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Abstract: The expressiveness of the C/C++ preprocessing facility enables the development of highly configurable source
code. However, the usage of language constructs likemacrosalso bears the potential of resulting in highly
incomprehensible and unmaintainable code, which is due to the flexibility and the “cryptic” nature of the pre-
processor language. This could be overcome if suitable analysis tools were available for preprocessor-related
issues, however, this is not the case (for instance, none of the modernIntegrated Development Environments
provides features to efficiently analyze and browse macro usage). A conspicuous problem in software main-
tenance is the correct (safe and efficient) management of change. In particular, due to the aforementioned
reasons, determining efficiently the impact of a change in a specific macro definition is not yet possible. In
this paper, we describe a method for the impact analysis of macro definitions, which significantly differs from
the previous approaches. We reveal and analyze the dependencies among macro-related program points using
the so-calledmacro slices.

1 INTRODUCTION

C/C++ source code analyzer tools many times suf-
fer from a common problem: the preprocessor di-
rectives are not part of the C/C++ language, there-
fore they need a separate parser to analyze them. The
problem affects a wide range of areas from calculat-
ing simple metrics through carrying out refactoring
transformations to maintenance tasks like retrieving
dependencies between software components and re-
covering the architecture of legacy systems. Without
coping with the preprocessor constructs, only partial
and imprecise results can be obtained. Lots of efforts
are already put into incorporating the preprocessor re-
lated information into the processes which analyze
the C/C++ language constructs but only with moder-
ate success. The problematic issues in preprocessing
are typically the conditional compilation (#if) and
the definition and usage of macros (#define). While
there are usable tools for refactoring Java programs
available, such tools for C/C++ face many problems
because of preprocessor constructs (Garrido, 2005).

In this paper, we concentrate on understanding
macro usage. Usually, macro related analysis is used
to track the macro call to its definition. Although re-
search tools implementing this feature (e.g. the fold-
ing mechanism of GUPRO (Ebert et al., 2002)) al-

ready exist, the widely used debuggers still do not
provide this information. Debugging tool support
ends when the developer gets an error message from
the compiler based on the preprocessed code. In many
cases, it would be very useful to see the result of a
macro call in the source editor. To answer questions
like the one above, it is enough to analyze one compi-
lation unit, but many software maintenance and pro-
gram comprehension tasks also require inter-unit de-
pendencies (covering the whole source tree).

During software maintenance tasks, developers
usually have to carry out small changes without hav-
ing tool support for analyzing the impact of the
change to the code, which may cause unforeseeable
problems. In the process of change impact analy-
sis and change propagation, one tries to determine
those parts of the source code which are affected by
a change (Rajlich, 1997). In particular, when analyz-
ing the impact of changes in macros, we need to know
all usages of a macro definition. In other words, it is
needed to track the macro definition to all of its us-
ages (macro calls) – as opposed to the other direction
mentioned previously.

Our motivating question is hence:Which parts of
the source code are affected by a change in a macro
body?By affected points in the program we mean the
places where the modified macro is called. The intu-
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itive method is to search the whole source tree using
thegreptool to find all occurrences of the name of the
modified macro definition. Unfortunately, there are
three main obstacles which make this method unus-
able: includes and configurations, macro redefinitions
and hidden macro invocations using the ## operator.

In this paper, we introduce anovel technique
which answers the motivating question. The next sec-
tion contains the necessary terms and definitions for
the analysis of macros. In Section 3, the macro slicing
method is introduced. Related research is discussed in
Section 4. The last section contains conclusions and
closing remarks.

2 DEFINITIONS

When investigating preprocessor directives, the
meaning of static and dynamic analysis is different
than the usual. The preprocessing phase takes place
before the compilation, configurations of the program
are controlled by an initial set of macros. Dynamic
analysis uses runtime information based on one par-
ticular input. In the preprocessing case, the running
time means the preprocessing phase which would be
the compile time considering the C and C++ lan-
guages. The input of the preprocessor is the set of
macros which determines the actual configuration.
We may say that the number of configurations is usu-
ally small or only a few of them are really important.
Therefore, we choose the dynamic analysis of di-
rectives on one (or more) important configuration(s).
This way we may miss some dependencies in other
configurations, but this approach has two advantages:
it is accurate because it is dynamic and it represents
the whole software (or at least an important configu-
ration).

The rest of the section contains the terms and for-
mal definitions used in the analysis of macro calls.
Many of the concepts described below are not re-
stricted to the domain of dynamic analysis.

The following terms are used to formalize the
macro replacements (see the example in Figure 1, the
macro call results in1 2):

• macro definition– the place of the#define di-
rective. The definition consists of three parts:
macro name, optionally parameters, and macro
body(also called replacement list).

• macro invocation– the place in the program
where a macro name is used (where the name is
to be replaced with the macro body from the def-
inition). The invocation may containmacro argu-
mentsin case of function like macros.

#define X(a)  a Y(Q)

#define Y(b)  b 

#define P   1

#define Q   2

X(P) Macro invocation

Macro
definition

Macro parameter

Macro body

Macro argument

Figure 1: Example macro call.

• macro expansion– the process of macro replace-
ment: macro arguments are expanded and re-
placed.

• full macro expansion- starting from the point of
a macro invocation there may be many expanded
macros since the macro body may contain further
macro invocations. On full macro expansion we
mean all expansions which are necessary to get
the final result of the beginning macro invocation.

• toplevel macro invocation- starting point of a full
macro invocation (a full macro expansion neces-
sarily starts outside the#define directives).

Definition Let I be the set of all macro invocations in
the given software.
Definition Let D be the set of allusedmacro defini-
tions in the given software.

The fact of a macro call is represented by thecall
relation between the two sets.
Definition call : I → D, call(x) = y if and only if the
macro invocationx uses the macro definitiony.

The call relation is surjective (D contains only
called macro definitions) but is not injective (one def-
inition can be called from more places).

A macro invocation may contain arguments in
case of function like macros. These arguments may
also contain macro invocations, so we define the fol-
lowing relation.
Definition arg : I → I , arg(x) = y if and only if the
macro invocationx calls a function-like macro and the
macro invocationy is an argument ofx.

A macro definition may contain further macro in-
vocations in its body. This relationship is represented
by the following relation.
Definition body: D→ I , body(x) = y if and only if the
macro definitionx contains macro invocationy in its
macro body. (Note that when a macro body ofx con-
tains a function like macro invocation with an argu-
ment which is also a macro invocation then this later
invocation also constitutes abodyrelation withx.)

In order to increase readability and expressiveness
the sets can be contracted using thearg andbodyre-
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Figure 2: Macro sets and relations.

lations (similarly to a graph edge contraction). Let
us construct a new set calledMC containing disjunct
node sets containing elements fromI andD. There
are two types of new nodes. The first type is based on
toplevel macro invocations (filled with black in Fig-
ure 2): each set contains a toplevel invocation and in-
vocations which are in its arguments (contraction us-
ing the arg relation). The second type is based on
macro definitions: each set contains a macro defini-
tion and macro invocations contained by its macro
body (contraction using thebody relation). In Fig-
ure 3 there is a filled area for each element ofMC.
Formally let

TI ⊆ I = {x∈ I |¬∃y∈ I : arg(y) = x ∧
¬∃z∈ D : body(z) = x}

be the set of toplevel macro invocations.
The elements of the new sets are defined using two

sets according the two types:

MCI =
[

x∈TI

( x∪{y∈ I |y∈ arg(x)})

MCD =
[
x∈D

( x∪{y∈ I |y∈ body(x)})

MC = MCI∪MCD
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Figure 3: Elements of theMC set.

TheMC set is a subset of the powerset of the ex-
isting sets:MC ⊆ P(I ∪D) and all elements ofI and

D are included by one of the elements ofMC. The
call relation can be defined on MC as follows:
Definition mcall : MC→ MC,
mcall(A) = {B|∃x∈ A,y∈ B : call(x) = y}.

Macro dependencies can be defined based on the
mcall relation. Note that the dependency edge points
to the opposite direction than themcall edge.
Definition dep: MC→ MC, dep(a) = b if and only if
mcall(b) = a.

Figure 4 shows the simplified set. Node sets (filled
areas in Figure 3) are represented by their base nodes
in Figure 4.
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mcall
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Figure 4: Themcall and thedeprelations on the simplified
MC set.

3 SLICING

Program slicing is an analysis method for extracting
parts of a program which represent a specific sub–
computation of interest. It has been originally intro-
duced by Weiser (Weiser, 1984) to assist debugging,
where a set of program points is sought for, which
affect the variables of interest at a chosen program
point, called theslicing criterion. The reduced pro-
gram is called aslice. This definition is sometimes
more precisely referred to asbackward slice, since –
having procedural programs in mind – it associates a
slicing criterion with a set of program locations whose
earlier execution affected the value computed at the
criterion. On the other hand, aforward sliceis a set of
program locations whose later execution depends on
the values computed at the slicing criterion. Slicing
can also be categorized asstaticor dynamic. In static
slicing, the input of the program is unknown and the
slice must therefore preserve meaning for all possible
inputs. By contrast, in dynamic slicing, the input of
the program is known, and so the slice needs only to
preserve meaning for the input under consideration.

Over the years, a number of algorithms to com-
pute program slices has been developed; for an
overview see (Tip, 1995; Xu et al., 2005). One of the
most cited approaches is to apply a pre-computation
step in which a representation of the program under
investigation is constructed first, which captures the
dependencesamong program elements (for instance,
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data dependences). This representation is called the
Program (or System) Dependence Graph, whose basic
form for static slicing and procedural languages was
given by Horwitzet al. (Horwitz et al., 1990). The
nodes of this graph represent the program elements
(instructions), while the edges connecting them cor-
respond to the program dependences. The counter-
part of this graph for dynamic slicing, the Dynamic
Dependence Graph (Agrawal and Horgan, 1990) in-
cludes a distinct vertex for each occurrence of a state-
ment in the execution of the program on the input
under consideration (called the execution history).
Eventually, the computation of a slice with these ap-
proaches means finding all reachable program ele-
ments in these graphs starting from the slicing cri-
terion. In dynamic slicing, recent results show that
it may not be necessary to compute the whole pro-
gram representation as the pre-computation step to
make use of program dependences (Beszédes et al.,
2006). Rather, slices may be computedglobally by
forward processing the execution history, in which
case all possible slices are obtained. Alternatively,
using ademand-drivenapproach only relevant depen-
dences are investigated in order to determine a partic-
ular program slice.

In this work we reuse the basic slicing principles
to computemacro slices. Namely, we construct the
Macro Dependency Graph (MDG), with whichfor-
ward dynamic macro slicescan be computed, which
will serve as a solution to our initial problem of an-
alyzing impacts of changes in a macro definition.
However, as we will see in the following, a number of
slicing concepts need to be reinterpreted in the scope
of macro slicing.

3.1 Macro Slicing

Using the approach which restricts the slice criteria
to used and defined variables we defineforward and
backwardmacro slices. A slicing criterion is a pair
< p,x >, wherep is a program point andx is a macro
definition or invocation.

Definition 1 The forward macro slice of a program
based on the criterion< p,x >, where x is a macro
definition, is the set of macro definitions and invoca-
tions that might be affected by the macro body of x.

Definition 2 Similarly, the backward macro slice of
a program based on the criterion< p,x > where x is
an invocation consists of all macro definitions of the
program that might affect the value of x at point p.

Note that the forward slice of the criterion
< p,x > gives the answer to the motivating question
outlined in the introduction.

Slices can be produced based on themcallanddep
relations using the definitions from Section 2. The ba-
sic idea is to construct a graph where the nodes are el-
ements of theMC set and the edges are constructed
according to themcall and dep relations. Produc-
ing macro slices means solving a reachability problem
starting from a given definition. Before constructing
the appropriate graph on which slices can be calcu-
lated, the relations have to be refined.

The problem is caused by the fact that in a macro
body every identifier is a potential macro name. The
value of a macro depends on the place of the call,
and not on the place of the definition. In the exam-
ple in Figure 5, at the point of the definition of macro
X identifierY is a simple identifier, but it becomes a
defined macro later. At the point of the second in-
vocation of macro X the identifier Y is a macro, so
the full expansion of macro X staring from that point
contains the expansion of macro Y.

X1

X Ydep

dep
dep

X2

X1

X Ydep2

dep1
dep2

X2

 #define X Y

 X

 #define Y 1

 X

(a)

(b)

(c)

Figure 5: Potential macro problem: (a) program code (b)
basic graph (c) MDG with edge coloring.

The question is which points are affected when the
definition of Y is modified. A search based on thedep
relation starting from the macro definitionY finally
finds bothX macro calls as dependent points, but only
the point of the second invocation is really affected. In
order to solve the problem of potential macro names
which are later defined (macro re-definition causes the
same situation) we have to distinguish the path on
which a definition can be reached starting from the
top level invocations. Full macro expansions have to
be used to track back macro replacements separately.

After the preparations let us construct the Macro
Dependency Graph (MDG). The nodes of the graph
are the elements of theMC set and the directed edges
are created from thedeprelation. The edges are mul-
tiple edges because there may be more full macro ex-
pansions which have a common subset of dependency
edges, but we have to distinguish them. Edge color-
ing is used to sign the edges that belong to a particular
full macro expansion.

Definition 3 Let MDG = (V,E, I ,C) be the Macro
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Dependency Graph, where V is the set of nodes (ver-
tices) and E is the set of edges, I⊆ V ×E is the in-
cidence relation, for∀e∈ E the{e∈V : vIe} set has
two ordered elements (the endpoints of the edge), and
C ⊆ E×N is the coloring relation which assigns the
same color to the edges which belong to the same full
macro expansion. The set E contains multiple edges
colored with different colors, if more full expansions
would use the same edge.

Producing slices can be done on the MDG. For a
slicing criterion< p,x > there is a nodek∈MC in the
dependency graph which represents the macro defini-
tion x at the program pointp. The forward macro
slice contains exactly those program points which are
reachable fromk along colored edges in the graph.

Definition 4 Let< p,x > be a slicing criterion where
x is a definition and k∈ MC the node corresponding
to x. Let Col be the set of colors which are used on
dependency edges starting from k:
Col = {c∈ N|c∈C(e) : e∈ E,∃l ∈V : (k, l) ∈ I }.
The forward macro slice of the criterion is the set
S= {y∈ MC|y∈ depti (k), i ∈Col}, where depti is the
transitive closure of dep colored with i.

Because of edge coloring the search process of
the slice elements is modified: starting from the cri-
terion only those elements belong to the slice which
are reachable through edges colored by those col-
ors which start from the criterion node. An example
graph can be found in Figure 5 part (c). The depen-
dency edge colors are shown as numbers. The slice
based on the definition of Y as a criterion contains the
definition of X and the second macro invocation X2.

It is important to note that the MDG is an acyclic
graph when built from one compilation unit.1 How-
ever, usually software systems consist of several com-
pilation units, and so the influence of a changed macro
definition spreads to the whole system. Consequently,
the macro call relations of individual compilation
units have to be merged. Merging dependencies – in
extreme cases – may bring cycles into the graph. To
overcome this problem each merged source file has
to have a disjunct color set. Such a merged graph is
acyclic in the sense that there is no cycle with edges
of the same color.

The backward macro slice can be computed on the
same MDG if the edges corresponding to themcall
relation are added with the appropriate coloring. Let
Idep, Edep and Imcall, Emcall be the set of edges and
incidence relations based on thedep and mcall re-
lations respectively. LetMDG = (V,E, I ,C) where

1According to the preprocessor standard, if a macro
is under expansion and during the re-expansion the same
macro is called again, then further calls will not take place
(the macro name remains in the replacement list instead).

E = Edep∪Emcall and I = Idep∪ Imcall. The forward
slice is computed ondepedges while the backward
slice is computed onmcall edges.

3.2 Discussion on Macro and
Procedural Slices

In their first approach, Agrawal and Horgan intro-
duced dynamic slicing by refining the static Program
Dependence Graph using information from the exe-
cution history (Agrawal and Horgan, 1990). The need
for the Dynamic Dependence Graph to construct ac-
curate dynamic slices was then demonstrated by the
authors. Namely, a distinct node for each occurrence
of an instruction was implied by the loops in execu-
tion history. In the case of macro slicing the set of
mcall edges serves as execution history. The history
of macro invocations can be reconstructed based on
them (if a macro body contains more than one macro
invocation, their order in history is the order of ap-
pearance in the macro body). Fortunately, there are
no cycles in macro calls, so it is not necessary to cre-
ate new macro definition nodes for each call.

For computing macro impacts we determine
macro slices that we refer to asforward slices. It is
interesting to observe that the choice for this termi-
nology was rather arbitrary. In the case of procedural
programs the slice direction is defined with respect to
theorder of computationsin the program. However,
in the case of macro programs, the notion of “order”
is less obvious since there are no “executable instruc-
tions” either (consider, for example, that the macro
dependency edge points in the reverse direction as the
macro call edge, while with procedural programs the
control flow aligns with the control dependency). Fur-
thermore, it is meaningless to talk about data depen-
dencies too in the case of macro slicing, since these
may exist only between the actual arguments and the
formal parameters, however the macro definition it-
self is not a part of the program, and therefore the data
dependency starts from the point of the initial call and
necessarily ends at the same place.

4 RELATED WORK

The usefulness of the preprocessor is proved by many
years of use by developers. The opinion is the op-
posite when one has to aid maintenance or program
understanding tasks: the presence of preprocessor di-
rectives is always mentioned as an obstacle (Spencer
and Collyer, 1992). Therefore, lots of efforts were
made to avoid their usage. Mennie and Clarke pro-
posed a method to transform some macros and condi-
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tionals into C/C++ code (Mennie and Clarke, 2004).
Spinellis tackles the problem of global renaming of
variables (Spinellis, 2003).

There are remarkable contributions which offer
a solution to the opposite direction of our question:
when seeing a macro name in the source code, which
macro definitions take part in the expansion. The
GUPRO program understanding framework (Ebert
et al., 2002) implements a macro folding mechanism:
a macro can be hidden or revealed at the place of
the call (Kullbach and Riediger, 2001). Livadas and
Small identify mappings between the preprocessed
and the unprocessed code. The approach is imple-
mented in the GHINSU software maintenance en-
vironment, where by clicking on a macro invoca-
tion, the called definitions are highlighted (backward
macro slice using our terms) (Livadas and Small,
1994). A flexible solution is offered by Badros and
Notkin: the PCp3 C analysis tool defines callback
perl functions for preprocessor activities (Badros and
Notkin, 2000). These methods require only the anal-
ysis of the compilation units. In our approach, how-
ever, we need to use information from the whole
source. (Note that by using our approach backward
slices can also be computed.)

The Understand for C++ reverse engineering tool
provides cross references between the use and defini-
tion of software entities (Understand for C++ Home-
page, 2007). This includes the step-by-step tracing
of macro calls in both directions. The user can track
back the usages of a given macro definition easily but
the information is not accurate. The program fails on
the problem shown in Figure 5 and, for example, it
misses calls using ## or shows a macro call where
a parameterized macro name is used without argu-
ments, so no macro expansion happens.

5 CONCLUSIONS

As a response to the lack of complete solution to the
macro change impact problem, we introduced an ap-
proach based on macro slices. Based on the relations
between macro invocations and definitions, we con-
struct a Macro Dependency Graph on which macro
slices can be computed. By using multiple edges and
edge coloring, this graph handles potential (and later
defined) macro names and macro re-definitions.

As a proof of concept, an experimental tool based
on the Columbus C/C++ frontend (FrontEndART
Homepage, 2007) has been developed. We have
already performed some preliminary experiments
which proved our concepts. In the future we plan to
evaluate the method in some more detailed case stud-

ies. We also plan to produce backward macro slices
and to implement an efficient algorithm for global
computation of macro slices (and not demand driven
as the current one).
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