
iFL for Eclipse – A Tool to Support
Interactive Fault Localization in Eclipse IDE

Gergő Balogh Victor Schnepper Lacerda Ferenc Horváth Árpád Beszédes
Department of Software Engineering, University of Szeged

{geryxyz,lacerda,hferenc,beszedes}@inf.u-szeged.hu

I. INTERACTIVE FAULT LOCALIZATION

We present a tool to aid Spectrum-Based Fault Localization
(SBFL) [1]. SBFL provides a ranked list of suspicious code
elements to the user based on statistical analysis of test execu-
tion outcomes and code coverage. Recent studies highlighted
some barriers to the wide adoption of SBFL, including a high
number of suggested elements to investigate [2], and other
issues [3]. A possibility to increase the practical usefulness
of SBFL tools is to involve interactivity. In our approach,
called iFL, we involve the user’s previous knowledge about
the system: the developer interacts with the fault localization
algorithm by giving feedback on the elements of the prioritized
list. Contextual knowledge of the user about the ranked items,
classes of methods in our case, is used to reposition larger code
entities in their suspiciousness, thus aiding the FL process.
The benefits of developer’s additional knowledge have already
been explored. For example, Li et al. [4] reuse the knowledge
about passing parameter values, while Gong et al. [5] ask only
for a simple yes/no feedback for a given statement. To our
knowledge, contextual information about higher level entities
has not yet been leveraged for interactive SBFL.

II. BENEFITS AND CONTRIBUTIONS

FL is a debugging activity in which, by definition, the
programmer interacts with the source code of the software
being debugged, which can be performed most effectively
through the IDE itself. iFL for Eclipse supports iFL for Java
projects developed in this environment. The plug-in reads
the tree of project elements (classes and methods) and lists
them in a table with detailed information. This includes the
suspiciousness scores calculated using a traditional SBFL
formula such as Tarantula. Interactivity between the tool and
the programmer is achieved by providing the possibility to
send feedback to the FL engine about the table elements and
their context. The user can choose from the following options:
(1) the item is faulty (the process stops), (2) it is not faulty nor
its context (they are moved lower in the rank), or (3) it is not
faulty but the context is suspicious (they are ranked higher).

III. TECHNICAL DETAILS

iFL for Eclipse is a plug-in supporting Java 10 and later,
and Eclipse 2018-12 and later. It is published via an update
site (at the time of submission, it is available as a prototype
but the first release will be made open source before the
demonstration). The tool uses JDT to detect the methods from

the source code from an Eclipse Java project. In the present
phase, the scores are loaded from an external FL tool. User
interaction is session-based and is tied to one active project.
The main UI is an Eclipse graphical panel, serving as the front
end. The purpose of the back-end is the update of scores and
the recalculation of the rank list based on user input.

Current state: At the present state of our research agenda,
the demonstrated tool serves our research purposes: to in-
vestigate the feasibility and effectiveness of iFL. As such, it
is in a prototype state, not thoroughly tested and validated.
The tool will be made open source, along with the results of
associated experiments, in order to enable other researchers its
independent validation and further development. In terms of
functionality, currently it includes the basic features but there
are many possibilities for further development. Our primary
plans are to increase usability and flexibility in terms of
user feedback actions and the underlying FL computation.
Ongoing research is to perform user studies to investigate the
effectiveness of the proposed iFL approach and the tool itself.

IV. DEMONSTRATION PLAN

During the live demonstration, we will give a walkthrough
of all features of the tool. The main features will be first pre-
sented on a simple example, and then a more complex (open
source) project will be used to demonstrate the usefulness of
the approach in actual fault finding. The video showing the
planned demonstration is available at:
https://youtu.be/AYkcjmSgkA0.

REFERENCES

[1] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, 2016.

[2] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International Sympo-
sium on Software Testing and Analysis, 2011, pp. 199–209.

[3] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 165–176.

[4] X. Li, S. Zhu, M. d’Amorim, and A. Orso, “Enlightened debugging,”
in Proceedings of the 40th IEEE and ACM SIGSOFT International
Conference on Software Engineering (ICSE 2018), 2018, pp. 82–92.

[5] L. Gong, D. Lo, L. Jiang, and H. Zhang, “Interactive fault localization
leveraging simple user feedback,” in IEEE International Conference on
Software Maintenance, ICSM, 2012, pp. 67–76.

This work was supported by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences.

https://youtu.be/AYkcjmSgkA0

	Interactive Fault Localization
	Benefits and contributions
	Technical details
	Demonstration plan
	References

