that of λ1 = 10.65482,
meaning that this way 77.023% of the original variance of the data gets
preserved. Shall we perform PCA using the eigenvectors belonging to the
top-2 eigenvalues, the preserved variance would be 98.455%, i.e.

λ1 + λ2

λ1 + λ2 + λ3
=

10.65482 + 2.96484
10.65482 + 2.96484 + 0.21368

= 0.98455.

6.2.3 A clever trick when m≪ d holds

It can happen that we have less observations than dimensions,
i.e., m ≪ d. The PCA algorithm for matrix X ∈ Rm×d has com-
putational complexity O(d3) for solving the eigenproblem of the
covariance/scatter matrix of X. The calculation of the covariance/s-
catter matrix requires an additional amount of O(md2) computation.
If d is large, say 106 dimensions, this amount of computation seems
hopeless to carry out. However, we are not necessarily doomed in
such a circumstance either.

Remember that we defined the scatter matrix as

S =
m

∑
i=1

xix
⊺
i .

Using matrix notation, it can also be equivalently expressed as

S = X⊺X .

Let us now define a somewhat similar matrix

T = XX⊺ ,
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so that its tij element store the dot product of observations xi and xj.
Notice that the definition of S contains xix

⊺
i (i.e., an outer product

resulting in a matrix), whereas the tij element of T equals x⊺i xj (i.e., a
dot product resulting in a scalar). Nonetheless matrices S and T are
defined somewhat similarly, their ‘semantics’ and dimensions differ
substantially as S ∈ Rd×d and T ∈ Rm×m.

Now suppose that u is an eigenvector of T, meaning that there
exists some scalar λ ∈ R such that

Tu = λu.

If we left-multiply both sides of this equality by X⊺, we get that

X⊺Tu = λX⊺u,

which is simply
X⊺(XX⊺)u = λX⊺u,

according to the definition of T. Due to the associative nature of
matrix multiplication, the previous equation can be conveniently
rewritten as

(X⊺X)X⊺u = λX⊺u,

which can be equivalently expressed as

S(X⊺u) = λ(X⊺u)

based on how we defined matrix S. This last equation now tells us
that it suffices to solve for the eigenvectors of T ∈ Rm×m, from which
we can derive the eigenvectors of S ∈ Rd×d by left multiplying them
with X⊺. This way we can reduce the computational need for calcu-
lating the eigenvectors of S from O(d3) to O(m3), which assuming
m≪ d holds, can provide large performance boost in terms of speed.

6.2.4 Random projections

It is interesting to note that when we are facing high dimensional
data, even though it might sound strange at first sight, random pro-
jections of the observations is not a bad idea at all. Of course, the
quality of the projections will be somewhat off as if we performed a
transformation that is guaranteed to perform the best in some sense.
It can be shown by the Johnson-Lindenstrauss lemma, that when
performing random projections obeying mild assumptions, the dis-
tortion of the data will not be that much worse as if we performed a
more sophisticated algorithm such as PCA. Here, we are not covering
the theory of random projections, however, interested readers can
learn about it and its potential applications for image and text data in
Bingham and Mannila 2. 2 Bingham and Mannila 2001
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6.3 Singular Value Decomposition

Singular value decomposition (SVD) is another approach for per-
forming similar in vein to PCA. A key difference to PCA is that data
does not have to be mean centered for SVD, which means that if we
work with sparse datasets, i.e. data matrix containing mostly zeros,
its sparseness is not ‘ruined’ by the centering step. We shall note,
however, that performing SVD on mean centered data is the same as
performing PCA. Let us now focus on SVD in the followings in the
general case.

Every matrix X ∈ Rn×m can be decomposed into the product
of three matrices U, Σ and V such that U and V are orthonormal
matrices and Σ is a diagonal matrix, i.e., if some σij ̸= 0, it has to
follow that i = j. The fact that U and V are orthonormal means
that the vectors that make these matrices up are pairwise orthogonal
to each other and every vector has unit norm. To put it differently,
u⊺

i uj = 1 only if i = j, otherwise u⊺
i uj = 0 holds.

Now, we might wonder what these U, Σ, V orthogonal and diago-
nal matrices are, for which X = UΣV⊺ holds. In order to see this, let
us introduce two matrix products X⊺X and XX⊺. If we express the
former based on its decomposed version, we get that

X⊺X = (UΣV⊺)⊺(UΣV⊺) = (VΣU⊺)(UΣV⊺) = VΣ(U⊺U)ΣV⊺ = VΣ2V⊺.

(6.18)

During the previous derivation, we made use of the following
identities:

• the transpose of the product of matrices is the product of the
transposed matrices in reversed order, i.e.

(M1M2 . . . Mn)
⊺ = M⊺

n . . . M⊺
2 M⊺

1 ,

• the transpose of a symmetric and square matrix is itself,

• M⊺M equals the identity matrix for any orthogonal matrix M
simply by definition.

Additionally, we can obtain via a similar derivation as applied in
Eq. (6.18) that

XX⊺ = (UΣV⊺)(UΣV⊺)⊺ = (UΣV⊺)(VΣU⊺) = UΣ(V⊺V)ΣU⊺ = UΣ2U⊺.

(6.19)

Now we see two square, symmetric matrices on the left hand sides
in Eq. (6.18) and Eq. (6.19). Some of the nice properties that square
and symmetric matrices have are that
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• their eigenvalues are always real,

• the left and right eigenvalues are going to be the same,

• their eigenvectors are pairwise orthogonal to each other,

• they can be expressed by eigendecomposition, i.e., in terms of
their eigenvalues and eigenvectors.

A matrix M is called diagonalizable if there exists some invertible
matrix P and diagonal matrix D such that

M = PDP−1

holds. What this means in other words that M is similar to a diag-
onal matrix. Matrices that are diagonalizable can be also given an
eigendecomposition, in which a matrix is expressed in terms of its
eigenpairs. The problem of calculating eigenvalues and eigenpairs of
matrices have already been covered earlier in Section 3.4.

MATH REVIEW | EIGENDECOMPOSITION

Figure 6.15: Eigendecomposition

Example 6.4. Let us find the eigendecomposition of the diagonalizable
matrix

M =

4 2 1
5 3 1
6 7 −3

 .

As a first step, we have to find the eigenpairs of matrix M based on the
technique discussed earlier in Section 3.4. What we get is that M has the
following three eigenvectors

x1 =

−0.47
−0.60
−0.64

 , x2 =

−0.49
0.67
0.55

 , x3 =

−0.11
−0.06

0.99


with the corresponding eigenvalues λ1 = 7.95, λ2 = 0.15, λ3 = −4.10.

We know it from earlier that the fact that matrix M has the above eigen-
pairs means that the following equalities hold:

Mx1 = λ1x1,

Mx2 = λ2x2,

Mx3 = λ3x3.
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A more compact form to state the previous linear systems of equations is the
following:

M

x1 x2 x3

 =

x1 x2 x3


λ1 0 0

0 λ2 0
0 0 λ2

 ,

which can be conveniently rewritten as

M =

x1 x2 x3


λ1 0 0

0 λ2 0
0 0 λ3


x1 x2 x3


−1

which is exactly analogous to the formula of eigendecomposition. What this
means that M can be decomposed into the product of the below matrices−0.47 −0.49 −0.11
−0.60 0.67 −0.06
−0.64 0.55 0.99


7.95 0 0

0 0.15 0
0 0 −4.10


−1.07 −0.66 −0.16
−0.98 0.81 −0.05
−0.15 −0.88 0.93

 ,

with the last matrix being the inverse of the first matrix in the decomposi-
tion.

Figure 6.17 illustrates the eigendecomposition of the example matrix M
in Octave. As it can be seen, the reconstruction error is practically zero, the
infinitesimally small Frobenius norm of the difference matrix between M
and its eigendecomposition only arises from numerical errors.

The Frobenius norm of some matrix X ∈ Rn×m is simply the square
root of the squared sum of its elements. To put it formally,

∥X∥F =

√√√√ n

∑
i=1

m

∑
j=1

x2
ij.

This definition of Frobenius norm makes it a convenient quantity to
measure the difference between two matrices. Say, we have some ma-
trix X, the entries of which we would like to approximate as closely
as possible by some other matrix (of the same shape) X̃. In such a
situation a conventional choice for measuring the goodness of the fit
is by calculating ∥X − X̃∥. As for a concrete example how to calculate
the Frobenius norm of some matrix, take∥∥∥∥∥
[

5 3
4 −6

]∥∥∥∥∥
F

=
√

52 + 32 + 42 + (−6)2 =
√

25 + 9 + 16 + 36 =
√

86.

MATH REVIEW | FROBENIUS NORM

Figure 6.16: Frobenius norm
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After this refresher on eigendecomposition, we can turn back to
the problem of singular value decomposition, where our goal is to
find a decomposition for matrix X in the form of UΣV⊺, with U and
V⊺ being orthonormal matrices and Σ containing scalars along its
main diagonal only.

We have seen it previously that U and V originates from the eigen-
decomposition of the matrices XX⊺ and X⊺X. Additionally, Σ have
to consist of the square roots of the corresponding eigenvalues of the
eigenvectors in matrices U and V⊺. Note that the (non-zero) eigenval-
ues of XX⊺ and X⊺X are going to be the same.

M=[4 2 1; 5 3 1; 6 7 -3];

[eig_vecs, eig_vals] = eig(M);

>>

eig_vecs =

-0.469330 -0.492998 -0.106499

-0.604441 0.671684 -0.064741

-0.643724 0.552987 0.992203

eig_vals =

Diagonal Matrix

7.94734 0 0

0 0.15342 0

0 0 -4.10076

eigen_decomposition = eig_vecs * eig_vals * inv(eig_vecs);

reconstruction_error = norm(M - eigen_decomposition, ’fro’)

>>

reconstruction_error = 6.7212e-15

CODE SNIPPET

Figure 6.17: Performing eigendecom-
position of a diagonalizable matrix in
Octave

6.3.1 An example application for SVD – Collaborative filtering

Collaborative filtering deals with the automatic prediction regard-
ing the interest of a user towards some product/item based on the
behavior of the crowd. A typical use case for collaborative filtering
is when we try to predict the utility of some product for a particular
user such as predicting star ratings a user would give to a particu-
lar movie. Such techniques are prevalently applied successfully in
recommendation systems, where the goal is to suggest items for



122 data mining

users that – based on our predictive model – we hypothesize the user
would like.

Recall that user feedback can manifest in multiple forms, star rat-
ings being one of the most obvious and explicit form of expressing
a user’s feeling towards some product. An interesting problem is
to build recommender systems exploiting implicit user feedback as
well, e.g. from such events that a user stopped watching a movie on
some streaming platform. Obviously there could be other reasons
for stop watching a movie other than not finding it interesting, and
on the other hand just because someone watched a movie from the
beginning to its end does not mean that the user found it entertain-
ing. From the above examples, we can see that dealing with implicit
user feedback instead of explicit one makes the task of collaborative
filtering more challenging.

It turns out that singular value decomposition can be used for
solving the above described problem due to its ability of detecting
latent factors or concepts in datasets (e.g. a movie rating dataset)
and expressing observations with their help. Assume we are given
a user–item rating matrix storing ratings of users towards movies
they watched where a 5-star rating conveys a highly positive attitude
towards a particular movie, whereas a 1 star rating is given by users
who really disliked some movie. Table 6.2 includes a tiny example
for such a dataset.

Alien Rambo Toy Story

Tom 5 3 0

Eve 4 5 0

Kate 1 0 4

Phil 2 0 5

Table 6.2: Example rating matrix
dataset.

If we perform SVD over this rating matrix, we can retrieve an alter-
native representation of each user and movie according to the latent
space. Intuitively, the latent dimensions in such an example could be
imagined as movie genres, such as comedy, drama, thriller, etc. Taking
this view, every entry of the matrix to be decomposed, i.e. the value
a particular user gave to a movie in our example, can be expressed in
terms of the latent factors. More precisely, a particular rating can be
obtained if we take the user’s relation towards the individual latent
factors and that for the movie as well and weight it by the impor-
tance of latent factors (movie genres). In the SVD terminology, we
can get these scores from the singular vectors (i.e. the corresponding
elements of U and V) and the singular values (i.e. the corresponding
value from Σ). The visual representation of the sample dataset from
Table 6.2 is included in Figure6.18.
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Figure 6.18: Visual representation of the
user rating dataset from Table 6.2 in 3D
space.

Performing singular value decomposition over the rating matrix
from Table 6.2 can be seen below:

5 3 0
4 5 0
1 0 4
2 0 5

 =


−0.63 0.22 0.73 −0.25
−0.67 0.33 −0.65 0.20
−0.21 −0.58 −0.19 −0.74
−0.33 −0.72 0.08 0.59




8.87 0 0
0 6.33 0
0 0 1.52
0 0 0


−0.75 −0.59 −0.28

0.06 0.36 −0.93
0.65 −0.72 −0.24


It can be observed in the above example that no matter what the

last column in U is, it will not influence the quality of the decomposi-
tion since the entire last row of Σ contains zeros. Recall that a matrix
has as many singular values as its rank r. As a reminder the rank of
a matrix is its number of linearly independent column/row vectors.
Since r ≤ min(m, n) for any matrix with m rows and n columns, our
initial matrix cannot have more than three singular values. In other
words, the fourth column in Σ cannot contain any value different
from zero, hence the effect of the fourth column in U gets annulled.
As such, the decomposition can also be written in a reduced form,
making it explicit that our data in this particular case has rank three.
That explicit notation is 

5 3 0
4 5 0
1 0 4
2 0 5

 =


−0.63 0.22 0.73
−0.67 0.33 −0.65
−0.21 −0.58 −0.19
−0.33 −0.72 0.08


8.87 0 0

0 6.33 0
0 0 1.52


−0.75 −0.59 −0.28

0.06 0.36 −0.93
0.65 −0.72 −0.24


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We can think of the decomposition in another way as well, i.e.,

X =
rank(X)

∑
i=1

σiuiv
⊺
i .

8.87


−0.63
−0.67
−0.21
−0.33

 [−0.76 −0.59 −0.28
]

+6.33


0.22
0.33
−0.58
−0.72

 [0.06 0.36 −0.93
]
+

1.52


0.73
−0.65
−0.19

0.08

 [0.65 −0.72 −0.24
]

Basically, this last observation brings us to the idea how we actu-
ally use SVD to perform dimensionality reduction. Previously, we
said that the last column of U could be discarded as it corresponded
to a singular value of zero. Taking this one step further, we can de-
cide to discard additional columns from U and V which belong to
some substantially small singular value. Practically, we can think of
thresholding the singular values σ, such that whenever it falls behind
some value τ, we artificially treat it as if it were zero. We have seen it
previously, that whenever a singular value is zero, it cancels the effect
of its corresponding singular vectors, hence, we can discard them as
well. Based on that observation, we can give a truncated SVD of the
input matrix X as

X̃ = UkΣkV⊺
k ,

with Uk ∈ Rn×k, V ∈ Rm×k being derived from the SVD of X by
keeping the k singular vectors belonging to the k largest singular
values, and Σk ∈ Rk×k containing these corresponding singular
values in the diagonal.

A nice property of the previously described approach is that this
way we can control the rank of X̃, i.e. our approximation for X. The
rank of X̃ will always be k, denoting the number of singular values
that are left as non-zero.

Example 6.5. Calculate a lower rank approximations of our on-going
example movie rating database. Previously, we have seen how it is possible
to reconstruct our original data matrix of rank 3, by relying on all three of
its singular vectors.

Now if we would like to approximate the ratings with a rank 2 matrix,
all we have to do is to discard the singular vectors belonging to the smallest
singular value. This way we get

X ≈ X̃ =
2

∑
i=1

σiuiv
⊺
i =
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= 8.87


−0.63
−0.67
−0.21
−0.33

 [−0.76 −0.59 −0.28
]
+ 6.33


0.22
0.33
−0.58
−0.72

 [0.06 0.36 −0.93
]
=

=


4.282 3.793 0.260
4.647 4.286 −0.234
1.190 −0.210 3.931
1.919 0.090 5.029

 .

As we can see, this is a relatively accurate estimate of the originally de-
composed rating matrix X, with its elements occasionally overshooting,
sometimes underestimating the original values by no more than 0.8 in abso-
lute terms. As our approximation relied on two singular values, X̃ now has
a rank of two and is depicted in Figure 6.19(a).

Based on a similar calculation – by just omitting the second term from
the previous sum – we get that the rank 1 approximation of X is

σ1u1v⊺
1 = 8.87


−0.63
−0.67
−0.21
−0.33

 [−0.76 −0.59 −0.28
]
=


4.194 3.288 1.560
4.518 3.542 1.680
1.419 1.113 0.528
2.202 1.726 0.819

 .
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(b) Reconstuction with 1 singular vector

Figure 6.19: The reconstructed movie
rating dataset based on different
amount of singular vectors.

An additional useful connection between singular values of some
matrix M and its Frobenius norm is that

∥M∥2
F =

rank(M)

∑
i=1

σ2
i .

The code snippet in Figure 6.20 also illustrates this relation for our
running example data matrix M.

This property of the singular values also verifies our choice for
discarding those singular values of an input matrix X with the least
magnitude. This is because the reconstruction loss – expressed in
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M=[5 4 0; 4 5 0; 1 1 4; 2 5 5];

frobenius_norm_sqrd = norm(M, ’fro’)^2;

[U,S,V] = svd(M);

singular_vals_sqrd = diag(S).^2;

printf("%f\n", frobenius_norm_sqrd - sum(singular_vals_sqrd))

>> 0.00000

CODE SNIPPET

Figure 6.20: An illustration that the
squared sum of singular values equals
the squared Frobenius norm of a
matrix.

terms of (squared) Frobenius norm – can be minimized by that
strategy. Supposing that the input matrix X has rank r and that the
σ1 ≥ σ2 ≥ . . . σr > 0 property holds for its singular values, the re-
construction error that we get when relying on a truncated SVD of X
based on its top k singular values is going to be

∥X− X̃∥2
F = ∥UΣV⊺ −UkΣkV⊺

k ∥2
F =

r

∑
i=k+1

σ2
i ,

meaning that the squared Frobenius norm between the original ma-
trix and its rank k reconstruction is going to be equal to the squared
sum of singular values that we made zero. Leaving k singular values
non-zero is required to obtain a rank k approximation, and zeroing
out the necessary number of singular values with the least magnitude
is what makes sense as their squared sum will affect the loss that
occurs.

6.3.2 Transforming to latent representation

Relying on the SVD decomposition of the input matrix, we can easily
place row and column vectors corresponding to real world entities,
i.e. users and movies in our running example, into the latent space
determined by the singular vectors. Since X = UΣV⊺ (and X ≈
UkΣkV⊺ = X̃ for the lower rank approximation) holds, we also get
that XV = UΣ (and similarly XVk ≈ UkΣk).

A nice property is that we are also able to apply the same trans-
formation encoded by V in order to bring a possibly unseen user
profile to the latent space as well. Once a data point is transformed
in the latent space, we can apply any of our favorite similarity or dis-
tance measure (see Chapter 4) to find similar data points to it in the
concept space. Data points can naturally be com-

pared based on their explicit rep-
resentation in the original space.
What reasons can you think of
which would make working in the
latent space more advantageous
as opposed to dealing with the
original representation of the data
points?

?

Example 6.6. Suppose we performed SVD already on the small movie
rating database that we introduced in Table 6.2. Now imagine that a new
user Anna shows up who watches the movie Alien and gives it a 5-star
rating. This means that we have a new user, x not initially seen in the
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rating matrix X. Say, we want to offer Anna users to follow who might have
similar taste for movies.

We can use the V2 for coming up with the rank 2 latent representation
of Anna. Recall that V2 is the matrix containing the top 2 right singular
vectors of X. It means that we can get a latent representation for Anna by
calculating

xV2 =
[
5 0 0

] −0.755 0.063
−0.592 0.361
−0.281 −0.930

 =
[
−3.777 0.313

]
.

We can calculate the latent representation similarly to all the user as

XV2 =


−5.553 1.397
−5.982 2.058
−1.879 −3.659
−2.915 −4.526

 .

the visualization of which can also be seen in Figure 6.21(a). Now we can
calculate the cosine similarity (cf. Section 4.3) between the previously cal-
culated latent vector representation for Anna and the other users. Cosine
similarities calculated between the 2-dimensional latent representation of
Anna and the rest of the users included in Table 6.3.

Tom Eve Kate Phil

Cosine similarity 0.987 0.969 0.382 0.470

Table 6.3: The cosine similarities be-
tween the 2-dimensional latent repre-
sentations of user Anna and the other
users.

The cosine similarities in Table 6.3 seem pretty plausible, suggesting that
Anna, who enjoyed watching the movie Alien, behaves similar to other
users who also enjoyed movies of the same genre as Alien.

Example 6.7. Another thing SVD can do for us is to give a predicted
ranking of items (movies in our example) a user would give to unrated items
based on the latent representation the model identifies. By multiplying the
rating profile of a user by Vk followed by a multiplication with V⊺

k tells
us what would be the most likely ratings of the user with the given rating
profile if we simply forget about latent factors (genres) other than the top k
most prominent ones.

For the previous example, this approach would tell us that Anna is likely
to give the ratings included in Table 6.4 when we perform our predictions
relying on the top-2 singular vectors of the input rating matrix.

Alien Rambo Toy Story

Predicted rating 2.872 2.349 0.77

Table 6.4: The predicted rating given by
Anna to the individual movies based on
the top-2 singular vectors of the rating
matrix.

We obtained the predictions in Table 6.4 by multiplying the rating vector
of Anna with V2V⊺

2 , i.e.,
[
5 0 0

]
V2V⊺

2 .
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Figure 6.21: The latent concept space
representations of users and movies.

From this, we can conclude that Anna probably prefers the movie Alien
the most, something we already could have suspected from the high rating
Anna gave to that movie. More importantly, the above calculation gave
us a way to hypothetize ratings Anna would gave to movies not actually
rated by her. This way we can argue, that – among the movies she has not
rated yet – she would enjoy Rambo the most. This answer probably meets
our expectations as – based on our commonsense knowledge on movies –
we would assume Rambo being more similar to the movie Alien than Toy
Story.

6.3.3 CUR decomposition

The data matrix X that we decompose with SVD is often extremely
sparse, meaning that most of its entries are zeroes. Just think of a
typical user–item rating matrix in which an element xij indicates
whether user i has rated item j so far. In reality, users do not interact
with the majority of the product space, hence it is not uncommon to
deal with such matrices the elements of which are dominantly zeroes.

Sparse data matrices are extremely compelling to work with as
they can be processed much more effectively relative to dense matri-
ces. This is because we can omit the explicit storage of the zero en-
tries from the matrix. When doing so, the benefit of applying sparse
matrix representations is that the memory footprint of the matrix is
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not going to be affected directly by its number of rows and columns,
instead the memory consumption will be proportional to the number
of non-zero elements in the matrix.

A problem with SVD is that the matrices U and V in the decom-
position become dense no matter how sparse the matrix that we
decomposed is. Another drawback of SVD is that the coordinates
in the latent space are difficult to interpret. CUR, offers an effective
family of alternatives to SVD. CUR circumvents the above mentioned
limitations of SVD by decomposing X into a product of such three
matrices C, U and R that vectors comprising matrices C and R origi-
nate from the columns and rows of the input matrix X. This behavior
ensures that C and R will preserve the sparsity of X. Furthermore,
the basis vectors in C and R will be interpretable, as we would know
their exact meaning from the input matrix X.

One of the CUR variants works in the following steps:

1. Sample k rows and columns from X with probability proportional
to their share from the Frobenius norm of the matrix and let C and
R contain these sampled vectors

2. Create W ∈ Rkxk from the values of X from the intersection of the
k selected rows and columns

3. Perform SVD on W such that W = XΣY⊺

4. Let U = YΣ†X⊺ where Σ† is the (pseudo)inverse of Σ; in order to
get the pseudoinverse of a diagonal matrix, all we have to do is to
take the reciprocal of its non-zero entries.

Intuitively the share of a vector to the Frobenius norm of the matrix it
can be found tells us the relative importance of that data point in some
sense. The larger fraction of the Frobenius norm can be accounted to
a vector, the more larger weight we would like to assign to it. Note
that because we sample the vectors with replacement, it can happen
that a particular vector (presumably with a larger norm) is sampled
multiple times. In order to avoid having multiple copies of the same
vector showing up im matrices C and R, a common step is to rescale
the sampled vectors. Instead of selecting a row/column vector from
the input matrix as is, we instead scale that vector by a factor of
1/
√

kpi, with k referring to the number of row/columns we sample
and pi is the share of the selected vector from the Frobenius norm of
the matrix it is sampled from. Note that the scaling factor kpi is noth-
ing else, but the expected number of times the particular vector gets
sampled over k sampling steps. With the above scaling procedure, we
can merge together any vector which might be sampled more than
once. Based on the peculiarities of the CUR decomposition technique,
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it is clear the neither matrix C (corresponding to matrix U from SVD
decomposition) nor matrix R (corresponding to matrix V from SVD
decomposition) will consist of pairwise orthonormal vectors, instead
they will constitute of actual (rescaled) observations, increasing the
interpretability of the decomposition.

Alien Rambo Toy Story P

Tom 5 3 0
34

121

Eve 4 5 0
41

121

Kate 1 0 4
17

121

Phil 2 0 5
29

121

P 46
121

34
121

41
121

Figure 6.22: Example dataset for CUR
factorization. The last row/column
includes the probabilities for sampling
the particular vector.

C =


5 0
4 0
1 4
2 5

 , U = C†XR† ≈
[

0.22 −0.01
−0.08 0.20

]
, R =

[
5 3 0
2 0 5

]

Multiplying the factors together, we get that

CUR =


5 0
4 0
1 4
2 5


[

0.22 −0.01
−0.08 0.20

] [
5 3 0
2 0 5

]
≈


5.4 4.4 −0.2
4.3 3.5 −0.1
1.1 −0.4 4.0
2.1 0.1 4.9

 .

6.3.4 Further extensions

Compact Matrix Decomposition (CMD)3 and Colibri 4 are extensions 3 Sun et al. 2008

4 Tong et al. 2008of the CUR decomposition. CMD extends CUR in the sense that it
avoids the selection of duplicate observations from the decomposi-
tion. The Colibri approach further takes care not to include linearly
dependent columns in the decomposition resulting in an algorithm
which is more efficient compared to its predecessors both in terms of
speed and space requirements. A further beneficial property of the
Colibri algorithm is that it can be efficiently applied for dynamically
changing datasets.

Tensors are generalizations of matrices that are allowed to have
more than two modes, i.e., instead of having just a ’width’ and a
’height’, they also come with a ’depth’ for instance. Tensors of even
higher order can also be thought. As for an illustration of how a
tensor might look like, see Figure 6.23.

Performing low-rank decomposition for tensors is an interesting
field with lots of potential use cases such as knowledge base comple-
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Figure 6.23: An illustration of a tensor.

tion 5. Despite of its practical utility, an in-depth introduction to the 5 Trouillon et al. 2017, Kazemi and Poole
2018topic of tensors and tensor decomposition is well beyond the scope

of this notes. Interested readers are highly encouraged to read the
survey of Kolda and Bader 6. 6 Kolda and Bader 2009

6.4 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a technique which also makes
use of the category of the data points they belong for performing
dimensionality reduction. More precisely, we are going to assume for
LDA that our data points xi are accompanied by a categorical class
label yi ∈ Y that they are characterized by. For the sake of simplicity,
we can assume |Y| = 2, that is, every point belongs to either of the
positive or negative classes. Having access to the class label of the
data points makes two different objectives equally sensible now for
reducing the dimensionality of our data points.

On the one hand, it can be argued that points belonging to differ-
ent classes should be as much separable from each other as possible
after dimensionality reduction. What we want in other words, is that
points labeled differently mix to the least possible extent. From this
perspective, our goal is to find a transformation characterized by w
which maximizes the distance between the transformed data points
belonging to the different classes. This goal can be equivalently ex-
pressed and formalized via relying on the means of the points be-
longing to the different classes, i.e., µ1 and µ2. This is due to the fact
that applying the same transformation w to all the points will also
affect their mean accordingly, i.e., the transformed means are going
to be w⊺µ1 and w⊺µ2. The first criteria hence can be expressed as

max
w
∥w⊺µ1 −w⊺µ2∥2

2 = max
w

w⊺SBw, (6.20)

where SB is a rank-1 matrix responsible for characterizing the between-
class scatter of the data points according to their original representa-
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tion and which can be conveniently calculated in the binary (|Y| = 2)
case as

SB = (µ1 − µ2)(µ1 − µ2)
⊺.

In the case, we have more than two classes (|Y| > 2), the between-
class scatter matrix is generalized as

SB =
|Y|
∑
c=1

nc(µc − µ)(µc − µ)⊺,

with nc referring to the number of data points falling into class c,
µc being the mean data point calculated from the nc observations
and µ denoting the mean vector calculated from all the data points
irrespective of their class labels.

On the other hand, someone might argue – along the lines of
“birds of a feather flock together” – that those points which share
the same class label are supposed to be clustered densely after di-
mensionality reduction is performed. To put it differently, the av-
erage distance between the images of the original points within the
same category should be minimized. This formally can be quantified
with the help of the within-class scatter score between data points.
The within-class scatter for data points belonging with class c for a
particular projection given by w can be expressed as

s̃2
c = ∑

{(xi ,yi)|yi=c}
(w⊺xi −w⊺µc)

2 =

= ∑
{(xi ,yi)|yi=c}

w⊺(xi − µc)(xi − µc)
⊺w = w⊺Scw,

with Sc denoting the scatter matrix calculated over the data points
belonging to class c, i.e.

Sc = ∑
{(xi ,yi)|yi=c}

(xi − µc)(xi − µc)
⊺.

For notational convenience, we shall refer to the sum of within class
scatter matrices for class c = 0 and c = 1 as the aggregated within-
class scatter matrix, that is

SW = S0 + S1,

giving us an overall information on how do the data points differ on
average from the mean of the class they belong to.

It turns out that these two requirements often act against each
other and the best one can do is to find a trade-off between them
instead of performing optimally with respect both of them at the
same time. In order to give both of our goals a share in the objective
function, the expression that we wish to maximize in the case of
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LDA is going to be a fraction. Maximizing a fraction is a good idea
in this case, as it can be achieved by a large nominator and a small
denominator. Hence the expression we aim at optimizing is

max
w

w⊺SBw
w⊺SWw

, (6.21)

with SB and SW denoting the between-class and within-class scatter
matrices, respectively.

Eq. (6.21) can be maximized if

∇w
w⊺SBw
w⊺SWw

= 0⇔ (w⊺SBw)∇ww⊺SWw = (w⊺SWw)∇ww⊺SBw

(6.22)

is satisfied, which can be simplified as

SBw = λSWw. (6.23)

Upon transitioning from Eq. (6.22) to Eq. (6.23) we made use of the
fact that ∇xx⊺Ax = A⊺x + Ax = (A + A⊺)x for any vector x and
matrix A. In the special case, when matrix A is symmetric – exactly
what scatter matrices are – ∇xx⊺Ax = 2Ax also holds. Eq. (6.23) is
pretty much reminds us to the standard eigenvalue problem, except
for the fact that there is an extra matrix multiplication on the right
hand side of the equation as well. These kind of problems are called
generalized eigenvalue problems. There are multiple ways to solve
generalized eigenvalue problems. There are more convoluted and
effective approaches to solve such problems, but we can also solve
them by simply left multiplying both sides with S−1

W , yielding

S−1
W SBw = λw

that we can regard as a regular eigenproblem. We shall add that
in our special case, with only two class labels, we can express also
obtain the optimal solution in a simpler form, i.e.

w∗ = S−1
W (µ1 − µ2).

Example 6.8. In order to geometrically illustrate the different solutions one
would get if the objective was either just the nominator or the denominator
of the joint objective function (Eq. (6.21)) let us consider the following
synthetic example problem.

Assume that those data points belonging to the positive class are gen-
erated by N ([4, 4], [0.3 0; 0 3]), that is a bivariate Gaussian distribution
with mean vector [4, 4] and covariance matrix [0.3 0; 0 3]. Likewise, let us
assume that the negative class can be described as N ([4,−5], [0.3 0; 0 3]),
i.e., another bivariate Gaussian which only differs from the previous one in
its mean being shifted by 9 units along the second coordinate.
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(a) 10 points sampled each
from two bivariate normal
distributions with means [4,4]
and [4,-5].
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(b) Optimal projection with
respect the joint objective of
LDA.
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(c) Optimal projection with
respect the nominator of the
LDA objective.
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(d) Optimal projection with
respect the denominator of
the LDA objective.

Figure 6.24: An illustration of the effect
of optimizing the joint fractional objec-
tive of LDA (b) and its nominator (c)
and denominator (d) separately.

Figure 6.24 (a) includes 10 points sampled from each of the positive and
negative classes. Figure 6.24 (b)–(d) contains the optimal projections of this
sample dataset when we consider the entire objective of LDA (b), only the
term in the nominator (c) and only the term in the denominator (d).

Figure 6.24 (c) nicely illustrates that optimizing for the nominator of
the objective of LDA, we are purely focusing on finding a hyperplane which
behaves such that the separation between the data points belonging to the
different classes get maximized.

Figure 6.24 (d) on the other hand demonstrates that exclusively focusing
on the optimization on the denominator of the LDA objective, we obtain a
hyperplane which minimizes the scatter for the data points belonging to the
same class. At the same time, this approach does not pay any attention for
the separation of the data points belonging to the different classes.

The solution seen in Figure 6.24 (b), however, does an equally good job in
trying to separate points belonging to distinct categories and minimizing the
cumulative within-class scatter.

Table 6.5 contains the distinct parts of the objective function when opti-
mizing for certain parts of the objective in a tabular format. We can see, that
– quite unsurprisingly – we indeed get the best objective value for Eq. (6.21)
when determining w∗ according to the approach of LDA.

Alternative solutions –listed in the penultimate and the last row of Ta-
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ble 6.5 – are capable of obtaining better scores for certain parts (either the
nominator or the denominator) of the LDA objective, but they fail to do so
for the joint, i.e. fractional objective.

Try calculating the solution with
Octave by solving the generalized
eigenproblem defined in Eq. (6.23).

?

# sample 10 examples from the two Gaussian populations

X1 = mvnrnd([4 4], [0.3 0; 0 3], 10);

X2 = mvnrnd([4 -5], [0.3 0; 0 3], 10);

mu1 = mean(X1);

mu2 = mean(X2);

mean_diff = mu1 - mu2;

Sw = (X1 - mu1)’ * (X1 - mu1) + (X2 - mu2)’ * (X2 - mu2);

w = inv(Sw) * mean_diff;

CODE SNIPPET

Figure 6.25: Code snippet demonstrat-
ing the procedure of LDA.

Objective w∗ w⊺SBw
w⊺SW w w⊺SBw w⊺SWw

max w⊺SBw
w⊺SW w [−0.23,−0.97] 2.32 85.22 36.80

max w⊺SBw [−0.01, 1.00] 2.29 90.37 39.52

min w⊺SWw [−1.00,−0.07] 0.05 0.38 8.13

Table 6.5: The values of the different
components of the LDA objective (along
the columns) assuming that we are
optimizing towards certain parts of the
objective (indicated at the beginning
of the rows). Best values along each
column are marked bold.

6.5 Further reading

There is a wide range of further dimensional reduction approaches
that are outside the scope of this document. Canonical correlation
analysis (CCA) 7 operates over two distinct representations (also 7 Hotelling 1936

often called views) of the dataset and tries to find such transfor-
mations, one for each view, which maps the distinct views into a
common space such that the correlation between the different views
of the same data points gets maximized. Similar to other approaches
discussed in this chapter, the problem can be solved as an eigenprob-
lem of a special matrix. Hardoon et al. [2004] provided a detailed
overview of the optimization problem and its applications. For a read
on the connection of CCA to PCA, refer to the tutorial8. 8 Borga 1999

With the advent of deep learning, deep canonical correlation anal-
ysis (DCCA) 9 has been also proposed. DCCA learns a transfor- 9 Andrew et al. 2013

mation expressed by a multi-layer neural network which involves
non-linear activation functions. This property of DCCA offers the
possibility to learn transformations of more complex nature com-
pared to standard CCA.

Contrary to most dimensionality reduction approaches, Locally
Linear Embeddings (LLE)10 provide a non-linear model for dimen- 10 Roweis and Saul 2000
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sionality reduction. LLE focuses on the local geometry of the data
points, however, it also preserves the global geometry of the observa-
tions in an implicit manner as illustrated by Figure 6.26. LLE makes
use of the assumption that even though the global geometry of our
data might fail to be linear,individual data points could still be mod-
elled linearly “microscopically”, i.e., based on their nearest neighbors.

Original data
PCA projection LLE projection Figure 6.26: Illustration of the effec-

tiveness of locally linear embedding
when applied on a non-linear dataset
originating from an S-shaped manifold.

Multi dimensional scaling (MDS)11 tries to give a low-dimensional 11 Kruskal and Wish 1978

(often 2-dimensional for visualization purposes) representation of
the data, such that the pairwise distances between the data points
– assumed to be given as an input – get distorted to the minimal
extent. Borg et al. [2012]12 provides a thorough application-oriented 12 Borg et al. 2012

overview of MDS.
t-Stochastic Neighbor Embedding (t-SNE)13 aims to find a low- 13 van der Maaten and Hinton 2008

dimensional mapping of typically high-dimensional data points. The
algorithm builds upon the pairwise similarity between data points
for determining their mapping which can be successfully employed
for visualization purposes in 2 or 3 dimensions. t-SNE operates by
trying to minimize the Kullback-Leibler divergence between the
probability distribution defined over the data points in the original
high-dimensional space and their low-dimensional image. t-SNE is
known for its sensitivity to the choice of hyperparameters. This as-
pect of t-SNE is thoroughly analyzed by Wattenberg et al. [2016]14 14 Wattenberg et al. 2016

with ample recommendations and practical considerations for apply-
ing t-SNE.

Most recently, Uniform Manifold Approximation and Projection
for Dimension Reduction (UMAP)15 has been introduced, which 15 McInnes and Healy 2018
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offers increased robustness over t-SNE by assuming that the dataset
to be visualized is uniformly distributed on a Riemannian manifold,
the Riemannian metric is locally constant and that the manifold is
locally connected. For an efficient implementation by the authors of
the paper, see https://github.com/lmcinnes/umap.

6.6 Summary of the chapter

In this chapter we familiarized with some of the most prominent
approaches for dimensionality reduction techniques. We derived
principal component analysis (PCA) and the closely related algorithm
of singular value decomposition (SVD) and their applications. This
chapter also introduced CUR decompositions which aims to remedy
some of the shortcomings of SVD. The chapter also discussed linear
discriminant analysis (LDA) which substantially differs from the
other approaches in that it also takes into account the class labels
our particular data points belong to. At the end of the chapter, we
provided additional references to a series of alternative algorithms
that the readers should be able to differentiate and argue for their
strength and weaknesses for a particular application.

https://github.com/lmcinnes/umap


7 | MINING FREQUENT ITEM SETS

Market basket analysis, i.e., analyzing what products are cus-
tomers frequently purchasing together has enormous business po-
tentials. Supermarkets having access to such information can set up
their promotion campaigns with this valuable extra information in
mind or they can also decide on their product placement strategy
within the shops.

We define a transaction as the act of purchasing multiple items in
a supermarket or a web shop. The number of transactions per a day
can range between a few hundreds to several millions. You can easily
convince yourself about the latter if you think of all the rush going
around every year during Black Friday for instance.

The problem of finding item sets which co-occur frequently is
called frequent pattern mining and our primarily focus in this chap-
ter is to make the reader familiar with the design and implementa-
tion of efficient algorithms that can be used to tackle the problem.
We should also note that frequent pattern mining need not be inter-
preted in its very physical sense, i.e., it is possible – and sometimes
necessary – to think out-of-the-box and abstractly about the products
and baskets we work with. This implies that the problem we discuss
in this chapter have even larger practical implications than we might
think at first glance.

Can you think of further non-trivial
use cases where frequent pattern
mining can be applied?

?Example 7.1. A less trivial problem that can be tackled with the help of
frequent pattern mining is that of plagiarism detection. In that case, one
would look for document pairs (‘item pairs’) which use a substantial amount
of overlapping text fragments.

What kind of information would
we find if in the plagiarism detec-
tion example we exchanged the
roles of documents (items) and text
fragments (baskets)?

?

In this setting, whenever a pair of document uses the same phrase in
their body, we treat them as a pair of items that co-occur in the same ‘market
basket’. Market baskets could be hence identified as and labeled by phrases
and text fragments included in documents.

Whenever we find a pair of documents being present in the same basket, it
means that they are using the same vocabulary. If their co-occurrence exceed
some threshold, it is reasonable to assume that this textual overlap is not
purely due to chance.

Learning Objectives:
• Learn the concepts related to Fre-

quent item set Mining

• Association rule mining

• Apriori principle

• Park-Chen-Yu algorithm

• FP-Growth and FP trees
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Exercise 7.1. Suppose you have a collection of recipes including a list of
ingredients required for them. In case you would like to find recipes that are
similar to each other, how could you make use of frequent pattern mining?

There are two main paradigms for performing frequent pattern
mining that we review in this chapter. The fist paradigm solves the
problem with a generate and test philosophy by an iterative approach.
That is, starting with an empty set, it constantly tries to expand the
already identified frequent item sets and find frequent item sets
with an increasing number of items included in them. Such bottom-
up approaches inherently require repeated scans over the market
basket dataset, which can be time consuming. Other approaches for
finding frequent patters in market basket datasets follow a divide-
and-conquer philosophy without the need for repeated scans over the
dataset. The rest of this chapter elaborates more upon the algorithms
and data structures frequently used for frequent pattern mining.

7.1 Important concepts and notation for frequent pattern mining

Before delving into the details of frequent pattern mining algorithms,
we define a few concepts and introduce some notations first to make
the upcoming discussion easier.

Upon introducing the definitions and concepts, let us consider the
example transactional dataset from Table 7.1. The task of frequent
pattern mining naturally becomes more interesting and challenging
for transactional datasets of much larger size. This is a rather small
dataset which includes only five transactions, however, can be conve-
niently used for illustrative purposes. Note that in the remainder of
the chapter, we will use the concepts (market) basket and transaction
interchangeably.

Basket ID Items

1 {milk, bread, salami}
2 {beer, diapers}
3 {beer, wurst}
4 {beer, baby food, diapers}
5 {diapers, coke, bread}

Table 7.1: Example transactional
dataset.

7.1.1 Support of item sets

Let us first define the support of an item set. Given some item set
I , we say that its support is simply the number of transactions Tj

from the entire transactional database T such that Tj ⊇ I , that is the
market basket with index j contains the item set I . Support is often
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reported as a number between 0 and 1, quantifying the proportion of
the transactional database which contains item set I .

Note that a basket increases the support of an item set once all
elements of the item set are found in a particular basket. Should a
single element from an item set be missing from a basket, it no longer
qualifies to increase the support for the particular item set. On the
other hand, a basket might include arbitrary number of excess items
relative to some item set and still contribute to its overall support.

Example 7.2. Let us calculate the support of the item set {beer} from the
example transactional dataset from Table 7.1. The item beer can be found in
three transactions (cf. baskets with ID 2,3 and 4), hence its support is also
three. For our particular example – when the transactional database contains
5 transactions – this support can also be expressed as 3/5 = 0.6.

It is also possible to quantify the support of multi-item item sets. The
support of the item set {beer, diapers} is two (cf. baskets with id 2 and 4),
or 2/5 = 0.4 in the relative sense when normalized by the size of the
transactional dataset.

There is an important property of the support of item sets that we
will heavily rely which will ensure the correctness of the Apriori al-
gorithm, being one of the powerful algorithms to tackle the problem
of frequent pattern mining. This important property is the anti-
monotonity of the support of the item sets. What anti-monotonity
means in general for some function f : X → R is that for any
x1, x2 ∈ X, that is a pair of inputs from the domain of the function
the property

x1 > x2 ⇒ f (x1) ≤ f (x2)

holds, meaning that the value returned by the function for a larger
input is allowed to be at most as large as any of the outputs returned
by the function for any smaller input.

We define a partial ordering over the subsets of items as depicted
in Figure 7.1. According to the partial ordering we say that an item
set I is “larger” than item set J whenever the relation I ⊃ J holds
between the two item sets. Now the anti-monotonity property is
naturally satisfied for the support of item sets as the support of a
superset of some item set is at most as large as the support of the
narrower set.

In the example illustrated by Figure 7.1, item sets {b}, {c}, {b, c}
are assumed to be frequent. We indicate the fact that these item sets
are considered frequent by marking them with red. Note how the
anti-monotone property of support is reflected graphically in Fig-
ure 7.1 as all the proper subsets of the frequent item sets are always
frequent as well. If this were not the case, that was a violation of the
anti-monotone property.
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{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

∅
Figure 7.1: An example Hasse diagram
for items a, b and c. Item sets marked
by red are frequent.

7.1.2 Association rules

The next important concept is that of association rules. From a mar-
ket basket analysis point of view an association rule is a pair of (dis-
joint) item sets, (X ,Y) such that the purchase of item set X makes
the purchase of item set Y likely. It is notated as X ⇒ Y .

In order to quantify the strength of an association rule, one can
calculate its confidence, i.e.,

c(X ⇒ Y) = support(X ∪ Y)
support(X )

,

that is the number of transactions containing all of the items present
in the association rule, divided by the number of transactions that
include at least the ones on the left hand side of the rule (and poten-
tially, but not mandatorily any other items, including the ones on the
right hand side of the association rule). What confidence intuitively
quantifies for an association rule is a conditional probability, i.e., it
tells us the probability that a basket would contain item set Y given
that the basket already contains item set X .

Example 7.3. Revisiting the example transactional dataset from Table 7.1,
let us calculate the confidence of the association rule {beer} ⇒ {diaper}. In
order to do so we need the support of the item pair {beer, diapers} and that of
the single item on the left hand side of the association rule, i.e., {beer}.

Recall that these support values are exactly the ones we calculated in
Example 7.2 that is

c({beer} ⇒ {diapers}) = support({beer, diapers})
support({beer}) = 2/3.

Recall that unlike conditional probabilities are not symmetric, i.e.,
P(A|B) = P(B|A) need not be the case by definition, the same applies
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for the confidence of item sets, meaning that

c(X ⇒ Y) = c(Y ⇒ X )

does not necessarily hold.
As an example to see when the symmetry breaks, calculate the confidences

of the association rules

{bread} ⇒ {milk} and {milk} ⇒ {bread}.

Also note that association rules can have multiple items on either on their
sides, meaning that association rules of the form

{beer} ⇒ {diapers, baby f ood}

are totally legit ones.

7.1.3 The interestingness of an association rule

One could potentially think that association rules with high confi-
dence are needlessly useful. This is not necessarily the case, however.
Just imagine the simple case when there is some product A which
simply gets purchased by every customer. Since this product can be
found in every market basket, no matter what product B we choose
for, the confidence of the association rule c(B ⇒ A) would also be
inevitably 1.0 for any product B.

In order to better access the usefulness of an association rule, we
need to devise some notion of true interestingness for the association
rules. There exists a variety of such interestingness measures. Going
through all of them and detailing their properties is beyond our
scope, here we just simply mention a few of the possible ways to
quantify the interestingness of an association rule.

A simple way to measure how interesting an association rule
A ⇒ B is to calculate the so-called lift of the association rule by
the formula

c(A ⇒ B)
s(B) ,

with c(A ⇒ B) and s(B) denoting the confidence of the associa-
tion rule and the relative support of item set B, respectively. Taking
into consideration that the confidence of an association rule can be
regarded as a conditional probability of purchasing item set B given
that item set A had been purchased, and that the relative support of
an item set is nothing but the probability of purchasing that given
item set A, it is easy to see that the lift of an association rule can be
rewritten as

P(A, B)
P(A)P(B)

,
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with P(A, B) indicating the joint probability of buying both item sets
A and B simultaneously, P(A) and P(B) referring to the marginal
probability of purchasing item sets A and B, respectively. What it
means in the end that the lift of a rule investigates to what extent
is the purchase of item set A is independent from that of item set
A. A lift value of 1 means that item sets A and B are purchased
independent from each other. Larger lift values mean a stronger
connection between item sets A and B.

We get a further notion of interestingness for an association rule if
we calculate

i(A ⇒ B) = c(A ⇒ B)− s(B),

where c(A ⇒ B) denotes the confidence of the association rule and
s(B) marks the relative support for the item set on the right hand
side of the association rule. Unlike lift, this quantity can take negative
value, once the condition s(B) > c(A ⇒ B) holds. This happens
when item set B is less frequently present among such baskets that
contain item set A compared to the overall frequency of the presence
of item set B (irrespective of item set A). A value of zero for that
value means that we see item set B just as frequently in those baskets
that contain item set A as well than in any basket not necessarily
containing item set A in general. A positive value on the other hand
means, that the presence of item set in a basket makes the presence of
item set B more likely compared to the case when we do not know if
A is also present in the basket.

7.1.4 The cardinality of potential association rules

In order to illustrate the difficulty of the problem we try to solve from
a combinatorial point of view, let us quantify the number of possible
association rules that one can construct out of d products. Intuitively,
in an association rule every item can be either absent or present in
the left hand side or the right hand side of the rule. This means that
for every item, there are three possibilities in which it can be involved
in an association rule, meaning that there are exponentially many,
i.e., O(3d) potential association rules that can be assembled from d
distinct items.

Note, however, that the quantity 3d is an overestimation towards
the true number of valid association rules, in which we expect both
sides to be disjoint and non-empty. By discounting for the invalid
association rules and utilizing the equation

(1 + x)d =
d

∑
j=1

(
d
j

)
xd−j + xd,
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we get for the exact number of valid association rules to be

d

∑
i=1

[(
d
i

)d−i

∑
j=1

(
d− i

j

)]
=

d

∑
i=1

(
d
i

)
(2d−i − 1) =

=
d

∑
i=1

(
d
i

)
2d−i −

d

∑
i=1

(
d
i

)
= (3d − 2d)− (2d − 1) = 3d − 2d+1 + 1,

with 3d − 2d+1 + 1 = O(3d). This means that although our original
answer was not correct in the strict sense – because it also included
the number of invalid association rules – it was correct in the asymp-
totic sense.

Based on the above exact results, we can formulate as many as
18,660 possible association rules even when there are just d = 9
single items to form association rules from. This quick exponential
growth in the number of potential association rules is illustrated
in Figure 7.2, making it apparent that without efficient algorithms
finding association rules would not practically be feasible. Since
association rules can be created by partitioning frequent item sets,
it is of upmost importance that we could find frequent item sets
efficiently in the first place.
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Figure 7.2: Illustration of the distinct
potential association rules as a function
of the different items/features in our
dataset (d).

7.1.5 Special subtypes of frequent item sets

Before delving into the details of actual algorithms which efficiently
determine frequent item sets, we first define a few important special
subtypes of item sets. These special classes of item sets which are
beneficial because they allow for a compressed storage of frequent
item sets that can be found in some transactional dataset.

• A maximal frequent item set is such that all of its supersets are
not frequent. To put it formally, an item set I is maximal frequent
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if the property

{I|I frequent ∧ ∄ frequent J ⊃ I}

holds for it.

• A closed item set is such an item set that none of its supersets
have a support equal to it, or to put it differently, all of its su-
persets have a strictly smaller support compared to it. Formally
stating this property

{I|∄J ⊃ I : s(J) = s(I)}

has to hold for an item set I to be closed.

• A closed frequent item set is simply an item set which is closed
in the above sense and which has a support exceeding some previ-
ously defined frequency threshold τ.

It can be easily seen that maximal item sets always need to be
closed as well. This statement can be verified by contradiction. That
is if we suppose that there exists some item set I which is maximal,
but which is not closed, we get to a contradiction. Indeed, if item set
I is not a closed item set, then it means that there is at least one such
superset J ⊃ I with the exact same support, i.e., s(I) = s(J). Now,
since I is a frequent item set based on our initial assumption, so does
J because we have just seen that it would have the same support as I.

This, however, contradicts to the assumption of I being a maximal
frequent item set, since there exists no superset for maximal frequent
item sets that would be frequent as well. Hence maximality of an
item set implies its closed property as well. Figure 7.3 summarizes
the relation of the different subtypes of frequent item sets.

As depicted by Figure 7.3, maximal frequent item sets holds for
just a privileged set of frequent item sets, i.e., those special ones that
are located at the frequent item set border, also referred to as the
positive border. Item sets that are located in the positive border are
extremely important, since storing only these item sets is sufficient
to implicitly store all the frequent item sets. This is again assured by
the anti-monotone property of the support of item sets, i.e., all proper
subsets of the item sets on the positive border needs to be frequent
as well because they have at least the same or even higher support as
those item sets present in the positive border.

Additionally, by the definition of maximal frequent item sets, it is
also the case that none of their supersets is frequent, hence maximal
frequent item sets are indeed sufficient to be stored for implicitly
storing all the frequent item sets. Storing maximal frequent item sets,
however, would not allow us to reconstruct the supports of all the
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Frequent item sets

Closed frequent item sets

Maximal frequent
item sets

Figure 7.3: The relation of frequent item
sets to closed and maximal frequent
item sets.

frequent item sets. If it is also important for us that we could tell the
exact support for all the frequent item sets, then we also need to store
all the closed frequent item sets.

Note, however, that the collection of closed frequent item sets is
still narrower than those of frequent item sets (cf. Figure 7.3). Hence,
storing closed frequent item sets alone also implicitly stores all the
frequent item sets in a compressed form together with their support.

Example 7.4. Table 7.2 contains a small transactional dataset alongside
with the categorization of the different item sets. In this example, we take
the minimum support for regarding an item set to be frequent as 3. We can
see as mentioned earlier that whenever a dataset qualifies being maximal
frequent, it always also holds that the given dataset is closed simultaneously.

Additionally, we can see as well that taking all the proper subsets of the
maximal frequent item sets identified in the transactional dataset, we can
generate all further item sets that are frequent as well, i.e., the proper subsets
of item sets {A, B} and {B, C}, it follows that the individual singleton item
sets – {A}, {B} and {C} – are also above our frequency threshold that was
set to 3.

7.2 Apriori algorithm

The Apriori algorithm is a prototypical approach for frequent item
set mining algorithms that are based on candidate set generation.
The basic principle of such algorithms is that they iteratively generate
item sets which potentially meet the predefined frequency threshold,
then filters them for those that are found to be truly frequent. This
iterative procedure is repeated until it is possible to set up a non-
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Transaction ID Basket

t1 {A,B,C}
t2 {A,B,C}
t3 {B,C}
t4 {A,B}
t5 {A,B}

(a) Sample transactional dataset

Item Frequency Maximal Closed Closed frequent

A 4 No No No
B 5 No Yes Yes
C 3 No No No

AB 4 Yes Yes Yes
AC 2 No No No
BC 3 Yes Yes Yes

ABC 2 No Yes No

(b) The characterization of the possible item sets

Table 7.2: Compressing frequent item
sets — Example (t = 3)

empty set of candidate item sets.
During the generation phase, we strive for the lowest possible false

positive rate, meaning that we would like to count the actual support
for the least amount of such item sets which are non-frequent in
reality. At the same time, we want to avoid false negatives entirely,
meaning that we would not like to erroneously miss investigating
whether an item set is frequent if it has such a support which makes
it a frequent item set.

At first glance, it sounds like a chicken and egg problem, since the
only way to figure out if an item set is frequent or not is to count its
support. Hence the idea behind candidate set generating techniques
is to rule out as many provably infrequent item sets from the scope
of candidates without ruling out any candidate that we were not
supposed to do so. We can achieve this by checking certain necessity
conditions for item sets before treating them as frequent item set
candidates.

A very natural necessity condition follows from the anti-monotonic
property of the support of item sets. This necessity condition sim-
ply states that in order an item set to be potentially frequent, all its
proper subsets also need to be frequent as well.

This suggests us the strategy for regarding all the single items as
potentially frequent candidate sets upon initialization and gradually
filtering and expanding this initial solution in an iterative manner.
Let us denote our initial candidates of frequent item sets compris-
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ing of single element item sets as C1. More generally, let Ci denote
candidate item sets of cardinality i.

Once we count the true support for all of the single item candi-
dates in C1 by iterating through the transactional dataset, we can
retain the set of those item singletons that indeed meet our expec-
tations with respect their support being greater than or equal to
some predefined frequency threshold t. This way, we can get to the
set of truly frequent one-element item sets such that F1 = {i|i ∈
C1 ∧ s(i)} ⊂ C1. The set F1 is helpful for obtaining frequent item
sets of larger cardinality, i.e., according to the anti-monotone prop-
erty of support, only such item sets have a non-zero chance of being
frequent that are supersets of a frequent set in F1.

In general, once the filtered set of truly frequent item sets of car-
dinality k − 1 is obtained, it helps us to construct the set of frequent
candidate item sets of increased cardinality k. We repeat this in an
ongoing fashion as indicated in the pseudocode provided in Algo-
rithm 2.

Algorithm 2: Pseudocode for calcula-
tion of frequent item setsRequire: set of possible items U, transactional database T, frequency

threshold t
Ensure: frequent item sets

1: C1 := U
2: Calculate the support of C1

3: F1 := {x|x ∈ C1 ∧ s(x) ≥ t}
4: for (k = 2; k < |U |&&Fk−1 ̸= ∅; k ++) do
5: Determine Ck based on Fk−1

6: Calculate the support of Ck

7: Fk := {X|X ∈ Ck ∧ s(X) ≥ t}
8: end for
9: return ∪k

i=1Fi

7.2.1 Generating the set of frequent item candidates Ck

There is one additional important issue that needs to be discussed
regarding the details of the Apriori algorithm. That is, how to effi-
ciently generate the candidate item sets Ck in line 5 of Algorithm 2.
As it has been repeatedly stated, when setting up frequent item set
candidates of cardinality k, the previously calculated supports of the
item sets with smaller cardinalities impose necessity conditions that
we can rely on for reducing the number of candidates to be gener-
ated.

Our goal is then to be as strict in the composition of Ck as possible,
whereas not being stricter than what is necessary. That is, we should
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not fail to include such an item set in Ck that is frequent in reality,
however, it would be nice to see in the end as few excess candidate
item sets as possible. In other terminology, also used previously in
Chapter 4, we would like to keep false positive errors low, while not
tolerating false negative error at all.

We know that in order some item set of cardinality k to have a
non-zero probability for being frequent, it has to hold that all item
sets of cardinality k− 1 that we can form by leaving out just a single
item also has to be frequent. This requirement follows from the anti-
monotonicity of the support. Based on this necessity condition, we
could always check all the k proper subsets that we can form from
some potential candidate item set of cardinality k by leaving out just
one item at a time.

This strategy is definitely the most informed one in the sense that
it relies on all the available information that can help us to foresee
if a candidate item set cannot be frequent. This well-informedness,
however, comes at a price. Notice how this approach scales linearly
in the size of the candidate item set we are about to perform a vali-
dation for. That is, the larger item sets we would like to perform this
preliminary sanity check, i.e., to see if it makes sense at all to treat it
as a candidate item set, the more examinations we have to carry out,
resulting in more computation.

For the above reasons, there is a computationally cheaper strategy
which is typically preferred in practice for generating Ck, i.e., fre-
quent item set candidates of cardinality k. This computationally more
efficient strategy, nonetheless has a higher tendency of generating
false positive candidates, i.e., candidate item sets which would even-
tually turn out to be infrequent after we calculate their support. For
this computationally simpler strategy of constructing candidate item
sets, there need to be an ordering defined over the individual items. In what way do you think it makes

the most sense to define the order
of the items and why it is so?

?Once we have an ordering defined over the items found in the
dataset, we can set up a simplified criterion towards creating a can-
didate item set I ∈ Ck. Note that since there is an ordering for the
items to be found in item sets, we can now think of item sets as or-
dered character sequences in which there is a fixed order in which
two items can follow each other.

According to the simplified criterion, it suffices to consider those
item sets of cardinality k as being potentially frequent, the ordered
string representation is such that when omitting either its last or
penultimate character leaves us with two string representations of
such item sets of cardinality k− 1 which have been already verified to
be frequent as well.

Note that this simplified strategy is less stringent as opposed to
exhaustively checking whether all the k − 1-element proper subsets
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are frequent for an item set consisting of k items. The advantage of
the simpler strategy for generating Ck is that the amount of com-
putation it requires does not depend on the cardinality of the item
sets we are generating as it always makes a decision on just exactly
two proper subsets of a potential candidate item set. This strategy is
hence has O(1) computational requirement as opposed to the more
rigorous – albeit more expensive (O(k)) – exhaustive approach which
requires all the proper subsets of a candidate item set to be frequent
as well.

Note that the O(k) exhaustive strategy for generating elements of
Ck subsumes the check-ups carried out in the computationally less
demanding O(1) approach, i.e., the exhaustive strategy performs all
the sanity checks involved in our simpler generation strategy. We
should add that the O(1) approach we proposed involves a some-
what arbitrary choice for checking a necessity criteria towards an
item set to be potentially frequent.

We said that in the simplified approach we regard an item set I
a potentially frequent candidate if its proper subsets that we get by
leaving out either the last or the penultimate item from it are also
frequent. Actually, – unless nothing is known about the ordering over
the items within item sets – this criterion could be easily replaced
with the one which treats some item set I to be a potentially useful
candidate, if the item sets that we get by omitting its first and last
elements are known to be frequent.

In summary, it plays no crucial role in the simplified strategy for
generating Ck which two proper subsets do we require for a poten-
tial candidate I to be frequent, what was important is that instead of
checking for all the proper subsets of I , we opted for verifying the
frequent nature of a fixed sized sample of the k − 1-item subsets of
I . In the followings, nonetheless we will stick to the common imple-
mentation of this candidate generating step, i.e., we would check the
frequency of those proper subsets of some potential frequent candi-
date item set I ∈ Ck which match on their k− 2-length prefix in their
ordered representations and only differ on their very last items.

Example 7.5. Suppose that our transactional database contains items
labeled by the letters of alphabet from ’a’ to ’h’. Let us further assume that
the ordering that is required by the simplified candidate nominating strategy
follows the natural alphabetical order of letters. Note, that in general it
might be a good idea to employ ’less natural’ ordering of items, however, we
will assume here the usage of alphabetical ordering for simplicity.

Suppose that the Apriori algorithm have identified

F3 = {abd, abe, beh, d f g, acd}

as the set of frequent item sets of cardinality 3. How would we determine C4



mining frequent item sets 151

then?
One rather expensive way of doing so would try all the possible (|F3|

2 )

different ways to combine the item sets in F3 and see which of those form
an item set consisting of four items when merged together. If we followed
this path, we would obtain C4 = {abde, abcd, abeh}. This strategy would,
however, require too much work and also leave us with an excessive amount
of false positive item sets in C4 which will not be frequent item set after
checking their support.

Yet another – however rather expensive – approach would check for all
the proper subsets of potential item quadruplets if they can be found among
F3. In that case, we would end up treating C4 = ∅. This result is very
promising as it gives us the lowest possible candidates to check for, and
eventually the algorithm could terminate. The downside of this strategy,
however, is that it requires checking all the four proper subsets of an item set
I before it could get into C4.

Our simpler approach, that checks if an item set to be included among
the candidates in constant time provides a nice trade-off between the two
strategies illustrated earlier. We would then combine only such pairs of
item sets from F3 which match on their first two items and only differ on
their last item. This means that if we follow this strategy, we would have
C4 = {abde}.

Exercise 7.2. Determine C4 based on the same F3 as in Example 7.5 with
the only difference that this time the ordering over our item set follows
b > c > d > a > g > f > e > h.

7.2.2 Storing the item set counts

Remember that upon the determination of Fk, i.e., the truly frequent
item sets of cardinality k, we need to iterate through our transactional
dataset T and allocate a separate counter for each item set in Fk. This
is required so that we can determine

Fk = {I|I ∈ Ck ∧ s(I) ≥ t} ⊆ Ck,

the set of those item sets which is a subset of our set of candidate
item sets of cardinality k, such that their support is at least some
predefined frequency threshold t.

As such, another important implementational detail regarding the
Apriori algorithm is how to efficiently keep track of the supports of
our candidate item sets in Ck. These counts are important, because
we need them in order to formulate Fk ⊆ Ck. Recall that the way
determine Ck is via the combination of certain pairs of Fk−1. This
means that during iteration k, we have (|Fk−1|

2 ) potential counters to
keep track for obtaining Fk ⊆ Ck, which can be quite a resource-
demanding task to do. The amount of memory we need to allocate
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for the counters is hence |Ck| = O(|Fk−1|2) as there are this many
candidate item sets which we believe to have a non-zero chance of
being frequent.

As mentioned earlier, our candidate generation strategy neces-
sarily contains false positives, i.e., such candidate item sets that turn
out to be infrequent. Not only our candidates contain item sets that
would be proven as being infrequent in reality, it will most likely
contain a large proportion of candidate item sets which has an actual
support of zero. This means that we potentially allocate some – typ-
ically quite a large – proportion of the counters just to remain zero
throughout the time, which sounds like an incredible waste of our
resources!

To overcome the previous phenomenon, counters are typically
create in an on-line fashion. This means that we do not allocate the
necessary memory for all the potentially imaginable item pairs in
advance, but create a new counter for a pair of item set the first time
we see them co-occurring in the same basket.

This solution, however, requires additional memory usage, i.e.,
since we are not explicitly storing a counter for every combination of
item sets from Fk−1, we now also need to additionally store alongside
our counters the extra information which helps us to identify which
element of Ck the particular counter is reserved for. We identify an
element from Ck as a pair of indices (i, j) such that

Ck = F(i)
k−1 ∪ F(j)

k−1,

that is (i, j) identifies those item sets from Fk−1 that when merged
together exactly results in Ck.

When we store counters in this on-line fashion, we thus need
three times the amount of item pairs from Fk−1 that co-occur in the
transactional dataset at least once. Recall that although the explicit
storage would not require these additional pairs of indices per non-
zero counters, it would nonetheless require (|Fk−1|

2 ) counters in total.
Hence, whenever the number of item sets with cardinality k and a
non-zero presence in the transactional dataset is below 1

3 (
|Fk−1|

2 ), we
definitely win by storing the counters for our candidates in the on-
line manner as opposed to allocating a separate counter to all the
potential item sets of cardinality k.

There seems to be a circular referencing in the above criterion,
since the only way we could figure out whether the given relation
holds is if we count all the potential candidates first. As a rule of
thumb, we can typically safely assume that the given relation holds.
Moreover, there could be special circumstances when we can be abso-
lutely sure in advance that the on-line bookkeeping is guaranteed to
pay off. Example 7.6 contains such a scenario.
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Example 7.6. Suppose we have a transactional database with 107 transac-
tions and 200, 000 frequent items, i.e., |T| = 107 and |F1| = 2 ∗ 105. We
would hence need (|F1|

2 ) ≈ 2 ∗ 1010 counters if we wanted to keep explicit
track of all the possible item pairs.

Assume that we additionally know it about the transactional dataset that
none of the transactions involve more than 20 products, i.e., |ti| ≤ 20 for
all ti ∈ T. We can now devise an upper bound on the maximal amount of
co-occurring item pairs. If this upper bound is still less than one third of
the counters needed for the explicit solution, then it is guaranteed that the
on-line bookkeeping is the proper way to go.

If we imagine that every basket includes exactly 20 items (instead of at
least 20 items), we get an upper bound on the number of item pairs included
in a single basket to be (20

2 ) = 190. Making the – rather unreasonable –
assumption that item pairs are never repeated in multiple baskets, there are
still no more than 190 ∗ 107 item pairs that could potentially have a non-
zero frequency. This means that we would require definitely no more than
6 ∗ 109 counters and indexes in total when choosing to count co-occurring
item sets with the on-line strategy.

Transaction ID Basket

t1 {1,3,4}
t2 {1,4,5}
t3 {2,4}
t4 {1,4,6}
t5 {1,6}
t6 {2,3}
t7 {1,4,6}
t8 {2,3}

(a) Sample transactional dataset

1 2 3 4 5 6

1 0 1 1 0 0

1 0 0 1 1 0

0 1 0 1 0 0

1 0 0 1 0 1

1 0 0 0 0 1

0 1 1 0 0 0

1 0 0 1 0 1

0 1 1 0 0 0

(b) The corresponding incidence matrix.

Table 7.3: Sample transactional dataset
(a) and its explicit and its correspond-
ing incidence matrix representation
(b). The incidence matrix contains 1 for
such combinations of baskets and items
for which the item is included in the
particular basket.

7.2.3 An example for the Apriori algorithm

We next detail the individual steps involved during the execu-
tion of the Apriori algorithm for the sample dataset introduced in
Table 7.3. We use three as the threshold for the minimum support
frequent item sets are expected to have. Can you suggest a vectorized im-

plementation for calculating the
support of item sets up to cardinal-
ity 2?

?1. The first phase of the Apriori algorithm treats all the items as
potentially frequent ones, i.e., we have C1 = {1, 2, 3, 4, 5, 6}. This
means that we need to allocate a counter for each of the items in
C1. The algorithm next iterates through all the transactions and
keeps track of the number times an item is present. Figure 7.4
includes an example code snippet for calculating the support
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baskets=[1 1 1, 2 2 2, 3 3, 4 4 4, 5 5, 6 6, 7 7 7, 8 8];

items = [1 3 4, 1 4 5, 2 4, 1 4 6, 1 6, 2 3, 1 4 6, 2 3];

dataset = sparse(baskets, items, ones(size(items)));

unique_counts=zeros(1, columns(dataset));

for b=1:rows(dataset)

basket = dataset(b,:);

[~,items_in_basket]=find(basket);

for product=items_in_basket

unique_counts(product) += 1;

endfor

endfor

fprintf("Item supports: %sn", disp(unique_counts))

CODE SNIPPET

Figure 7.4: Performing counting of
single items for the first pass of the
Apriori algorithm.of the individual items of C1. Once we iterate through all eight

transactions, we observe that the distinct items numbered from 1

to 6 are included in 5, 3, 3, 5, 1 and 3 transactions, meaning that
we have F1 = {1, 2, 3, 4, 6}.

2. Once we have F1, the second phase begins by determining the
candidates of frequent item pairs, i.e.,

C2 = {{1, 2}, {1, 3}, {1, 4}, {1, 6}, {2, 3}, {2, 4}, {2, 6}, {3, 4}, {3, 6}, {4, 6}}.

Another pass over the transactional dataset confirms us that these
are solely item pairs {1, 4} and {1, 6} from C2 that manage to have
a support greater than or equal to our frequency threshold with
four and three occurrences, respectively. This means, that we have
F2 = {{1, 4}, {1, 6}}.

3. The third phase of the Apriori algorithm works by first deter-
mining C3. According to the strategy introduced earlier in Sec-
tion 7.2.1, we look for pairs of item sets in F2 that only differ on
their last item in their ordered set representations. This time we
have a single pair of item pairs in F2 and this pair happens to fulfil
the necessity condition which makes their combination a worthy
set to be included in C3. As such, we have C3 = {{1, 4, 6}}. An-
other pass over all the individual transactions of the transactional
dataset reveals us that the support of the item set {1, 4, 6} is two,
which means that the single frequent candidate item triplet fails to
be indeed frequent, resulting in F3 = ∅.

4. Since F3 was the empty set, we cannot form any frequent candi-
date item quadruples and the Apriori algorithm terminates.
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Based on the previous steps, we can conclude that the set of frequent
item sets from the sample dataset included in Table 7.3 is that of
F1 ∪ F2 ∪ F3 = {{1}, {2}, {3}, {4}, {6}, {1, 4}, {1, 6}}

7.3 Park–Chen–Yu algorithm

The Park–Chen–Yu algorithm (or PCY for short) can be regarded as
an extension over the Apriori algorithm. This improvement builds
upon the observation that during the different iterations of the Apri-
ori algorithm, the main memory is loaded in a very unbalanced way.

That is, during the first iteration, we only need to deal with item
singletons in C1. Starting with the second iteration of the Apriori
algorithm, things can go extremely resource intensive as the amount
of memory it requires is O(|F1|2), with the possibility that |F1| ≈ |C1|
which can easily be at the scale of 105 or even beyond that. It would
be really nice to make actual use of the unused excess memory we
might have during the first phase of the Apriori algorithm in a way
that would allow us to do somewhat less work during the upcoming
phase(s).

Obviously, this additional work we perform has to be less than the
amount of work we would do anyway in the second phase, otherwise
we would gain nothing from our additional work. The solution is
to randomly assign item pairs together and count the support of
these virtual item pairs. We choose the number of virtual item pairs to
be substantially lower than the number of potential candidate item
pairs, meaning that the costs of this extra bookkeeping we perform
simultaneously to the first phase is substantially cheaper than the
resource needs for the entire second phase.

The way we create virtual item pairs (and item sets in more gen-
eral) is via the usage of hash functions. A very simple form of de-
riving virtual item set identifiers to some item set I could be ob-
tained by summing the integer identifiers to be found in the item
set, and taking the modulus of the resulting sum with some integer
small enough that we can reserve a counter for each possible out-
come of the hash function employed. We could, for instance employ

h(I) =
(

∑
i∈I

i
)

mod 5, where mod denotes the modulus operator.

This means that we would need to keep track of at most five addi-
tional counters, one for each virtual item set potentially formed by h. What potential pros and cons can

you think of for applying multiple
hash functions for creating virtual
item sets?

?As an example, the above hash function would yield the virtual item
set identifier 0 to the item set {4, 5, 6}.

The pigeonhole principle ensures that there need to be multiple
actual item sets that get assigned to the same virtual identifier. Recall
that for the previously proposed hash function, the item set {1, 3, 6}
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would also yield the virtual item set identifier 0 which is identical
for the item set {4, 5, 6} as we have seen it before. This property of
the virtual item set calculation further ensures that we can obtain a
cheap upper bound on the supports of actual item sets by checking
the support of the virtual item set an actual item set gets mapped to.
This is because in practice we choose the number of virtual item sets
to be orders of magnitude less than the number of potential item sets,
which results in the fact that counters allocated for virtual item sets
typically store the aggregated support of more than just one item set.
Now, if the support belonging to the virtual item set – being mapped
to multiple actual item sets – with identifier h(I) happens to have
a support below the minimum frequency threshold t, then there is
absolutely no chance for any of the item sets that map to h(I) to be
frequent.

It is important to notice that the necessity condition purely based
on the counts assigned to the virtual pairs of item sets does not sub-
sume the necessity conditions of the standard Apriori algorithm. This
means that – alongside the newly introduced counters for the virtual
item pairs – we should still keep those counters that we used in the
Apriori algorithm as well. If we do so, we can ensure that the num-
ber of candidates generated by PCY would never surpass the number
of frequent item set candidates obtained by the Apriori algorithm.

7.3.1 An example for the PCY algorithm

Consider the same example transactional dataset from Table 7.3.
Remember that the individual items numbered from 1 to 6 had sup-
ports being equal to 5, 3, 3, 5, 1 and 3, respectively.

As mentioned in Section 7.3, the Park-Chen-Yu algorithm requires
the introduction of virtual items sets that we can achieve via the ap-
plication of hash functions. In this example, we use the hash function

h(x, y) = (5(x + y)− 3 mod 7) + 1

in order to assign an actual item pair (x, y) into one of the 7 possible
virtual item sets.

Table 7.4 contains in its upper triangular the virtual item set iden-
tifiers that an actual item set gets hashed to, when using them ac-
cording to the above hash function. The lower triangular of Table 7.4
stores the actual support of item pairs. The lower triangular of the
table is exhaustive in the sense that it contains supports for all pos-
sible item pairs. Recall that the Apriori and PCY algorithms exactly
strive to actually quantify as few of these actual supports as possible
by setting up efficiently computable necessity conditions that tell us if
a pair of items has zero probability of being frequent.
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It is hence important to emphasize that not all values of the lower
triangular from Table 7.4 would get quantified during the execution
of PCY, it simply serves the purpose of enumeration of all the pair-
wise actual occurrences of the item pairs. Notice that the support
values in the main diagonal of Table 7.4 (those put in parenthesis)
contain the support of single items that get calculated during the first
phase of the algorithm.

1 2 3 4 5 6

1 (5) 6 4 2 7 5
2 0 (3) 2 7 5 3

3 1 2 (3) 5 3 1

4 4 1 1 (5) 1 6

5 1 0 0 1 (1) 4

6 3 0 0 2 0 (3)

Table 7.4: The upper triangular of the
table lists virtual item pair identifiers
obtained by the hash function h(x, y) =
(5(x + y) − 3 mod 7) + 1 for the
sample transactional dataset from
Table 7.3. The lower triangular values
are the actual supports of all the item
pairs, with the values in the diagonal
(in parenthesis) include supports for
item singletons.

According to the values in the upper triangular of Table 7.4, when-
ever item pair (1, 2) is observed in a transaction of the sample trans-
actional dataset from Table 7.3, we increase the counter that we
initialized for the virtual item pair with identifier 6. Table 7.4 tells
us likewise that item pair (1, 3) belongs to the virtual item pair 4.
Figure 7.5 contains a sample implementation for obtaining all the
(meta)supports obtained during the first pass of PCY.

As the PCY algorithm processes the entire transactional dataset,
we end up seeing the item singleton and virtual item pair counters as
listed in Table 7.5.

Item 1 2 3 4 5 6

Support 5 3 3 5 1 3

(a) Counters created for item singletons.

Virtual item pair 1 2 3 4 5 6 7

Support 1 6 0 1 4 2 2

(b) Counters for virtual item pairs.

Table 7.5: The values stored in the
counters created during the first pass
of the Park-Chen-Yu algorithm over
the sample transactional dataset from
Table 7.3.

From the counters included in Table 7.5, we can see that there were
all together 20 items and 16 item pairs purchased in the sample input
transactional dataset. Perhaps more importantly, it is also apparent
from these counters that none of the item pairs involving item 5,
nor those that hash to any of the virtual item pair identifiers 1, 3, 4, 6
and 7 have a non-zero chance of being frequent in reality. Note that
the first necessity condition that we know from the counters that we
would also have in a vanilla Apriori implementation, however, the
second criterion is originating from the application of PCY.
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baskets=[1 1 1, 2 2 2, 3 3, 4 4 4, 5 5, 6 6, 7 7 7, 8 8];

items = [1 3 4, 1 4 5, 2 4, 1 4 6, 1 6, 2 3, 1 4 6, 2 3];

dataset = sparse(baskets, items, ones(size(items)));

unique_counts=zeros(1, columns(dataset));

num_of_virtual_baskets=7;

hash_fun=@(x,y) mod(5*(x+y)-3, num_of_virtual_baskets)+1;

virtual_supp=zeros(1, num_of_virtual_baskets);

for b=1:rows(dataset)

basket = dataset(b,:);

[~,items_in_basket]=find(basket);

for product=items_in_basket

unique_counts(product) += 1;

for product2=items_in_basket

if product<product2

virtual_pair=hash_fun(product, product2);

virtual_supp(virtual_pair) += 1;

endif

endfor

endfor

endfor

fprintf("Item supports: %s\n", disp(unique_counts))

fprintf("Virtual item pair supports: %s\n", disp(virtual_supp))

CODE SNIPPET

Figure 7.5: Performing counting of
single items for the first pass of the
Park-Chen-Yu algorithm.
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Recall that in the case of vanilla Apriori algorithm C2 had (5
2) = 10

elements as it contained all the possible item pairs formed from
the item set of frequent item singletons F1 = {1, 2, 3, 4, 6} with
|F1| = 5. In the case of PCY, however, we additionally know, that
only those item pairs with virtual item pair identifier 2 or 5 have
any chance of having a support of 3 or higher. There are only five
item pairs that map to any of the frequent virtual item pairs, i.e.,
{1, 4}, {1, 6}, {2, 3}, {2, 5}, {3, 4} (the virtual item identifiers written
in red in Table 7.4).

Since all the necessity conditions have to hold at once for an item
pair in order to be recognized as a potential frequent item pair, we
can conclude that PCY identifies C2 as {{1, 4}, {1, 6}, {2, 3}, {3, 4}}.
Notice that this set is lacking item pair {2, 5}, which item pair would
qualify it as a potentially frequent item pair based on its virtual item
pair identifier, however, it fails to do so otherwise, as it contains an
item singleton that is identified as being non-frequent (cf. item 5).
This illustrates that the necessity conditions based on the virtual item
sets are not strictly stronger, but play a complementary role to the
necessity conditions imposed by the traditional Apriori algorithm.

By the end of the second pass over the transactional dataset, we
obtain the counters to the item pairs of C2 as included in Table 7.6.
Based on the content of Table 7.6, we conclude that with our fre-
quency threshold being defined as 3, we have F2 = {{1, 4}, {1, 6}}.

Candidate item pair {1, 4} {1, 6} {2, 3} {3, 4}
Support 4 3 2 1

Table 7.6: Support values for C2 calcu-
lated by the end of the second pass of
PCY.

In the final iteration of PCY, we have C3 = {{1, 4, 6}}. As our
subsequent iteration over the transactional dataset would provide us
with the information that {1, 4, 6} has a support of 2, which means
that for our frequency threshold of 3, we have F3 = ∅. This addi-
tionally means that the PCY algorithm terminates, as we can now
be certain – according to the Apriori principle – that none of the
item quadruples have any chance of being frequent, that is we have
C4 = ∅.

7.4 FP–Growth

Apriori algorithm and its extensions are appealing as they are both
easy to understand and implement in the form of an iterative algo-
rithm. This iterative nature means that we do not need to keep the
entire market basket dataset in the main memory, since it suffices
to process one basket at a time and only allocate memory for the
candidate frequent item sets and their respective counters.
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We might, however, also face some drawbacks for applying the
previously introduced algorithms for extracting frequent item sets
as the repeated passes over the entire transactional database can be
time-consuming. These repeated iterations can be especially time-
consuming if it involves accessing the secondary memory from itera-
tion to iteration.

Approaches capable of extracting frequent item sets without an
iterative candidate set generation1 could serve as a promising alter- 1 Han et al. 2000

native to the previously discussed approaches that require multiple
iterations over the transactional dataset.

The basic idea behind the FP-Growth algorithm is that the trans-
actions in the market basket dataset can be efficiently compressed as
the contents of the market baskets tend to overlap. The FP-Growth
Algorithm achieves the above mentioned compression by relying on
a special data structure named frequent-pattern tree (FP-tree). This
special data structure is indented to store the entire transactional
dataset and provides a convenient way to extract the support of item
sets in an efficient manner.

The high-level working mechanism of the FP-Growth algorithm is
the following:

1. we first build an FP-tree for efficiently storing the contents of the
market baskets included in our transactional dataset,

2. we derive conditional datasets from the FP-tree containing the
entire dataset and gradually expand it for finding frequent item
sets of increasing cardinality in a recursive manner.

We face an obvious limitation of the above approach when our
transactional data set is so large that even its compressed form in the
FP-tree data structure is too large to fir in the main memory. One ap-
proach in such cases could be to randomly sample transactions from
the transactional dataset and build the FP-tree based on that. If our
sample is representative of the entire transactional dataset, then we
shall experience similar relative supports for the different item sets
we would experience otherwise if we relied on all the transactions.

7.4.1 Building FP-trees

Building an FP-tree goes by processing transactions from the trans-
actional database one by one and creating and/or updating a path
in the FP-tree dataset. In the beginning, we naturally start with an
empty FP-tree.

FP-tree needs an ordering over the items such that the items
within a basket shall be represented uniquely when we order the
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items comprising the transaction. The ordering applied can be arbi-
trary, however, there is a typical one which sorts items based on their
decreasing support. This useful heuristic usually helps the FP-tree
data structure to obtain a better compression rate. The number of
nodes assigned to an item in an FP-tree always ranges between one
and the number of transactions the particular item is included in. It is
also true, that items which are ranked higher in the ordering over the
items would have fewer nodes assigned to them in the FP-tree.

The higher support an item has, the more problems it can cause
when ranked low in our ordering as we are risking the introduction
of as many nodes into the FP-tree that is equal to its support. It is
hence a natural strategy to rank items with the largest support the
highest, since this way we are more likely to avoid FP-trees with an
increased number of internal nodes.

Once we have some ordering of the items, we can start process-
ing the transactions of the transactional dataset sequentially. The
goal is to include the contents of every basket from the transactional
dataset in the FP-tree as a path starting at the root node. Every node
in the FP-tree corresponds to an item and every node has an asso-
ciated counter which indicates the number of transactions the item
was involved. An edge between two nodes – corresponding to a
pair of items – indicate that the corresponding items were located as
adjacent items in at least one basket according to the ordered repre-
sentations of the baskets.

For each transaction, we take the ordered items they are comprised
of and update the FP-tree accordingly. The way an update looks is
that we take the ordered items in a basked one by one and we see
if the succeeding item from the basket can be found an a path in
the FP-tree which starts at the root. If the succeeding item from the
basket is already included at the FP-tree along our current path ,
then we only need to increase the associated counter for the node in
the FP-tree which corresponds to our next item from the currently
processed basket. Otherwise, we introduce a new node for the item
in the FP-tree that we were not able to proceed to continuing the
path that we started from the root of the FP-tree and initialize the
associated counter of the newly created node to 1.

Since the same item can be part of multiple paths in the FP-tree, an
item can be distributed over multiple nodes in the FP-tree. In order
to support efficient aggregation of the same item – without the need
of traversing the entire FP-tree – links between nodes referring to the
same item are maintained in FP-trees. We can easily collect the total
occurrence of an item by following these auxiliary links.

For illustrating the procedure of creating an FP-tree, let us con-
sider the sample transactional dataset in Table 7.7. Figure 7.6 illus-
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Transaction ID Basket

1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}

10 {B,C,E}

Table 7.7: Example market basket
database.

trates the inclusion of the first five market baskets from the example
transactional dataset into an initially empty FP-tree. Starting with
the insertion of the third market basket, we can see that the pointers
connecting items of the same kind get introduced. These pointers are
marked by red dashed edges in Figure 7.6 (c)–(e).

By looking at Figure 7.6 (e), we can conclude that the first five
transactions of our transactional dataset contained item E twice,
due to the fact that two is the sum for the counters associated to
the nodes assigned to item E across the FP-tree. As including all these
auxiliary edges to the FP-tree during the processing of the further
transactions would result in a rather chaotic figure, we are omitting
them in the followings.

Figure 7.7 (a) presents us the FP-tree that we get after including
all the transactions from the example transactional dataset included
in Table 7.7. Let us emphasize that the auxiliary edges connecting
the same item types play an integral role in FP-trees, we deliberately
decided not to mark them for obtaining a more transparent figure.

Notice that the resulting FP-tree in Figure 7.7 (a) was based on
the frequently used heuristic when items are ordered based on their
decreasing order of support. Should we apply some other ordering
of the items, we would get a differently arranged FP-tree. Indeed,
Figure 7.7 (b) illustrates the case that we would get if the items were
ordered based on their alphabetical ordering. What FP-trees would we get if items

within baskets were ordered accord-
ing to their increasing/decreasing
order of support?

?
7.4.2 Creating conditional datasets

Once the entire FP-tree is build – presumably using the heuristic
which orders the contents of transactions according to their decreas-
ing support – we are ready to determine frequent item sets from
the transactional dataset without any additional processing of the
transactional dataset itself. That is, from that point on we are able to
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∅

B : 2

A : 1

(a) After the 1st basket

null

B : 2

A : 1 C : 1

D : 1
(b) After the 2nd basket

∅

B : 2 A : 1

A : 5 C : 1

D : 1

C : 1

D : 1

E : 1
(c) After the 3rd basket

∅

B : 2 A : 2

A : 1 C : 1

D : 1

C : 1

D : 1

E : 1

D : 1

E : 1

(d) After the 4th basket

∅

B : 3 A : 2

A : 2 C : 1

D : 1

C : 1

D : 1

E : 1

D : 1

E : 1
C : 1

(e) After the 5th basket

Figure 7.6: The FP-tree over processing
the first five baskets from the example
transactional dataset from Table 7.7.
The red dashed links illustrate the
pointers connecting the same items for
efficient aggregation.
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∅

B:8

A:5

C:3

D:1

D:1

C:3

D:1 E:1

A:2

C:1

D:1

E:1

D:1

E:1

(a) Using item ordering based on their support (B > A > C > D > E)

∅

A:7

B:5

C:3

D:1

D:1

C:1

D:1

E:1

D:1

E:1

B:3

C:3

D:1 E:1

(b) Using alphabetical ordering of items (A > B > C > D > E)

Figure 7.7: FP-trees obtained after pro-
cessing the entire sample transactional
database from Table 7.7 when applying
different item ordering. Notice that the
pointers between the same items are not
included for better visibility.

extract frequent item sets from the FP-tree directly and recursively.
The extraction of frequent item sets can be performed by using

conditional FP-trees. Conditional FP-trees are efficiently deter-
minable subtrees of an FP-tree which can help us to identify fre-
quently co-occurring item sets. The benefit of these conditional FT-
trees is that they can be directly determined from the FP-tree that we
constructed earlier from the entire transactional dataset and there is
no need for further multiple processing steps to be performed over
the transactional dataset.

When we build an FP-tree conditionated over an item set I , we are
deriving such an FP-tree we would have constructed if the transac-
tional dataset consisted from those transactions alone which contain
item set I . Table 7.8 illustrates the kind of dataset we would have if
we discarded those transactions which are not a superset for the item
set consisting of the single element {E}.

We could naturally rely on the entire transactional dataset and
derive a reduced one which excludes those transactions that do not
contain a certain item set. This would nonetheless be a rather ineffi-
cient strategy to choose. The important thing during the construction
of a conditional FP-tree is that we never construct it from scratch, but
derive them recursively from the unconditional transactional dataset
that is build based on the entire dataset. Figure 7.8 depicts the condi-
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TID Basket

1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}

10 {B,C,E}

Table 7.8: The transactional dataset
indicating irrelevant transactions with
respect item set {E}. Irrelevant baskets
are striked.

tional FP-trees we get based on the FP-trees from Figure 7.7.
As a first step for creating a conditional FP-tree, we identify those

nodes within the unconditional FP-tree that we would like to condi-
tion our FP-tree on. This step is as simple as following the pointers of
the auxiliary links that connect the same items distributed across the
FP-tree. All subtrees from the FP-tree that do not include any of the
items we condition our data structure on can be pruned.

What we additionally need to do is adjusting the respective coun-
ters assigned to the individual nodes of the subtree. We can do it
so in a bottom-up fashion by starting out at the items we are con-
ditioning our FP-tree over and set the counters of the intermediate
nodes of the conditioned FP-tree as the sum of the counters of those
descendants of every node that we did not prune.

When conditioning the FP-trees from Figure 7.7 (a) and Fig-
ure 7.7 (b) on item set {E} in the above described manner, we get
the conditional FP-trees included in Figure 7.8 (a) and Figure 7.8 (b),
respectively.

From the conditional FP-trees obtained, we can easily identify
those items that frequently co-occur with the item set we are cur-
rently conditioning our FP-tree on. All we need to do is to use the
auxiliary links that tell us the number of times the item set we con-
ditioned our FP-tree co-occurs with the further items. In the concrete
example included in Figure 7.8 we can conclude that item set {E} co-
occurs once with item B and twice with item A, C and D, respectively.

Assuming a frequency threshold of 2 would mean that item E does
not form a frequent item pair with item B, however, item E forms a
frequent item pair with all the remaining items, A, C and D with their
joint support exactly being equal to our frequency threshold. We can
now, build on top of the FP-tree that we just obtained conditioned
on item set {E} and determine FP-trees conditioned on the expanded
item set {E,x} with x being any of the items A, C or D.



166 data mining

∅

B:1

C:1

A:2

C:1

D:1

D:1

(a) Using item ordering based on their support (B > A > C > D > E)

∅

A:2

C:1

D:1

D:1

C:1

B:1

(b) Using alphabetical ordering of items (A > B > C > D > E)

Figure 7.8: FP-trees conditionated on
item set {E} with different ordering of
the items applied.

Since the procedure of creating a conditioned FP-tree can be natu-
rally applied to an FP-tree which had already been obtained via con-
ditioning on some item set, we can repeatedly apply the same pro-
cedure until we can find item sets that co-occur frequently enough.
By continuing in an analogous manner, we can derive all the frequent
item sets in our original transactional dataset without the need of
iterating over it multiple times.

7.5 Summary of the chapter

This chapter introduced the task of frequent pattern mining from
transactional datasets, where one is interested in the identification
of those item which co-occur more frequently then some predefined
threshold. The chapter additionally introduced the task of association
rule mining, where our goal is to extract if-then type of rules from
large datasets based on the frequent item sets identified.

This chapter also introduced the Apriori principle and two itera-
tive algorithms, namely the eponymous Apriori and the Park-Chen-
Yu (PCY) algorithms. These are iterative algorithms that gradually
collect frequent item sets via a series of frequent candidate set gener-
ation and verification steps.

Related to these algorithms, this chapter also dealt with efficient
ways of storing frequent item set candidates and their respective
counters, as well as possible ways to perform candidate set genera-
tion.

At the end of the chapter, we introduced the FP-Growth algorithm.
FP-Growth remarkably differs from the other algorithms discussed
throughout this chapter in that it does not follow the principle of it-
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erative candidate set generation. It instead builds on a special data
structure, the frequent pattern trees (or FP-trees in short) which try
to keep the entire transactional dataset in the main memory in a
compressed and memory-efficient form. The FP-Growth algorithm
extracts frequent item sets recursively via a divide-and-conquer
mechanism through the construction of conditional FP-trees.



8 | DATA MINING FROM NETWORKS

This chapter deals with the problem of analyzing complex net-
works or graphs. A graph is a mathematical object which – in their
simplest forms – consist of vertices and edges. Graphs are power-
ful tools as they provide a natural representation for many real life
concepts and phenomena, such as commonsense knowledge in the
form of ontologies1, taxonomies and knowledge graphs2, social net- 1 Miller 1995

2 Speer et al. 2016works and interactions, and also more specialized ones including
protein-protein interaction networks.

Readers of this chapter are expected to learn the working funda-
mentals related to different data mining algorithms applicable to
complex networks. Additionally, readers should become proficient in
assessing and interpreting the results obtained from such algorithms.
A final aim of the chapter is to develop an understanding on the ef-
fects of the hyperparameters influencing the outcomes of the various
algorithms and make them able to argue for particular choices of
algorithms and hyperparameters.

8.1 Graphs as complex networks

Complex networks are mathematical objects that are meant for de-
scribing real world phenomena and processes. These mathematical
objects are often referred as graphs as well. A graph is a simple and
highly relevant concept in graph theory and computer science in gen-
eral. In its simplest form, a graph is a collection of nodes or vertices
and a binary relation which holds for a subset of the pairs of vertices,
which is indicated by edges connecting pairs of vertices within the
graph for which the relation holds. As such graphs can be given as
G = (V, E), with V denoting its vertices and E ⊆ V × V, with ×
referring to the Cartesian product of the vertices.

Learning Objectives:
• Modeling by Markov Chains

• PageRank algorithm and its variants

• Hubs and Authorities
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8.1.1 Different types of graphs

Complex networks can come in many forms, i.e., the edges can be
both directed or undirected, weighted or unweighted, labeled or un-
labeled. What directedness means in case of networks is that when-
ever an edge exist in one direction between two vertices, it is also
warranted that the edge in the reverse direction can be found in the
network, that is (u, v) ∈ E ⇔ (v, u) ∈ E. This happens when the
underlying binary relation defined over the vertices is symmetric.
For instance networks that represent which person – represented by
a vertex – knows which other people in an institution would be best
represented by an undirected graph. Ontological relations, such as
being the subordinate of something, e.g. humans are vertebrates (but
not vice versa), are on the other hand do not behave in a symmet-
ric manner, hence the graph representing such knowledge would
be undirected. Another example for undirected networks is the hy-
perlink structure of the world wide web, i.e., the fact that a certain
website points do another one, does not imply that there also exists a
hyperlink in the reverse direction.

When edges are weighted, it means that edges are not simply
given in the form of (u, v) ⊆ V × V, but as (u, v, w) which is a tuple
representing not just a source and target node (u and v) but also
some weight (w ∈ R) that describes the strength of the connection
between pairs of nodes.

Semantic networks, such as WordNet 3 and ConceptNet4, are 3 Miller 1995

4 Speer et al. 2016prototypical examples for labeled networks. Semantic networks have
commonsense concepts as their vertices and there could kinds of re-
lations hold between the vertices which are indicated by the labels of
the edges. Taking the previous example, there is a directed edge la-
beled with the so-called Is-A relation between the vertex representing
the concepts of humans and vertebrates. That is (u, v, Is-A) ∈ E, mean-
ing that the Is-A relation holds for the concept pair (u, v) for the case
when u and v are the vertices for concept of humans and vertebrates,
respectively.

As mentioned earlier, complex networks can be used to represent
various processes and phenomena of every day life. Complex net-
works can be useful to model collaboration between entities, citation
structure of scientific publications and various other kinds of social
and economic interactions. Try to list additional uses cases

when modeling a problem with
networks can be applied.

?
8.1.2 Representing networks in memory

Networks of potential interest can range up to the point when they
contain billions of vertices. Just think of the social network of Face-
book for a very trivial example which had nearly 2.5 billion of active
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users over the first quarter of 2019
5. 5 https://www.socialmediatoday.com/

news/facebook-reaches-238-billion-

users-beats-revenue-estimates-in-

latest-upda/553403/

We should note that real-world networks are typically extremely
sparse, i.e., |E| ≪ |V × V|, meaning that the vast majority of the
potentially observed relations are not realized. In terms of a social
network, even if the entire network has billions of nodes, the number
of average connections per vertices is orders of magnitude smaller,
say a few hundreds.

To this end, the networks are stored in a more efficient format,
one of which is the adjacency list representation that is depicted in
Figure 8.1 (c). The great benefit of the adjacency list representation
is that it takes O(|E|) amount of memory for storing the graph, as
opposed to O(|V2|) which applies to the explicit adjacency matrix
representation schematically displayed in Figure 8.1 (b) for the exam-
ple directed graph from Figure 8.1 (a).

Similar to other situations, we pay some price for the efficiency
of adjacency lists from the memory consumption point of view, as
checking for the existence of an edge increases from O(1) to O(|V|)
in the worst case scenario when applying an adjacency list instead
of an adjacency matrix. This trade-off, however, is a worthy one in
most real world situations when dealing with networks with a huge
number of vertices and a relatively sparse link structure. Figure 8.2
illustrates how to store the example network from Figure 8.1 (a) in
Octave when relying on both explicit dense and sparse representa-
tions.

1

2

3

4

(a) Example digraph.

0 1 1 1
1 0 0 1
1 0 0 0
0 1 1 0




(b) Adjacency matrix of the graph.

1 → 2 3 4

2 → 1 4

3 → 1

4 → 2 3

(c) Adjacency list of the graph.

Figure 8.1: A sample directed graph
with four vertices (a) and its potential
representations as an adjacency matrix
(b) and an edge list (c).

adjacency = [0 1 1 1; 1 0 0 1; 1 0 0 0; 0 1 1 0];

from_nodes = [1 1 1 2 2 3 4 4];

to_nodes = [2 3 4 1 4 1 2 3];

edge_weights = ones(size(to_nodes));

sparse_adjacency = sparse(from_nodes, to_nodes, edge_weights);

CODE SNIPPET

Figure 8.2: Creating a dense and a
sparse representation for the example
digraph from Figure 8.1.

https://www.socialmediatoday.com/news/facebook-reaches-238-billion-users-beats-revenue-estimates-in-latest-upda/553403/
https://www.socialmediatoday.com/news/facebook-reaches-238-billion-users-beats-revenue-estimates-in-latest-upda/553403/
https://www.socialmediatoday.com/news/facebook-reaches-238-billion-users-beats-revenue-estimates-in-latest-upda/553403/
https://www.socialmediatoday.com/news/facebook-reaches-238-billion-users-beats-revenue-estimates-in-latest-upda/553403/
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8.2 Markov processes

Markov processes are often used to model real world events of se-
quential nature. For instance, a Markov model can be applied for
modeling weather conditions or the outcome of sports events. In
many cases, modeling sequential events is straightforward by deter-
mining a square matrix of transitional probabilities M, such that its
entry mij quantifies the probability of observing the jth possible out-
come as our upcoming observation, given that we currently observe
outcome i.

The main simplifying assumption in Markovian modeling is that
the next upcoming thing we observe is not dependent on all our ob-
servations from the past, but it only depends upon our last (few)
observations, i.e., we operate with a limited memory. It is like if
we were making our weather forecast for the upcoming day purely
based on the weather conditions we experience today. This is obvi-
ously a simplification in our modeling, but it also make sense not to
condition our predictions for the future on events that had happened
in the distant past.

To put it more formally, suppose we have some random variable
X with possible outcomes indicated as {1, 2, . . . , n}. By denoting our
current observation towards random variable X at time t as Xt, what
the Markovian assumption says is that

P(Xt = j|Xt−1 = i, . . . , X0 = x0) = P(Xt = j|Xt−1 = i) = mij.

Naturally, since we would like to treat the elements of M as probabil-
ities and every row of matrix M as a probability distribution, it has to
hold that

mi,j ≥ 0,∀1 ≤ i, j ≤ n,
n

∑
j=1

mi,j = 1,∀1 ≤ i ≤ n.
(8.1)

Those matrices M that obey the properties described in 8.1 are called
row stochastic matrices. As mentioned earlier, entry mij from such a
matrix can be vied as the probability of observing the outcome of our
random variable to be j immediately after an observation towards
outcome i.

Example 8.1. The next matrices qualify as row stochastic matrices:[
0.1 0.9
0.2 0.8

]
,

[
0.5 0.5
0.5 0.5

]
and

[
0.0 1.0
0.0 1.0

]
. On the other hand, matrices[

−0.1 1.1
0.2 0.8

]
,

[
0.2 0.9
0.2 0.8

]
and

[
0.8 0.7
0.2 0.3

]
do not count as row stochastic

matrices (although the last one is a column stochastic matrix).
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Matrices obeying the properties from 8.1 are called row stochas-
tic matrices. A similar set of criteria can also be given for column
stochastic matrices.
For stochastic matrices (let them be row or column stochastic ma-
trices), we always have 1.0 as their largest eigenvalue. To see this
simply look at the matrix-vector product obtained as M1 for any row
stochastic matrix M, with 1 denoting the vector consisting of all ones.
Due to the fact that every row of M defines a probability distribution,
we have that M1 = 1, meaning that 1 is always one of the eigenvalues
of any (row) stochastic matrix.
It turns out that the previously seen eigenvalue of one is always go-
ing to be the largest among the eigenvalues of any stochastic matrix.
In order to see why this is the case, let us define the trace matrix
operator, which simply sums alls the elements of a matrix along its
main diagonal. That is for some matrix M,

trace(M) =
n

∑
i=1

mii.

From this previous definition, it follows that the trace of any n-by-
n stochastic matrix is always smaller than or equal to n. Another
property of the trace is that it can be expressed as the sum of the
eigenvalues of the matrix. That is,

n

∑
i=1

λi =
n

∑
i=1

mii = trace(M) < n.

What this means that in the 2-by-2 case – given that λ1 = 1, λ2 < 1
has to hold. From that point, we can use induction to see that for any
n-by-n stochastic matrix we would have 1 as the largest (principal)
eigenvalue.

MATH REVIEW | EIGENVALUES OF STOCHASTIC MATRICES

Figure 8.3: Eigenvalues of stochastic
matrices

8.2.1 The stationary distribution of Markov chains

A stochastic vector p ∈ Rn
≥0 is such a vector for which the sum of

entries sums up to one, i.e., which forms a valid distribution. We can
express a probabilistic belief over the different states of a Markov
chain.

Notice that when we calculate pM for some stochastic vector p
and row stochastic matrix M, we are essentially expressing the prob-
ability distribution over the different states of our Markov process
for the next time step – relative to the actual time step based on our
current beliefs for observing the individual states, as expressed by p.
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In order to make the dependence of our stochastic belief vector to
the individual time step in the simulation, we will introduce p(t) for
making a reference to the stochastic vector from time step t. That is,
p(t+1) = p(t)M. If we denote our initial configuration as p(0), we can
notice that p(t) could just as well be expressed as p(0)Mt, because p(t)

is recursively entangled with p(0).
It turns out, that – under mild assumptions that we shall discuss

later – there exists a unique steady state distribution, also called as
a stationary distribution, for which Markov chains described by a
particular state transition matrix converge to. This distribution tells
us the long term observation probability of the individual states of
our Markov chain.

The stationary distribution for a Markov chain described by a row
stochastic matrix M is the distribution p∗ fulfilling the equation

p∗ = lim
t→∞

p(0)Mt.

In other words, p∗ is the fixed point for the operation of right multi-
plication with the row stochastic matrix M. That is,

p∗ = p∗M,

which implies that p∗ is the left eigenvector of M corresponding to
the eigenvalue 1. For row stochastic matrices, we can always be sure
that eigenvalue 1 is among its eigenvalues and that this is going to be
the largest eigenvalue (often called as the principal eigenvalue) for
the given matrix.

Finding the eigenvector belonging to the principal eigenvalue is
as simply as choosing an initial stochastic vector p and keep it mul-
tiplied by the row stochastic matrix M until there is no substantial
change in the resulting vector. This simple procedure is named the
power method and it is illustrated in Algorithm 3. The algorithm is
guaranteed to converge to the same principal eigenvector no matter
how we choose our initial stochastic vector p.

Algorithm 3: The power algorithm for
determining the principal eigenvector
of matrix M.Require: Input matrix M ∈ Rn×n and a tolerance threshold ϵ

Ensure: principal eigenvector p ∈ Rn

1: function PowerIteration(M, ϵ)

2: p =
[

1
n

]n

i=1
// an n-element vector consisting of all 1

n

3: while ∥p− pM∥2 > ϵ do
4: p = pM
5: end while
6: return p
7: end function
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8.2.2 Markov processes and random walks — through a concrete example

For a concrete example, let us assume that we would like to model
the weather conditions of a town by a Markov chain. The three dif-
ferent weather conditions we can make are Sunny (observation #1,
abbreviated as S), Overcast (observation #2, abbreviated as O) and
Rainy (observation #3, abbreviated as R).

Hence, we have n = 3, i.e., the number of different observations
for the random variable describing the weather of the town has three
possible outcomes. What it further implies that the Markov chain
can be described as a 3-by-3 row stochastic matrix M, which tells
us the probability for observing a pair of weather conditions for
two consecutive days in all possible combinations (that is sunny-
sunny, sunny-overcast, sunny-rainy, overcast-sunny, overcast-overcast,
overcast-rainy, rainy-sunny, rainy-overcast, rainy-rainy).

The transition probabilities needed for matrix M can be simply
obtained by taking the maximum likelihood estimate (MLE) for any
pair of observations. All we need to do to obtain MLE estimates for
transition probabilities is that we keep a long track of the weather
conditions and simply rely on the definition of the conditional proba-
bility stating that

P(A|B) = P(A, B)
P(B)

.

The definition of conditional probability employed for the de-
termination of transition probabilities of our Markov chain simply
means that for a certain pair of weather combination (wi, wj) in order
to quantify the probability P(wj|wi) what we have to do is to count
the number of times we observed that a day with weather condi-
tion wi was followed by weather condition wj and divide that by the
number of days weather condition wi was observed (irrespective of
the weather condition for the upcoming day). Suppose we have ob-
served the weather to be sunny 5,000 times and that we have seen the
weather after a sunny day to be overcast or rainy 500-500 times each.
This also implies that for the remaining 5,000-500-500=4,000 cases,
a sunny day was followed by another sunny day. In such a case, we
would infer the following transition probabilities:

P(sunny|sunny) =
4000
5000

= 0.8

P(overcast|sunny) =
500

5000
= 0.1

P(rainy|sunny) =
500
5000

= 0.1.

In a likewise manner, one could collect all the MLE estimates for
the transition probabilities for a Markov chain. Suppose we did so,
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and obtained the matrix of transition probabilities between the three
possible states of our Markov chain as

M =

0.8 0.1 0.1
0.2 0.4 0.4
0.2 0.1 0.7

 . (8.2)

A state transition matrix, such as the one above, can be also imag-
ined graphically. Figure 8.4 provides such a network visualization
of our Markov chain. In the network interpretation of a Markov
chain, each state of our random process corresponds to a node in
the network and state transition probabilities correspond to the edge
weights that tell us the probability for traversing from a certain start
node to a particular neighboring node. The row stochasticity of the
transition matrix in the network view can be seen as the sum of the
weight for the outgoing edges of a particular node always sum to
one.

We can now rely on this graphical representation of the state tran-
sition probability matrix as a way for modeling stochastic processes
that are described as a Markov process in the form of random walks.
A random walk describes a stochastic temporal process in which
one picks a state of the Markov process sequentially and stochasti-
cally. That is, when the random walk is at a given state, it chooses its
next state randomly, proportional to the state transition probabilities
described in the matrix of transition probabilities. The stationary dis-
tribution in that view can be interpreted as fraction of time a random
walk spends at each state of the Markov chain.

In our concrete example – where the weather condition is de-
scribed by a Markov process with three states – we have n = 3. A
stochastic vector p = [1, 0, 0] can be interpreted as observing weather
condition #1 with absolute certainty, i.e., a sunny weather. Vector
p = [0.5, 0.14, 0.36] on the other hand describes a stochastic weather
configuration, where the sunny weather is the most likely outcome
(50%), followed by a rainy weather (36%) and the overcast weather
condition being regarded the least likely (14%).

In Figure 8.4, the radius of the nodes – each marking one of the
states from the Markov chain – is drawn proportionally to the sta-
tionary distribution of the various states. Figure 8.5 contains a sam-
ple code for approximating the principal eigenvector of our state
transition probability matrix M. The output of the sample code also
illustrates the global convergence of the stationary distribution, since
the different initializations for p∗ (the rows of matrix P) all converged
to a very similar solution already in 10 iterations. If the number of
iterations was increased, the resulting vectors would resemble each
other even more in the end.
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Figure 8.4: An illustration of the
Markov chain given by the transi-
tion probabilities from 8.2. The radii
of the nodes – corresponding to the
different states of our Markov chain
– if proportional to their stationary
distribution.

In our concrete case, way we should interpret the stationary dis-
tribution p∗ = [0.5, 0.14, 0.36] such that we would expect to see half
of the days to be sunny and that there are approximately 2.5 times
as many rainy days compared to overcast days on the long run given
that our state transition probabilities accurately approximate the
conditional probabilities between the weather conditions of two con-
secutive days.

M = [0.8 0.1 0.1;

0.2 0.4 0.4;

0.2 0.1 0.7]; % the state transition probability matrix

rand("seed", 42) % fixing the random seed

P = rand(5, 3); % generate 5 random vectors from [0;1]

P = P ./ sum(P, 2); % turn rows into probability distributions

for k=1:15

P = P*M; % power iteration for 15 steps

endfor

disp(P)

>> 0.49984 0.14286 0.35731

0.49984 0.14286 0.35731

0.49991 0.14286 0.35723

0.49996 0.14286 0.35718

0.49995 0.14286 0.35719

CODE SNIPPET

Figure 8.5: The uniqueness of the
stationary distribution and its global
convergence property is illustrated by
the fact that all 5 random initializations
for p converged to a very similar
distribution.
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8.3 PageRank algorithm

PageRank6 is admittedly one of the most popular algorithms for 6 Page et al. 1998

determining importance scores for the vertices of complex networks.
The impact of the algorithm is illustrated by the fact that it was given
the Test of Time Award at the 2015 World Wide Web Conference, one
of the leading conferences in computer science. The algorithm itself
can be viewed as an instance of a Markov random process defined
over the nodes of a complex network as the possible state space for
the problem.

Although PageRank was originally introduced in order to provide
an efficient ranking mechanism for webpages, it is useful to know
that PageRank has inspired a massive amount of research that reach
beyond that application. TextRank 7, for instance, is one of the many 7 Mihalcea and Tarau 2004

prototypical works that build on top of the idea of PageRank by
using a similar working mechanism to PageRank for determining
important concepts, called keyphrases from textual documents.

8.3.1 About information retrieval

As mentioned before, PageRank was originally introduced with a
motivation to provide a ranking for documents on the web. This task
fits into the broader task of information retrieval 8 applications. 8 Manning et al. 2008

In information retrieval (IR for short), one is given with – a po-
tentially large – collection of documents, often named a corpus. The
goal of IR is to find and rank those documents from the corpus that
are relevant towards a particular search need expressed in the form
of a search query. Probably the most prototypical applications of in-
formation retrieval are search engines on the world wide web, where
relevant documents have to be returned and ranked over hundreds of
billions of websites.

Information retrieval is a complex task which involves many other
components beyond employing some PageRank-style algorithm for
ranking relevant documents. Information retrieval systems also have
to handle efficient indexing, meaning that these systems should be
able to return that subset of documents which contain some query
expression. Queries could be multi-word units, and they are more
and more often expressed as natural language questions these days.
That is, people would rather search something along the lines of
“What is the longest river in Europe?” instead of simply typing in ex-
pressions like “longest European river”. As such, indexing poses sev-
eral interesting questions, however, those are beyond the scope of our
discussion.

Even in the case when people search for actual terms or phrases,
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further restrictions might apply, such as returning only documents
that has an exact match towards a search query, or exactly to the
contrary, behaving tolerantly towards misspelling or grammatical
inflections (i.e.,the word took is the past tense of the verb take). Addi-
tionally, indexing should also provide support for applying different
boolean operators, such as the logical OR, NOT operators.

As the previous examples suggests, document indexing includes
several challenging problems. Besides these previously mentioned
problems, efficient indexing of large document collections is a chal-
lenging engineering problem in itself, since it is of utmost importance
to return the set of relevant documents for a search query against
document collections that potentially contain hundreds of millions
of indexed words in milliseconds. A search engine should not only
be fast in respect of individual queries, but it should also be highly
concurrent, i.e., it is important that they can cope with vastly parallel
usage.

Luckily, there exists platforms that one can rely when in need for a
highly scalable and efficient indexing. We will not go into the details
of these platforms, however, we mention two popular such frame-
works, Solr9 and Elasticsearch10. In what comes, we would assume 9 https://lucene.apache.org/solr/

10 https://www.elastic.co/elasticsearch/that we have access to a powerful indexing service and we shall focus
on the task of assigning an importance score for the vertices of either
an entire network or a subnetwork which contains those vertices of
a larger structure that already fulfil certain requirements, such as
containing a given search query.

8.3.2 The working mechanisms of PageRank

As mentioned earlier, PageRank can be viewed as an instance of
a Markov random process defined over the vertices of a complex
network as the possible state space for the problem. As such the
PageRank algorithm can be viewed as a random walk model which
operates over the different states of a Markov chain. When identify-
ing the websites on the internet as the states of the Markov process,
this random walk and the stationary network the random walk con-
verges to has a very intuitive meaning.

Imagine a random surfer on the internet which starts off at some
website and randomly picks the next site to visit from the websites
that are directly hyperlinked from the currently visited site. Now, if
we imagine that this random process continues long enough (actu-
ally infinitely long in the limit) and we keep track of the amount of
time spent by the random walk at the individual websites, we get the
stationary distribution of our network. Remember that the station-
ary distribution is insensitive to our start configuration, i.e., we shall
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converge to the same distribution, no matter which was the initial
website to start random navigation from. The probabilities in the sta-
tionary distribution can then be interpreted as the relevance of each
vertex (websites in the browsing example) of the network. As such,
when we would like to rank the websites based on their relevance,
we could just sort them according to their PageRank scores.

The PageRank algorithm assumes that every vertex vj ∈ V in
some network G = (V, E) has some relevance score pj and its rele-
vance depends on the relevance scores of all its neighboring vertices
{vi|(vi, vj) ∈ E}. What the PageRank model basically says is that
every vertex in the network distributes its importance towards all its
neighboring vertices in an even manner and that the importance of a
vertex can be determined as the sum of the importances transferred
from its neighbors via an incoming edge. Formally, the importance
score of vertex vj is determined as

pj = ∑
(i,j)∈E

1
di

pi, (8.3)

where di denotes the out-degree of vertex vi.
Essentially, when calculating the importance of the nodes accord-

ing to the PageRank model, we are calculating the stationary distri-
bution of a Markov chain with a special state transition matrix M
which either assumes that the probability of transition between two
states is zero (when there is no direct hyperlink between a pair of
websites) or it is uniformly equal to 1

di
. What makes this choice of state

transition probabilities counterin-
tuitive? Can you nonetheless argue
for this strategy? (Hint: think of the
principle of maximum entropy.)

?
It is easy to see that the above mentioned strategy for constructing

the state transition matrix M results in M being a row stochastic
matrix, i.e., all of its rows will contain nonnegative values and sum
up to one, assuming that every vertex has at least one outgoing edge.
We shall soon provide a remedy for the situation when certain nodes
have no outgoing edges.
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(a) The example network.

0 1
3

1
3

1
3

1
2 0 0 1

2

1 0 0 0

0 1
2

1
2 0




(b) The corresponding
state transition matrix

Figure 8.6: An example network and its
corresponding state transition matrix.

Example 8.2. Figure 8.6 contains a sample network and the state transition
matrix which describes the probability of transitioning between any pair of
websites. Table 8.1 illustrates the convergence of the power iteration over
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the state transition matrix M of the sample network from Figure 8.6. We
can conclude that vertex 1 has the highest prominence within the network
(cf. p∗1 = 0.333), and all the remaining vertices have an equal amount of
importance within the network (cf. p∗j = 0.222 for j ∈ {2, 3, 4}).

p(0) p(1) p(2) p(3) . . . p(6) . . . p(9)

0.25 0.375 0.313 0.344 . . . 0.332 . . . 0.333
0.25 0.208 0.229 0.219 . . . 0.224 . . . 0.222
0.25 0.208 0.229 0.219 . . . 0.224 . . . 0.222
0.25 0.208 0.229 0.219 . . . 0.224 . . . 0.222

Table 8.1: The convergence of the
PageRank values for the example
network from Figure 8.6. Each row cor-
responds to a vertex from the network.

In our example network from Figure 8.6, the p∗2 = p∗3 relation
naturally holds as vertex 2 and 3 share the same neighborhood re-
garding their incoming edges. But why is it tha case, that p∗4 also has
the same value?

In order to see that, simply write up the definition for the station-
ary distribution for vertex 1 by its recursive formula, i.e.,

p∗1 =
1
2

p∗2 + p∗3 .

Since we have argued that p∗2 = p∗3 , we can equivalently express the
previous equation as

p∗1 =
3
2

p∗2 =
3
2

p∗3 .

If we now write up the recursive formula for the PageRank value of
vertex 4, we get

p∗4 =
1
3

p∗1 +
1
2

p∗2 =
1
3

3
2

p∗2 +
1
2

p∗2 = p∗2 .

8.3.3 The ergodicity of Markov chains

We mentioned earlier that we obtain a useful stationary distribu-
tion our random walk converges to if our Markov chain has a nice
property. We now introduce the circumstances when we say that our
Markov chain behaves nicely and this property is called ergodicity. A
Markov chain is ergodic if it is irreducible and aperiodic.

A Markov chain has the irreducibility property, if there exists at
least one path between any pair of states in the network. In other
words, there should be a non-zero probability for transitioning be-
tween any pairs of states. The example Markov chain visualized in
Figure 8.6 had this property.

A Markov chain is called aperiodic if all of its states are aperiodic.
The aperiodicity of a state means that whenever we start out from
that state, we do not know the exact number of steps when we would
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return next to the same state. The opposite of aperiodicity is peri-
odicity. In the case a state is periodic, there is a fixed number k such
that we know that we would return to the same state in every k step.

Although the Markov chains depicted in Figure 8.7 and Figure 8.8
are very similar to the one in Figure 8.6, they differ in small but im-
portant ways. Figure 8.6 includes an ergodic Markov chain, whereas
the ones in Figure 8.7 and Figure 8.8 are not an irreducible or an ape-
riodic one. In the followings, we shall review the problems that arise
with the stationary distribution of such non-ergodic networks.
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(a) Network with a dead-end (cf. node 5) causing
non-irreducibility.
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(b) The corresponding state
transition matrix.

Figure 8.7: An example network which
is not irreducible with its state transi-
tion matrix. The problematic part of the
state transition matrix is in red.

The problem of dead ends Irreducibility requires that there exist
a path between any pair of states in the Markov chain. In the case
of the Markov chain included in Figure 8.7 this property is clearly
violated, as state 5 has no outgoing edges. That is not only there is no
path to all states from state 5, but there is not a single path to any of
the states starting from state 5. This is illustrated by a row in the state
transition matrix with all zeros in Figure 8.7 (b).

Such nodes from a random walk perspective means that there is
a certain point such that we cannot continue our walk as there is no
direct connection to proceed towards. As the stationary distribution
is a modeling that is performed in the limit on infinite time horizon,
it is intuitively inevitable that sooner or later the random walk gets
into this dead end situation from which there is no further way to
continue the walk.

In order to see more formally, why nodes with no outgoing edges
cause a problem, consider a small Markov chain with a state transi-
tion matrix

M =

[
α 1− α

0 0

]
, (8.4)

for some 1 > α > 0. Remember that the stationary distribution of a
Markov chain described by transition matrix M is

p∗ = lim
t→∞

p(0)Mt. (8.5)
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In the case when M takes on the form given in 8.4, we have that

lim
t→∞

Mt = lim
t→∞

[
αt (1− α)t

0 0

]
=

[
0 0
0 0

]
,

which means that when multiplied by any p(0) in 8.5, we would get
the zero vector as our stationary distribution. What this intuitively
means, is that in a Markov chain with a dead end, we would even-
tually and inevitably get to the point where we could not continue
our random walk on an infinite time horizon. Naturally, importance
scores that are all zeros for all the states are meaningless, hence we
would need to find some solution to overcome the problem of dead
ends in Markov chains.
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(a) Network with a cycle (cf. node 3)
causing non-aperiodicity.
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(b) The corresponding
state transition matrix.

Figure 8.8: An example network which
is not aperiodic with its state transition
matrix. The problematic part of the
state transition matrix is in red.

The problem of spider traps As the other problem source, let us
focus on spider traps. Spider traps arise when the aperiodicity of
the network is violated. We can see the simplest form of violation
of aperiodicity in the form of a state with no other outgoing edges
beyond a self-loop. An example for that being the case can be seen
in Figure 8.8. Note that in general it is possible that a Markov chain
contains “coalitions” of more than just a single state. Additionally,
multiple such problematic sub-networks could co-exist within a net-
work simultaneously.

Table 8.2 illustrates the problem caused by the periodic nature of
state 3 regarding the stationary distribution of the Markov chain. We
can see that this time the probability mass accumulates within the
subnetwork which forms the spider trap. Since the spider trap was
formed by state 3 alone, the stationary distribution of the Markov
chain is going to be such a distribution which is 1.0 for state 3 and
zero for the rest of the states. What interpretation would you

give to the resulting stationary dis-
tribution? (Hint: look back at the
interpretation we gave for the re-
sulting stationary distribution for
Markov chains with dead ends.)

?
Such a stationary distribution is clearly just as useless as the one

that we saw for the network structure that contained a dead end.
We shall devise a solution which mitigates the problem caused by
possible dead ends and spider traps in networks.
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p(0) p(1) p(2) p(3) . . . p(6) . . . p(9)

0.25 0.125 0.104 0.073 . . . 0.029 . . . 0.011
0.25 0.208 0.146 0.108 . . . 0.042 . . . 0.016
0.25 0.458 0.604 0.712 . . . 0.888 . . . 0.957
0.25 0.208 0.146 0.108 . . . 0.042 . . . 0.016

Table 8.2: Illustration of the power
iteration for the periodic network from
Figure 8.8. The cycle (consisting of
a single vertex) accumulates all the
importance within the network.

8.3.4 PageRank with restarts — a remedy to dead ends and spider traps

As noted earlier, the non-ergodicity of a Markov chain causes the
stationary distribution towards some degenerate distribution that we
cannot utilize for ranking its sates. The way the PageRank algorithm
overcomes the problems arising when dealing with non-ergodic
Markov chains via the introduction of a damping factor β. This beta
coefficient is employed in a way that the original recursive connec-
tion between the importance score of a vertex and its neighbors as
introduced in 8.3 changes to

pj =
1− β

|V| + ∑
(i,j)∈E

β

di
pi, (8.6)

with di denoting the number of outgoing edges from vertex i. The
above formula suggests that the damping factor acts as a discounting
factor, i.e., every vertex redistributes β fraction of its own importance
towards its direct neighbors. As a consequence, 1 − β probability
mass is kept back, which can be evenly distributed across al the ver-
tices. This is illustrated by the 1−β

|V| term in 8.6.
An alternative way to look at the damping factor is that we are

performing an interpolation between two random walks, i.e., one that
is based on our original Markov chain with probability β and another
Markov chain which has the same state space, but which has a fully
connected state transition structure with all the probabilities being set
to 1−β
|V| .

From the random walk point of view, this can be interpreted as
choosing a link to follow from our original network with probability
β and performing a hop to an randomly chosen vertex with proba-
bility 1− β. The latter can be viewed as restarting our random walk
occasionally. The choice for β affect how frequently does our ran-
dom walk gets restarted in our simulation, which implicitly affects
the ability of our random walk model to handle the potential non-
ergodicity of our Markov chain.

We next analyze the effects of choosing β, the value for which is
typically set to a value moderately smaller than 1.0, i.e., around 0.8
and 0.9. The probability of restarting the random walk as a func-
tion of the damping factor β follows a geometric distribution with
success probability 1− β.
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Table 8.3 demonstrates how different choices for β affect the prob-
ability of restarting the random walk as different number of consec-
utive steps are performed in the random walk process. The values
in Table 8.3 convey the reassuring message that the probability of
performing a restart asymptotes to 1 in an exponential rate, meaning
that we manage to quickly escape from dead ends and spider traps in
our network.

β = 0.8 β = 0.9 β = 0.95

probability of a restart in 1 step 0.20 0.10 0.05
probability of a restart in 5 step 0.67 0.41 0.23

probability of a restart in 10 step 0.89 0.65 0.40
probability of a restart in 20 step 0.99 0.88 0.64
probability of a restart in 50 step 1.0 0.99 0.92

Table 8.3: The probability of restarting
a random walk after varying number of
steps and damping factor β.

Table 8.4 illustrates the beneficial effects of applying a damping
factor as introduced in 8.6. Table 8.4 includes the convergence to-
wards the stationary distribution for the Markov chain depicted
in Figure 8.8 when using β = 0.8. Recall that the Markov chain
from Figure 8.8 violated aperiodicity, which resulted in that all the
probability mass in the stationary distribution accumulated for state
3 (the node which had a single-self loop as an outgoing edge). The
stationary distribution for the case when no teleportation was em-
ployed – or alternatively, the extreme damping factor of β = 1.0 was
employed –is displayed in Table 8.2. The comparison of the distri-
butions in Table 8.2 and Table 8.4 illustrate that applying a damping
factor β < 1 indeed solved the problem of the Markov chain being
periodic.

p(0) p(1) p(2) p(3) . . . p(6) . . . p(9)

0.25 0.150 0.137 0.121 . . . 0.105 . . . 0.101
0.25 0.217 0.177 0.157 . . . 0.134 . . . 0.130
0.25 0.417 0.510 0.565 . . . 0.627 . . . 0.639
0.25 0.217 0.177 0.157 . . . 0.134 . . . 0.130

Table 8.4: Illustration of the power
iteration for the periodic network from
Figure 8.8 when a damping factor
β = 0.8 is applied.

8.3.5 Personalized PageRank — random walks with biased restarts

An alternative way to look at the damping factor β as the value
which controls the amount of probability mass that vertices are al-
lowed to redistribute. This also means that 1 − β fraction of their
prestige is not transferred towards their directly accessible neighbors.
We can think of this 1 − β fraction of the total relevance as a form
of tax that we collect from the vertices. Earlier we used that amount
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of probability mass to be evenly redistributed over the states of the
Markov chain (cf. the 1

|V| term in 8.6).
There could, however, be such applications when we would like

to prevent certain states from receiving a share from the probabil-
ity mass collected for redistribution. Imagine that the states of our
Markov chains correspond to web pages and we have the information
that certain subset of the vertices belong to the set of trustful sources.
Under this circumstance, we could bias our random walk model to
only favor those states that we choose to based on their trustworthi-
ness. To view this through the lense of restarts, what this means is
that if we decide to restart our random walk then our new starting
point should be one of the favored states that we trust. This variant
of PageRank is named the TrustRank algorithm.

Another meta-information which could serve as the basis of
restarting a random walk over the states corresponding to websites
could be based on their topical categorization. For instance we might
have a classification of the websites available whether their topic
is about sports or not. When we would like to rank websites for a
user with a certain topical interest then it could be a good idea to
determine the PageRank scores by such a random walk model which
performs restarts favoring those states that are classified in accor-
dance with the topical interest(s) of the given user. This variant of
PageRank which favors certain subset of states upon restart based on
user preferences is called the Personalized PageRank algorithm. In
the most extreme case, the subset of states that we would like to favor
might be a single state.

Example 8.3. Suppose we deal with the very same network structure as
already presented in Figure 8.6. When calculating the PageRank scores, we
apply a damping factor β = 0.8 and we regard states 1 and 2 as the only
states where random walks can (re)start. This is illustrated in Figure 8.9.
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(a) Network with a cy-
cle (cf. node 3) causing
non-aperiodicity.
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(b) The corresponding
state transition matrix
when applying a damping
factor of 0.8.
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(c) Auxiliary transition matrix
for the biased random walk.

Figure 8.9: An example (non-ergodic)
network in which we perform restarts
favoring state 1 and 2 (indicated by red
background).

We can notice that the stationary distribution for the random walk
implemented over the Markov chain in Figure 8.9 can also be re-
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garded as the stationary distribution of the sum of the state transition
matrices from Figure 8.9 (b) and Figure 8.9 (c). That is, the person-
alized PageRank scores that we obtain over the Markov chain from
Figure 8.9 is the principal eigenvector for the matrix
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While it is certainly a valid way to look at the problem of PageRank
with (biased) restarts as the stationary distribution of the interpola-
tion of two state transition matrices, it is important to mention that
in efficient implementations, we seldom calculate the interpolated
state transition matrix. Instead of calculating the explicit interpo-
lated state transition matrix, the typical solution is to repeatedly
calculate pt+1 = βpt+1M and correct for the possibility of restarts
by adding an appropriately chosen vector to the resulting product,
i.e., pt+1 = pt+1 + 1−β

|V| 1, where 1 denotes the vector of all ones. Can you provide an explanation
why implementing PageRank with
(biased) restarts is more efficient in
the suggested manner as opposed
to performing calculations based
on the explicit interpolated state
transition matrix? (Hint: think of
memory efficiency primarily.)

?

Remember that the stationary distribution we obtained earlier for
the Markov chain without applying a damping factor was

[0.333, 0.222, 0.222, 0.222]

as also included in Table 8.1. This time, however, when applying
β = 0.8 and allowing restarts from state 1 and state 2 alone, we
obtain a stationary distribution of

[0.349, 0.274, 0.174, 0.203].

As a consequence of biasing the random walk towards states {1, 2},
we observe an increase in the stationary distribution for these states.
Naturally, as the amount of probability mass which moved to the
favored states is now missing in total from the remaining two states.
Even though originally p∗3 = p∗4 held, we no longer see this in the
stationary distribution of the personalized PageRank. Can you explain why does the

probability in the stationary distri-
bution for state 3 drop more then
that of state 4 when we perform the
personalized PageRank algorithm
with restarts over states {1, 2}?

?8.4 Hubs and Authorities

The Hubs and Authorities11 algorithm (also referred as the Hyper-

11 Kleinberg 1999

link Induced Topic Search or HITS algorithm) resembles PageRank
in certain aspects, but there are also important differences between
the two. The HITS and PageRank algorithms are similar in that both
of them determine some importance scores to the vertices of a com-
plex network. The HITS algorithm, however, differs from PageRank
in that it calculates two scores for each vertex and that it operates
directly on the adjacency matrix of the network.
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The fundamental difference between PageRank and HITS is that
while the former assigns a single importance sore to each vertex,
HITS characterizes every node from two perspectives. Putting the
HITS algorithm into the context of web browsing, a website can be-
come prestigious by

1. directly providing relevant contents or

2. providing valuable links to websites that offer relevant contents.

The two kind of prestige scores are tightly coupled with each other
since a page is deemed as providing relevant contents if it is refer-
enced by websites that are deemed as referencing relevant websites.
Conversely, a website is said to reference relevant pages if the direct
hyperlink connections it has point to websites with relevant contents.
As such, the two kinds of relevance scores mutually depend on each
other. We call the first kind of relevance as the authority of a node,
whereas we call the second type of relevance as the hubness of a
node.

The authority score of some node j ∈ V is defined as

aj = ∑
(i,j)∈E

hi. (8.7)

Hubness scores are for node j ∈ V are defined analogously as

hj = ∑
(j,k)∈E

ak. (8.8)

Recall, however, that the calculation of the authority scores for node
j ∈ V involves a summation over its incoming edges, whereas its
hubness score depends on the authority scores of its neighbors acces-
sible by outgoing edges.

The way we can calculate these two scores is pretty reminiscent
to the calculation of the PageRank scores, i.e., we follow an iterative
algorithm for that. Likewise to the calculation of PageRank scores,
we also have a globally convergent algorithm for calculating the
hubness and authority scores of the individual nodes of the network.

One difference compared to the PageRank algorithm is that HITS
relies on the adjacency matrix during the calculation of the hub and
authority scores of the nodes instead of a row stochastic transition
matrix that is used by PageRank. The adjacency matrix is a simple
square binary matrix A ∈ {0, 1}n×n which contains whether there
exists a directed edge for all pairs of vertices in the network. An
aij = 1 entry indicates that there is a directed edge between node i
and j. Analogously, aij = 0 means that no directed edge exist between
node i and j.
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For the globally convergent solution of (8.7) and (8.8) we have
h∗ = ξ Aa∗ and a∗ = νA⊺h∗ for some appropriately chosen scalars ξ

and ν. What it further implies is that for the solutions we have

h∗ = ξνAA⊺h∗

a∗ = νξA⊺Aa∗.
(8.9)

According to (8.9), we can obtain both the ideal hubness and au-
thority vectors as an eigenvector for the matrices AA⊺ and A⊺A,
respectively. The problem with this kind of solution is that even
though matrices – and their respective adjacency matrix – are typi-
cally sparse, by forming the Gram matrices AA⊺ or A⊺A, we would
likely obtain matrices that are no longer sparse. The sparsity of ma-
trices, however, is something that we typically value and we want
to sacrifice it seldomly. In order to overcome this issue, we rather
employ an asynchronous strategy for obtaining h∗ and a∗.

Algorithm 4 gives the pseudocode for HITS following the princi-
ples of asynchronicity. Line 5 and 7 of Algorithm 4 reveals that after
each matrix multiplication performed in order to get an updated so-
lution for h and a, we employ a normalization step by ensuring that
the largest element within these vectors equal to one. Without these
normalization steps, the values in h and a would increase without
bound and the algorithm would diverge. The normalization step
divides each element of vectors h and a by the largest included in
them.

Algorithm 4: Pseudocode for the HITS
algorithm.Require: adjacency matrix A

Ensure: vectors a, h storing the authority and hubness of the vertices
of the network

1: function HITS(A)
2: h = 1 // Initialize the hubness vector to all ones

3: while not converged do
4: a = A⊺h
5: a = a/max(a) // normalize a such that all its entries are ≤ 1.

6: h = Aa
7: h = h/max(h)
8: end while
9: return a, h

10: end function

Table 8.5 contains the convergence of HITS that we get when ap-
plying Algorithm 4 over the sample network structure presented in
Figure 8.10. We can see that vertices indexed as 3 and 5 are totally
useless as hubs. This is not surprising as a vertex with a good hub-
ness score needs to link to vertices which have high authority scores.
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(a) Example network.

0 1 1 1 0
1 0 0 1 0
0 0 0 0 1
0 1 1 0 0
0 0 0 0 0




(b) Adjacency matrix of the network.

Figure 8.10: Example network to
perform HITS algorithm on.

h(0) a(1) h(1) a(2) h(2) a(3) h(3) . . . a(10) h(10)

1 0.5 1 0.3 1 0.24 1 . . . 0.21 1
1 1 0.5 1 0.41 1 0.38 . . . 1 0.36
1 1 0.17 1 0.03 1 0.007 . . . 1 0
1 1 0.67 0.9 0.69 0.84 0.71 . . . 0.79 0.72
1 0.5 0 0.1 0 0.02 0 . . . 3, 5e− 07 0

Table 8.5: Illustration of the conver-
gence of the HITS algorithm for the
example network included in Fig-
ure 8.10. Each row corresponds to a
vertex from the network.

Even though vertex 3 has an outgoing edge, it links to such a vertex
which is not authoritive. The case of vertex 5 is even simpler as it has
no outgoing edges at all, hence it is completely incapable of linking
to vertices with high authority scores (in particular it even fails at
linking to vertices with any non-zero authority score).

Vertex 5 turns out to be a poor authority as well. This is in accor-
dance to the fact that it receives a single incoming edge from vertex 3
which has been assigned a low hubness score.

Although vertex 3 is one of worst hubs, it is also one of the vertices
with the highest authority score at the same time. Indeed, these are
vertices 2 and 3 that obtain the highest authority scores. It is not
surprising at all that vertices 2 and 3 have the same authority scores,
since they have the same incoming edges from vertices 1 and 4. As a
consequence of vertices 2 and 3 ending up to be highly authoritive,
those vertices that link them manage to obtain high hubness. Since
those vertices that are directly accessible from vertex 1 are a superset
of those of vertex 4, the hubness score of vertex 1 surpasses that of
vertex 4. As the above example suggests, the a and h scores from the
HITS algorithm got into an equilibrial state even after a few number
of iterations.

8.5 Further reading

PageRank and its vast number of variants, such as 12, admittedly 12 Wu et al. 2013, Mihalcea and Tarau
2004, Jeh and Widom 2002belong to the most popular approaches of network analysis. As men-

tioned previously, we can conveniently model a series of real-world
processes and phenomena with the help of complex networks, in-
cluding but not limited to social interactions 13, natural language 14 13 Newman 2001, Hasan et al. 2006,

Leskovec et al. 2010, Backstrom and
Leskovec 2011, Matakos et al. 2017,
Tasnádi and Berend 2015

14 Erkan and Radev 2004, Mihalcea and
Tarau 2004, Toutanova et al. 2004
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or biomedicine 15. 15 Wu et al. 2013, Ji et al. 2015

Liu [2006] provides a comprehensive overview of web data mining
and Manning et al. [2008] offers a thorough description of informa-
tion retrieval techniques.

8.6 Summary of the chapter

Many real world phenomena can be conveniently modeled as a net-
work. As these networks have a potentially enormous number of
vertices, efficient ways of handling these datasets is of utmost impor-
tance. Efficiency is required both in accordance of the storage of the
networks and the algorithms employed over them.

In this chapter we reviewed typical ways, networks can be rep-
resented and multiple algorithms that assign relevance score to the
individual vertices of a network. Readers are expected to understand
the working mechanisms behind these algorithms.
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This chapter provides an introduction to clustering algorithms.
Throughout the chapter, we overview two main paradigms of cluster-
ing techniques, i.e., algorithms that perform clustering in a hierarchi-
cal and partitioning manner. Readers will learn the about the task of
clustering itself, understand their working mechanisms and develop
an awareness of their potential limitations and how to mitigate those.

9.1 What is clustering?

Clustering deals with a partitioning of datasets into coherent subsets
in an unsupervised manner. The lack of supervision means that these
algorithms are given a dataset of observations without any target
label that we would like to be able to recover or give accurate predic-
tions for based on the further variables describing the observations.
Instead, we are only given the data points as m-dimensional obser-
vations and we are interested in finding such a grouping of the data
points such that those that are similar to each other in some – previ-
ously unspecified sense – would be grouped together. Since similar-
ity of the data points is an important aspect of clustering techniques,
those techniques discussed previously in Chapter 4 and Chapter 5

would be of great relevance for performing clustering.
As a concrete example, we could perform clustering over a collec-

tion of novels based on their textual contents in order to find the ones
that has a high topical overlap. As another example, users with simi-
lar financial habits could be identified by looking at their credit card
history. Those people identified as having similar behavior could
then be offered the same products by some financial institution, or
even better special offers could be provided for some dedicated clus-
ter of people with high business value.

Learning Objectives:
• The task of clustering

• Difference between agglomerative
and partitioning approaches

• Hierarchical clustering techniques

• Improving hierarchical clustering

• k-means clustering

• Bradley-Fayyad-Reina algorithm
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9.1.1 Illustrating the difficulty of clustering

As mentioned earlier, the main goal of clustering algorithms is to
find groups of coherently behaving data points based on the com-
monalities in their representation. The main difficulty of clustering
is that coherent and arguably sensible subsets of the input data can
be formed in multiple ways. Figure 9.1 illustrates this problem. If we
were given the raw dataset as illustrated in Figure 9.1 (a), we could
argue that those data points that are located on the same y-coordinate
form a cluster as depicted in Figure 9.1 (b). One could argue that a
similar clustering which assigns points with the same x-coordinate
into the same cluster would also make sense.

It turns out, however, that the ‘true’ distribution of our data fol-
lows the one illustrated in Figure 9.1 (c) as the clusters within the
data correspond to letters from the Braille alphabet. The difficulty Can you decode what is written in

Figure 9.1 (c)??of clustering is that the true distribution is never known in reality.
Indeed, if we already knew the underlaying data distribution there
would be no reason to perform clustering in the first place. Also,
this example illustrates that the relation which makes the data points
belong together can sometimes be a subtle non-linear one.

Clustering is hence not a well determined problem in the sense
that multiple different solutions could be obtained for the same input
data. Clustering on the other hand is of great practical importance as
we can find hidden (and hopefully valid) structure within datasets.

(a) The raw unlabeled data.

(b) One sensible clustering of the data based on their y-coordinates.

(c) The real structure of the data.

Figure 9.1: A schematic illustration of
clustering.
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9.1.2 What makes a good clustering?

Kleinberg imposed three desired properties regarding the behavior
of clustering algorithms1. The three criteria were scale invariance, 1 Kleinberg 2002

completeness and consistency.
What these concepts mean for a set of data points S and an associ-

ated distance over them d : S× S → R+ ∪ {0} are described below.
Let us think of the output of some clustering algorithm as a function
f (d, S) which – when provided by a notion of pairwise distances over
the points from S – provides a disjoint partitioning of the dataset S
that we denote by Γ. Having introduced these notations, we can now
revisit the three desiderata introduced by Kleinberg.

Scale invariance means that the clustering algorithm should be
insensitive for rescaling the pairwise distances and provide the exact
same output for the same dataset if the notion of pairwise distances
change by a constant factor. That is, ∀d, α > 0 ⇒ f (d, S) = f (αd, S).
What it means intuitively, that imagining that our observations are
described by vectors that indicate the size of a certain object, the
output of the clustering algorithm should not differ if we provide
our measurements in millimeters or if we provide them in miles or
centimeters.

The richness property requires that if we have the freedom of
changing d, i.e., the notion of pairwise distances over S, the clustering
algorithm f should be able to output all possible partitioning of the
dataset. To put it more formally, ∀Γ∃d : f (d, S) = Γ.

The consistency criterion for a clustering algorithm f requires
the output of f to be the same whenever the d is modified by a Γ-
transformation. A Γ-transformation is such a transformation over
some distance d and a clustering function f , such that the distances d′

obtained by the Γ-transformation are such that the distances between
pairs of points

• assigned to the same cluster by f do not increase,

• assigned to a different cluster by f do not decrease.

A clustering fulfils consistency, if for any d′ obtained by a Γ-transformation
we have f (d, S) = Γ⇒ f (d′, S) = Γ.

Although these properties might sound intuitive, Kleinberg
pointed out that it is impossible to construct such a clustering al-
gorithm f that would meet all the three criteria at the same time.
Constructing clustering algorithms that meet two out of the previous
desiderata is nonetheless feasible and this is the best we can hope for.
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9.2 Agglomerative clustering

The first family of clustering techniques we introduce is agglomera-
tive clustering. The way these clustering algorithms work is that they
initially assign each and every data point into a cluster of its own
then they gradually start merging them together until all the clusters
belong into a single cluster. This bottom-up strategy builds up a
hierarchy based on the arrangement of the data points and this is
why this kind of approach is also referred to as hierarchic clustering.

The pseudocode for agglomerative clustering is provided in Al-
gorithm 5. It illustrates that in the beginning every data point is
assigned to a unique cluster which then get merged into a hierarchi-
cal structure by repeated mergers of pairs of clusters based on their
inter-cluster distance. Applying different strategies for determining
the inter-cluster distances could produce different clustering out-
comes. Hence, an important question is how do we determine these
inter-cluster distances that we shall discuss next.

Algorithm 5: Pseudocode for agglom-
erative clustering.Require: Data points D

Ensure: Hierarchic clustering of D
1: function AgglomerativeClustering(D)
2: i = 0
3: for d ∈ D do
4: i = i + 1
5: Ci = {d} // each data point gets assigned to an individual cluster

6: end for
7: for (k=1; k < i; ++k) do
8: [C∗i , C∗j ] = arg min

(Ci ,Cj)∈C×C
d(Ci, Cj) // find the closest pair of clusters

9: Ck = C∗i ∪ C∗j // merge the closest pair of clusters

10: end for
11: end function

9.2.1 Strategies for merging clusters

A key component for agglomerative clustering is how we select the
pair of clusters to be merged in each step (cf. line 8 of Algorithm 5).
Chapter 4 provided a variety of distances that can be used to deter-
mine the dissimilarity between a pair of individual points. We would,
however, require a methodology which assigns a distance for a pair of
clusters, with each clusters possibly consisting of multiple data points.
The choice of this strategy is important as different choices for calcu-
lating inter-cluster distances might result in different result.

We could think of the inter-cluster distance as a measure which
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tells us the cost of merging a pair of clusters. In each iteration of
agglomerative clustering, we are interested in selecting the pair of
clusters with the lowest cost of being merged. There are multiple
strategies one can follow when determining the inter-cluster dis-
tances. We next review some of the frequently used strategies.

Let us assume that Ci and Cj denotes two clusters, each of which
refers to a set of m-dimensional points. Additionally, we have a dis-
tance function d that we can use for quantifying the distance for any
pair of d-dimensional data points.

Complete linkage performs a pessimistic calculation for the dis-
tance between a pair of clusters as it is calculated as

d(Ci, Cj) = max
xi∈Ci ,xj∈Cj

d(xi, xj),

meaning that the distance it assigns to a pair of clusters equals to
the distance between the pair of most distant points from the two
clusters.

Single linkage behaves oppositely to complete linkage in that it
measures the cost of merging two clusters as the smallest distance
between a pair of points from the clusters, i.e.,

d(Ci, Cj) = min
xi∈Ci ,xj∈Cj

d(xi, xj).

The way average linkage computes the distance between a pair of
clusters is that it takes the pairwise between all pairs of data points
that can be formed from the members of the two clusters and simply
averages these pairwise distances out according to

d(Ci, Cj) =
1

|Ci||Cj| ∑
xi∈Ci

∑
xj∈Cj

d(xi, xj).

A further option could be to identify the cost between a pair of
clusters as

d(Ci, Cj) = max
x∈Ci∪Cj

d(x, µij),

where µij denotes the mean of the data points that we would get if
we merged all the members of cluster Ci and Cj together, i.e.,

µij =
1

|Ci|+ |Cj| ∑
x∈Ci∪Cj

x.

Ward’s method2 quantifies the amount of increase in the variation 2 Ward 1963

that would be caused by merging a certain pair of clusters. That is,

d(Ci, Cj) = ∑
x∈Ci∪Cj

∥x− µij∥2
2 −

 ∑
x∈Ci

∥x− µi∥2
2 + ∑

x∈Cj

∥x− µj∥2
2

 ,



196 data mining

where µij is the same as before , µi =
1
|Ci | ∑

x∈Ci

x and µj =
1
|Cj | ∑

x∈Cj

x.

The formula applied in Ward’s method can be equivalently expressed
in the more efficiently calculable form of

d(Ci, Cj) =
|Ci||Cj|
|Ci|+ |Cj|

∥µi − µj∥2
2.

Applying Ward’s method has the advantage that it tends to produce
more even-sized clusters.

Obviously, not only the strategy for determining the aggregated
inter-cluster distances, but the choice for function d – which deter-
mines a distance over a pair of data points – also plays a decisive
role in agglomerative clustering. In general, one could choose any
distance measure for that, which could potentially affect the out-
come of the clustering. For simplicity, we assume it throughout this
chapter that the distance measure that we utilize is just the standard
Euclidean distance.

9.2.2 Hierarchical clustering via an example

We now illustrate the mechanism of hierarchical clustering for the ex-
ample 2-dimensional dataset included in Table 9.1. As mentioned
earlier, we would determine the distance between a pair of data
points by relying on their Euclidean (ℓ2) distance.

data point location

A (−3, 3)
B (−2, 2)
C (−5, 4)
D (1, 2)
E (2, 2)

Table 9.1: Example 2-dimensional
clustering dataset.

Table 9.2 includes all the pairwise distances between the pairs of
clusters throughout the algorithm. Since distances are symmetric, we
make use of the upper and lower triangular part of the inter-cluster
distance matrices in Table 9.2 to denote the distances obtained by
complete linkage and single linkage strategies, respectively. Why is it so that the distances in

the upper and lower triangular of
the inter-cluster distance matrix in
Table 9.2 (a) are exactly the same?

?We separately highlight the cost for the cheapest cluster mergers
for both the complete linkage and the single linkage strategies in
the upper and lower triangular parts of the inter-cluster distance
matrices in Table 9.2. It is also worth noticing that many of the values
in Table 9.2 do not change between two consecutive steps. This is
something we could exploit for making the algorithm more effective.

The entire trajectory of hierarchical clustering can be visualized
by a dendrogram, which acts as a tree-structured log visualizing
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Table 9.2: Pairwise cluster distances
during the execution of hierarchical
clustering. The upper and lower tri-
angular of the matrix includes the
between cluster distances obtained
when using complete linkage and
single linkage, respectively. Boxed
distances indicate the pair of clusters
that get merged in a particular step of
hierarchical clustering.

the cluster mergers performed during hierarchical clustering. Fig- How would the dendrogram differ
if we performed different strategies
for determining the inter-cluster
distances, such as single linkage or
average linkage?

?
ure 9.2 (a) contains the dendrogram we get for the example dataset
introduced in Table 9.1 when using Euclidean distance and the com-
plete linkage strategy for merging clusters. The lengths of the edges
in Figure 9.2 (a) are proportional to the inter-cluster distance that was
calculated for the particular pair of clusters.

Figure 9.2 (a) also illustrates a possible way to obtain an actual
partitioning of the input data. We can introduce some fixed threshold
– indicated by a red dashed line in Figure 9.2 (a) – and say that data
points belonging to the same subtree after cutting the dendrogram
at the given threshold would form a cluster of data points. The pro- Which of the nice properties intro-

duced in Section 9.1.2 is not met by
the threshold-driven inducing of
clusters?

?posed threshold-based strategy would result in the cluster structure
which is also illustrated in Figure 9.2 (b).

A B C D E

di
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(a) The dendrogram structure. Distances are
based on complete linkage.
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(b) Geometric view of hierarchical
clustering.

Figure 9.2: Illustration of the hierarchi-
cal cluster structure found for the data
points from Table 9.1.
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9.2.3 Finding representative element for a cluster

When we would like to determine a representative element for a
collection of elements, we can easily take their centroid which sim-
ply corresponds to the averaged representations of the data points
that belong to a particular cluster. There are cases, however, when
averaging cannot be performed due to the peculiarities of the data.
This could be the case when our objects are characterized by nominal
attributes for instance.

The typical solution to handle this kind of situation is to determine
the medoid (also called clustroid) of the cluster members instead of
their centroids. The medoid is the element of some cluster C which
lies the closest to all the other data points from the same cluster C in
some aggregated sense (e.g. after calculating the sum or maximum of
the within-cluster distances).

Example 9.1. Suppose members of some cluster are described by the follow-
ing strings: C = {ecdab, abecb, aecdb, abcd}. We would like to calculate the
most representative element from that group, i.e., the member of the cluster
that is the least dissimilar from the other members.

When measuring the dissimilarity of strings, we could rely on the edit
distance (cf. Section 4.5). Table 9.3 (a) contains all the pairwise edit dis-
tances for the members of the cluster.

Table 9.3 (b) contains the aggregated distances for each member of the
cluster according to multiple strategies, i.e., summing, taking the maximum
or the sum of squared distances of the within-cluster distances. According
to any of the aggregations, it seems that the object aecdb is the least dissim-
ilar from the remaining data points in the given cluster, hence it should be
treated as the representative element of that cluster.

ecdab abecb aecdb abcd

ecdab 0 4 2 5

abecb 4 0 2 3

aecdb 2 2 0 3

abcd 5 3 3 0

(a) Pairwise distances between the cluster mem-
bers.

Sum Max Sum of squares

ecdab 11 5 45

abecb 9 4 29

aecdb 7 3 17

abcd 11 5 43

(b) Different aggregation of the within-cluster
distances for each cluster member.

Table 9.3: Illustration of the calculation
of the medoid of a cluster.

Example 9.1 might seem to suggest that the way we aggregate the
within-cluster distances for obtaining the medoid of a cluster do not
make a difference, i.e., the same object was the least dissimilar to
all the other data points no matter whether we took the sum or the
maximum or the squared sum of per-instance distances. Table 9.4
includes such an example within-cluster distance matrix for which
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the way aggregation is performed makes a difference. Hence, we can
conclude that aggregating the within-cluster distances differently, we
could obtain different representative element for the same set of data
points.

A B C D

A 0 3 1 5

B 3 0 4 3

C 1 4 0 6

D 5 3 6 0

(a) Pairwise within-cluster distances.

Sum Max Sum of squares

A 9 5 35

B 10 4 34

C 11 6 53

D 14 6 70

(b) Different aggregation strategies.

Table 9.4: An example where matrix
of within-cluster distances for which
different ways of aggregation yields
different medoids.

9.2.4 On the effectiveness of agglomerative clustering

The way agglomerative clustering works is that it initially introduces
n distinct clusters, i.e., as many of them as many data points we have.
Since we are merging two clusters in a time, we can perform n − 1
merge steps before we find ourselves with a single gigantic cluster
containing all the observations from our dataset.

In the first iteration, we have n clusters (one for each data points).
Then in the second iteration, we have to deal with n− 1 clusters. In
general, during iteration i we have n + 1− i clusters to choose the
most promising pair of clusters to merge. This is in line with the
observation that in the last iteration of the algorithm (remember, we
can perform n − 1 merge steps at most) we would need to merge
n + 1− (n− 1) = 2 clusters together (which is kind of a trivial task to
do).

Remember that deciding on the pair of clusters to be merged to-
gether can be performed in O(k2), if the number of clusters to choose
from is k. Since

n

∑
k=1

k2 =
n(n + 1)(2n + 1)

6
,

we get that the total computation performed during agglomerative
clustering is

n−1

∑
i=1

(n + 1− i)2 = O(n3).

Algorithms that are cubic in the input size are simply prohibitive for
inputs that include more than a few thousands examples, hence they
do not scale well to really massive datasets.

There is one way we could improve the performance of agglom-
erative clustering. Notice that the most of the pairwise distances
calculated for the actual iteration can be reutilized during the next
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iteration. To see why this is the case, recall that the first iteration re-
quires the calculation of O(n2) pairwise distances and by the end of
the first iteration we would end up having n− 1 clusters as a results
of merging a pair of clusters together.

We could then proceed by calculating all the pairwise distances
for the (n − 1) clusters that we are left, but we can observe that if
we did so, we would actually do quite much repeated work regard-
ing the calculation of the distances for those pairs of clusters that
we had already considered during the previous iteration. Actually,
it would suffice to calculate a new distance of the single cluster that
we just created in the last iteration towards all the others that were
not involved in the last merging step. So, the agglomerative clus-
tering would require the calculation of n− 2 distances in its second
iteration.

Storing inter-cluster distances in a heap data structure could hence
improve the performance of agglomerative clustering in a mean-
ingful way. The good property of heaps that they offer O(log h)
operations for insertion and modification with h denoting the num-
ber of elements stored in the heap. Since this time we would store
pairwise inter-cluster distances in a heap, h = O(n2), i.e., the
number of elements in our heap is upper-bounded by the squared
number of data points. This means that every operation would be
O(log n2) = O(2 log n) = O(log n). Together with the fact that
the number of per iteration operations needed during agglomera-
tive clustering is O(n) and that the number of iteration performed
is O(n), we get that the total algorithm can be implemented in
O(n2 log n).

While O(n2 log n) is a noticable improvement over O(n3), it is
still insufficient to scale for such cases when we have hundreds of
thousands of data points. In cases when n > 105 one could either
combine agglomerative clustering with some approximate technique,
such as the ones discussed in Chapter 5, or resort to more efficient
clustering techniques to be introduced in the followings.

9.3 Partitioning clustering

Partitioning clustering follows a fundamentally different philosophy
compared to agglomerative clustering. The way partitioning cluster-
ing differs from agglomerative clustering is that it does not determine
a full hierarchy of the cluster structure. What partitioning clustering
algorithms do instead is that they divide the datasets into disjoint
partitions (the clusters) without telling us anything about the relation
of the distinct partitions.
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9.3.1 K-means clustering

The k-means algorithm3 is one of the most popular data mining 3 Macqueen 1967

algorithms4 due to its simplicity and effectiveness. The algorithm 4 Wu et al. 2007

can be also motivated from a theoretical aspect as it is related to
Expectation-Maximization5. 5 Dempster et al. 1977

Expectation-Maximization is a technique to derive maximum like-
lihood estimates of probabilistic models when certain random vari-
ables are not observable. Training the parameters of popular models,
such as Gaussian Mixture Models or Hidden Markov Models can
also be performed based on this technique.

One of the important differences between k-means and agglom-
erative clustering algorithms is that the value for k – denoting the
number of clusters to be identified – has to be chosen in advance in
the k-means algorithm. In the case of agglomerative clustering, one
could just build the entire dendrogram and obtain the clusters in
multiple different ways and number of clusters.

The optimization problem k-means clustering strives to solve is

min
µ1,...,µk

k

∑
i=1

∑
x∈Ci

∥x− µi∥2
2. (9.1)

That is, we would like to see the sum of squared differences between
cluster centroids (denoted by µi) and data points assigned to the
corresponding cluster Ci to be minimized. We perform a hard assign-
ment of the data points x ∈ D to the clusters based on the distance of
x to the individual cluster centroids. To put it formally, x ∈ Ci∗ such
that

i∗ = min
i
∥x− µi∥2. (9.2)

To express (9.2) in simple terms, every data point is assigned to
the cluster that is described by the closest centroid µi to the data
point x. The way this simple rule can be actually interpreted is that
we assume every cluster Ci to behave as a multivariate Gaussian
distribution with a unique centroid µi and a covariance matrix that
is identical across all the clusters. For simplicity, we can assume that
every cluster gets described by a multivariate Gaussian distribution
having the identity matrix as their covariance matrix.

Under the previous assumptions,

∥x− µi∥2 < ∥x− µj∥2

implies the inequality

p(x|µi, Σi) > p(x|µj, Σj),
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i.e., the probability density function for data point x is higher with
for cluster Ci than to Cj. Hence the distance ∥x − µi∥2 provides a
good proxy and a theoretically sound way to assign data points
to clusters (assuming the clusters can be described by multivariate
Gaussian distributions with the same covariance matrix).

It is worth mentioning that Gaussian Mixture Model (GMM) be-
have similarly to k-means, except for the fact that it utilizes a soft
assignment of the data points to the different clusters. These soft as-
signments come in the form of distributions quantifying the extent
to which a data point is believed to belong to the different clusters
(defined as Gaussian distributions). GMM also differs from k-means
algorithm in that it does not require the multivariate Gaussian dis-
tributions describing our clusters to be described by the same covari-
ance matrix.

The pseudocode for k-means which follows the abovementioned
considerations is illustrated in Algorithm 6. That is, we first (ran-
domly) choose k initial cluster centroids, then we iteratively repeat
the following steps:

• we assign all data points x ∈ D to the cluster represented by the
centroid closest to the given point (according to (9.2)),

• update the centroids for all clusters by taking the mean of the data
points assigned to the given cluster.

The results of performing Algorithm 6 with k = 3 on an example
dataset is illustrated in Figure 9.3. We can see how do the initially
randomly chosen cluster centroids get updated over the iterations
of the algorithm. Data points in Figure 9.3 are colored based on the
cluster they get assigned to over the different iterations. We can see
it in Figure 9.3 that the change in the location of the cluster centroids
decreases as the algorithm is making progress. Indeed, by the end of
iteration 7, there clustering stabilizes. We should add it, however, that
the solution k-means converges could vary on the choice of the initial
location for the cluster centroids.

Figure 9.4 provides an illustration on the sensitivity of the k-means
algorithm to the choice of the initial cluster centroids. Figure 9.4 dis-
plays the clusters we obtained with k-means (using k = 10) when
applied over the Braille dataset from Figure 9.1 using different ran-
dom initializations for the cluster centroids. We can see that the three
runs resulted in three notably different outputs with different quality.
Points within the grey boxes form a coherent group, i.e., a symbol
from the Braille alphabet. Hence, we would ideally like to see data
points within each grey area to be assigned to the same cluster, which
would be illustrated graphically by those points being colored by the
same color.
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Algorithm 6: Pseudocode for the
k-means algorithm.Require: Dataset D ∈ Rn×m, k for the number of expected clusters

Ensure: µ ∈ Rk×m including the centroids for the k clusters
1: function kMeansClustering(D, k)
2: Initialize k centroids: µ = [µ1, . . . , µk]

3: while (stopping criterion is not met) do
4: µnew := zeros(k, m)

5: clusterSizes := zeros(1, k)
6: for i = 1 to n do
7: c := arg min

j
∥xi − µj∥2

8: µnew(c) := µnew(c) + xi

9: clusterSizes(c) := clusterSizes(c) + 1
10: end for
11: for i = 1 to k do
12: µnew(i) = µnew(i)/clusterSizes(i)
13: end for
14: µ = µnew

15: end while
16: return µ

17: end function
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Figure 9.3: An illustration of the k-
means algorithm on a sample dataset
with k = 3 with the trajectory of the
centroids being marked at the end of
different iterations.
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(a) Results of k-means with random initialization #1.

(b) Results of k-means with random initialization #2.

(c) Results of k-means with random initialization #3.

Figure 9.4: Using k-means clustering
over the example Braille dataset from
Figure 9.1. Ideal clusters are indicated
by grey rectangles.

9.3.2 Limitations of the k-means algorithm

The simplicity and the computational efficiency makes the usage of
the k-means algorithm an appealing choice. At the same time, it is
important to know about its potential limitations. We have already
mentioned a few of those, now we overview them and mention a few
others as well.

One disadvantage of k-means is that it requires the number of
clusters to be provided in advance. This naturally limits the richness
of the clusters one can obtain by applying this kind of clustering
technique.

Another limitation of the algorithm is that it might not necessarily
converge to the global optima of its objective introduced in (9.1).
What it means is that choosing the initial cluster centroids differently
could lead us to find radically different clusters for the same dataset.

k-means algorithm implicitly assumes that the clusters behave as
multivariate Gaussian distributions. Furthermore, there is an even
stronger assumption about the covariance matrices of the different
Gaussian distributions responsible for the description of the clusters
being identical. As such, k-means could have a poor performance if
these assumptions are violated. A partly related issue is that k-means
algorithm is highly sensitive to outliers, i.e., atypical data points in
the dataset.

A common heuristic that mitigates some of the earlier mentioned
problems is to choose the initial cluster centroids from the actual data
points such that the minimum distance between the selected cluster
centroids gets maximized. The behavior of this heuristic is illustrated
in Example 9.2.
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Example 9.2. If we perform k-means clustering over the example dataset
introduced in Table 9.1 with k = 3, we would choose the three initial cluster
centroids to be the data points B, C and E.

First, we could choose data point C to be the first cluster centroid. This
is an appealing choice as that point has the most extreme coordinate for both
dimensions. Looking back at the pairwise distances provided in Table 9.2 (a),
we could see that data point E is the furthest one from C (with a distance
of
√

53), hence E would be selected as the second centroid. Now the third
cluster center needs to be selected such that its closest distance to the already
selected centroids C and E is the maximal.

For the three remaining candidates, we have that A, B and D has these
values as min(

√
5,
√

26), min(
√

13,
√

16) and min(
√

40,
√

1), respec-
tively. Out of the three options B would behave the best for becoming the
next cluster centroid which behaves the most dissimilar to the already chosen
ones.

9.3.3 Clustering streaming data — the Bradley-Fayyad-Reina algorithm

A final difficulty could arise when we need to cluster streaming data.
Datasets containing streaming data are more challenging to be pro-
cessed because they have the special property that the full inventory
of data points cannot be accessed at once. In the case of streaming
data, we receive data points in an on-line fashion, pretty much we
observe products passing by at some point of a conveyor belt. Data
originating from sources such as Twitter or Facebook typically belong
to the category of streaming data.

Algorithms operating over streaming data are called streaming
algorithms that require special considerations due to the peculiarities
of the data they operate on. First of all, they cannot assume all the
data points to be accessible at the same time. Secondly, they have to
be very efficient both in terms of speed and memory consumption,
due to the possibly high throughput of the data stream.

The Bradley-Fayyad-Reina (BFR) algorithm6 can be regarded as 6 Bradley et al. 1998

such an extension of k-means which was especially tailored for being
applied on streaming datasets.

The way BFR algorithm works at the high level is that it keeps
track of a number of clusters in the m-dimensional space and when
a new data point arrives, it decides whether the data point is worth
bein assigned to any of the already existing clusters. If the current
data point is sufficiently dissimilar to all the existing clusters and
does not fit well enough into any of them, we can create a new clus-
ter for the currently received data point.

BFR makes the decision about which already created m-dimensional
cluster does some data point x fits in the most by calculating the
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quantity

m

∑
j=1

(xj − µi,j)
2

σi, j2 , (9.3)

where µi,j and σi, j2 denotes the j-th component of the coordinate-
wise mean and variance for cluster i.

Notice that calculation in (9.3) for some cluster i is essentially
equivalent to

(x− µi)
⊺Σ−1

i (x− µi) (9.4)

assuming that cluster i has mean vector µi and a diagonal covariance
matrix of the form Σi = Iσ2

i , where I ∈ Rm×m denotes the identity
matrix and σ2

i ∈ Rm contains the coordinate-wise variances. We
can also identify the expression in (9.4) as the Mahalanobis dis-
tance that we introduced in Section 4.2. Hence, what BFR does is
to calculate the Mahalanobis distance between an incoming data
point and the clusters that we describe by such special multivariate
Gaussian distributions that have a diagonal covariance matrix.

Treating the covariance matrix of the Gaussian distributions that
characterize our clusters to be diagonal means that we assume that
there is no correlation between the different coordinates. This is ob-
viously a compromise in modeling that we make for reducing the
computational and memory footprint related to the calculation of
cluster memberships. The advantage of this assumption is that it now
suffices to keep track of m per coordinate mean and variance scores
for each cluster. Additionally, the extent to which a data point be-
longs to a certain cluster can also be obtained by m subtractions and
divisions. Had we allow the clusters to have an arbitrary covariance
structure, we would need to store m × m covariance matrices and
inverting those for each of the clusters.

The question which arises next is how can we efficiently keep track
of the per coordinate variances of such samples, i.e., the clusters,
which might eventually be expanded over time. Figure 9.5 provides
a reminder on the sample variance for a random variable and how it
can be expressed as a difference of expected values derived from the
sample. Example 9.3 illustrates calculating the sample variance of a
random variable according to the given methodology.

Example 9.3. Let us take some sample of a random variable X as [3, 5, 3,−1].
Relying on the calculations included in Table 9.5 (a) we would obtain for the
biased sample variance the result

1
4

n

∑
i=1

(xi − µ)2 =
0.25 + 6.25 + 0.25 + 12.25

4
= 4.75.
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The biased sample variance calculated over an n observations from a
random variable X, i.e., from x1, x2, . . . , xn is

σ2 =
1
n

n

∑
i=1

(xi − µ)2,

with µ denoting the mean of the sample.
This expression, however, can be expressed in an alternative form as

σ2 =
1
n

n

∑
i=1

x2
i − 2µ

1
n

n

∑
i=1

xi + n
1
n

µ2.

Since µ = 1
n

n
∑

i=1
xi, we have

σ2 =
1
n

n

∑
i=1

x2
i −

(
1
n

n

∑
i=1

xi

)2

,

that is the difference between the expectation of the random variable
X2 and the squared expected value of X, where the random variable
X2 is derived from X by squaring the values of X.

MATH REVIEW | VARIANCE AS A DIFFERENCE OF EXPECTATIONS

Figure 9.5: Variance as a difference of
expectations

When using the alternative calculation which is based on the difference of
expectations, we could rely on the calculations included in Table 9.5 (b). In
this case we would get that the biased sample variance is

1
4

n

∑
i=1

x2
i −

(
1
4

n

∑
i=1

xi

)2

= 11− 2.52 = 4.75.

sample xi xi − µ (xi − µ)2

1 3 0.5 0.25

2 5 2.5 6.25

3 3 0.5 0.25

4 -1 -3.5 12.25

Average 2.5 0.0 4.75

(a) Calculations for determining variance
according to its definition.

sample xi x2
i

1 3 9

2 5 25

3 3 9

4 -1 -1

Average 2.5 11

(b) Calculations for determining vari-
ance as a difference of expectations.

Table 9.5: Calculations involved in
the determination of biased sample
variance in two different ways for the
observations [3, 5, 3,−1].

Based on the methodology for efficiently calculating a running
variance for such a sample of a random variable that could expand
over time, let us consider the working mechanism of the BFR algo-
rithm over a concrete example.
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data point location

A (−3, 3)
B (−2, 2)
C (−5, 4)
D (1, 2)
E (2, 4)

Table 9.6: Example 2-dimensional
clustering dataset for illustrating the
working mechanism of the Bradley-
Fayyad-Reina algorithm.

Example 9.4. Suppose we have a dataset consisting of five points at coor-
dinates as described in Table 9.6. We have formed two clusters so far, i.e.,
C1 = {A, B, C} and C2 = {D, E}. BFR maintains a separate 2m + 1-
dimensional representation for each of these clusters, where m = 2 is the
dimensionality of our dataset.

The first value in the summary vector for each cluster contain the number
of data points that has been assigned to the given cluster so far. The remain-
ing 2m coordinates are for the coordinate-wise sum and the coordinate-wise
sum of squares of the data points that are members of a particular cluster.
Table 9.7 (a) summarizes the BFR representations for our clusters C1 and
C2.

The succinct representations of the clusters provided in Table 9.7 (a) let
us know that the important statistics for the clusters are

• µ1 =
(
−10

3
9
3

)
and σ2

1 =
(

38
3 − 100

9
29
3 − 81

9

)
=
(

1.55 0.67
)

,

• µ2 =
(

1.5 2
)

and σ2
2

(
5
2 − 9

4 10− 32
)
=
(

0.25 1.0
)

.

Based on these findings, we could easily figure out which cluster should
a newly received data point, such as F = (−1, 4) be assigned to. All we
have to do, is to plug in the coordinates of the data point and the values
determined earlier into the formula (9.4).

If we do so, we get that the value determined for C1 is lower than the
score that we get towards C2, i.e., we obtain scores 5 and 26. As such, we
would decide to update cluster C1 by data point F. Table 9.7 (b) contains the
updated cluster representations after doing so.

9.4 Further reading

There are additional approaches that are – nonetheless beyond the
scope of this note – worth to be aware of. Clustering Using REpre-
sentatives7 (CURE) is a method mitigating some of the shortcomings 7 Guha et al. 1998

of the k-means algorithm, while preserving its computational effi-
ciency. One of the advantages of CURE is that it is an easily paral-
lelizable algorithm.

Spectral clustering8 is based on the eigenvectors of similarity 8 Ng et al. 2001

matrices derived from the data points. Spectral clustering can also
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Cluster id i |Ci| Sum of coordinates Sum of squared coordinates

1 3 -10 9 38 29

2 2 3 6 5 20

(a) The BFR representation of the clusters.

Cluster id i |Ci| Sum of coordinates Sum of squared coordinates

1 4 -11 13 39 45

2 2 3 6 5 20

(b) The BFR representation of the clusters after updating cluster C1 with data point (−1, 4).

Table 9.7: Illustration of the BFR repre-
sentations of clusters C1 = {A, B, C}
and C2 = {D, E} for the data points
from Table 9.6.

be applied to perform partitioning of networks, i.e., determining
coherent subset of vertices within graphs. One serious drawback of
spectral clustering, however, compared to k-means is that it is much
less efficient both in terms of memory consumption and speed.

Density-based spatial clustering of applications with noise (DB-
SCAN) 9 is another frequently applied clustering technique which 9 Ester et al. 1996

is especially designed to be tolerant to the presence of outliers in the
dataset.

9.5 Summary of the chapter

This chapter introduced the problem of clustering where we are
interested in identifying coherent subgroups of our input data points
without any explicit signal for the kind of patterns we are looking
for. We have introduced two important paradigms for performing
clustering, i.e., agglomerative clustering and partitioning clustering.

Agglomerative clustering provides us a hierarchy of the cluster
structure based on the inter-cluster (dis)similarities. Partitioning
techniques, however, simply assign each data point into a cluster
without providing a structural relation between the different clusters
it identifies.

Standard clustering algorithms, such as k-means, is not designed
to handle streaming data. At the end of the chapter, we introduced
the Bradley-Fayyad-Reina (BFR) algorithm which can be regarded
as an extension of the k-means algorithm with the capability of han-
dling streaming data.



10 | CONCLUSION

We have covered some of the most fundamental algorithms of data
mining. During our discussion, we repeatedly emphasized the fact
that modern datasets are often so enormous that they could not
necessarily be stored in the main memory of computers. To this end,
a variety of techniques – including the application of approximate
solutions – have been discussed to provide efficient algorithms that
can cope with input datasets of large size as well.
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geometric distribution, 183

geometric probability, 89

Gibbs inequality, 72

global convergence, 175, 187

Gram matrices, 188

Gramian matrix, 111

Hadamard product, 29

half-space, 89

hash set, 92

hashing trick, 66

heap, 200

Hellinger distance, 70

Hidden Markov Model, 201

hierarchic clustering, 194

HITS algorithm, 186

hubness, 187

Hubs and Authorities, 186

Hyperlink Induced Topic
Search, 186

hypersphere, 101

identity matrix, 61

indexing, 177

information retrieval, 177

inner product, 88

Intel MKL, 24

irreducibility, 180

Jaccard similarity, 64

Jensen-Shannon divergence, 72

Johnson-Lindenstrauss lemma,
117

k-means, 201

Karush-Kuhn-Tucker
conditions, 108

Kullback-Leibler divergence,
71

Lagrange function, 108

Lagrange multipliers, 108

lambda expressions, 21

LAPACK, 24

Large Hadron Collider, 32

law of total probability, 34

LDA, 131

lift, 142

Linear discriminant analysis,
131

log sum inequality, 72

longest common subsequence,
66

Mahalanobis distance, 60, 206

Manhattan distance, 58

Maple, 17

marginal probability, 35

MATLAB, 16, 17

matrix rank, 123
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maximal frequent item set, 144

mean centering data, 40

medoid, 198

minhash signature, 80

minhash value, 77

Minkowski distance, 57

multicollinearity, 39

mutual information, 46

n-gram, 65

null space, 53

numerical analysis, 17

numpy, 29

Octave, 16, 17

PageRank, 177

Park–Chen–Yu algorithm, 155

partitioning clustering, 200

PCA, 105

Personalized PageRank, 185

pigeon hole principle, 93, 155

positive border, 145

positive semidefinite matrix,
45

power method, 173

principal component analysis,
105

principal eigenvalue, 173

principal eigenvector, 111

probabilistic data structure, 92

Python, 29

random projection, 117

random walk, 175

recommendation systems, 121

richness, 193

row stochastic matrix, 171

scale invariance, 193

scatter matrix, 44, 110, 111

scatter plot, 27

Scilab, 17

scipy, 29

semantic network, 169

Shannon entropy, 47

shingles, 65

single linkage, 195

Singular Value Decomposition,
118

sketch, 89

spectral clustering, 208

spider trap, 182

standardizing, 41

stationary distribution, 173

steady state distribution, 173

stochastic vector, 172

streaming algorithms, 205

streaming data, 205

support, 139

surjective function, 93

SVD, 118

symmetric matrix, 45

transposition, 67

truncated SVD, 124

TrustRank, 185

variance, 206

vectorization, 24

Ward’s method, 195

whitening, 43, 60

WordNet, 169

z–score, 41
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