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Abstract

Software testing is a very important activity in the software development
life cycle. Numerous general black- and white-box techniques exist to achieve
different goals and there are a lot of practices for different kinds of soft-
ware. The testing of embedded systems, however, raises some very special
constraints and requirements in software testing. Special solutions exist in
this field, but there is no general testing methodology for embedded systems.
One of the goals of the CIRENE project was to fill this gap and define a
general testing methodology for embedded systems that could be specialized
to different environments. The project included a pilot implementation of
this methodology in a specific environment: an Android-based Digital TV
receiver (Set-Top-Box).

In this pilot, we implemented method level code coverage measurement
of Android applications. This was done by instrumenting the applications
and creating a framework for the Android device that collected basic infor-
mation from the instrumented applications and communicated it through the
network towards a server where the data was finally processed. The result-
ing code coverage information was used for many purposes according to the
methodology: test case selection and prioritization, traceability computation,
dead code detection, etc.

The resulting methodology and toolset were reused in another project
where we investigated whether the coverage information can be used to de-
termine locations to be instrumented in order to collect relevant information
about software usability.

In this paper, we introduce the pilot implementation and, as a proof-of-
concept, present how the coverage results were used for different purposes.
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1 Introduction

Software testing is a very important quality assurance activity of the software de-
velopment life cycle. With testing, the risk of a residing bug in the software can
be reduced, and by reacting to the revealed defects, the quality of the software can
be improved. Testing can be performed in various ways. For example, static test-
ing includes the manual checking of documents and the automatic analysis of the
source code without executing the software. During dynamic testing the software
or a specific part of the software is executed. Many dynamic test design techniques
exist, the two most well known groups among them are black-box and white-box
techniques.

Black-box test design techniques concentrate on testing functionalities and re-
quirements by systematically checking whether the software works as intended and
produces the expected output for a specific input. The techniques take the software
as a black box, examine “what” the program does without having any knowledge on
the structure of the program, and they are not intrerested in the question “how?”.

On the other hand, white-box testing examines the question “How does the
program do that?”, and tries to exhaustively examine the code from several aspects.
This exhaustive examination is given by a so-called coverage criterion which defines
the conditions to be fulfilled by the set of statement sequences executed during the
tests. For example, 100% instruction coverage criterion is fulfilled if all instructions
of the program are executed during the tests. Coverage measures give a feedback
on the quality of the tests themselves.

The reliability of the test can be improved by combining black-box and white-
box techniques. During the execution of test cases generated from the specifications
using black-box techniques, white-box techniques can be used to measure how com-
pletely the actual implementation is checked. If necessary, reliability of the tests
can be improved by generating new test cases for the code fragments not verified.

1.1 Specific problems with embedded system testing

Testing in embedded environments has special attributes and characteristics. Em-
bedded systems are neither uniform nor general-purpose. Each embedded system
has its own hardware and software configuration typically designed and optimized
for a specific task, which affects the development activities on the specific system.
Development, debugging, and testing are more difficult since different tools are
required for different platforms. However, high product quality and testing that
ensures this high quality is very important. Suppose that the software of a digital
TV with play-from-USB capabilities fails to recover after opening a specific media
file format and this bug can only be repaired by replacing the ROM of the TV.
Once the TV sets are produced and sold, it might be impossible to correct this bug
without spending a huge amount of money on logistic issues. Although there are
some solutions aiming at the uniformisation of the software layers of embedded sys-
tems (e.g., the Android platform [12]), there has not been a uniform methodology
for embedded systems testing.
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1.2 The CIRENE project

One of the goals of the CIRENE project [19] was to define a general testing method-
ology for embedded systems that copes with the above mentioned specialities and
whose parts can be implemented on specific systems. The methodology combines
black-box tests responsible for the quality assessment of the system under test
and white-box tests responsible for the quality assessment of the tests themselves.
Using this methodology the reliability of the test results and the quality of the
embedded system can be improved. As a proof-of-concept, the CIRENE project
included a pilot implementation of the methodology for a specific, Android-based
digital Set-Top-Box system. Although the proposed solution was developed for a
specific embedded environment, it can be used for all Android-based embedded
devices such as smart phones or tablets.

The coverage measurement toolchain plays an important role in the method-
ology (see Figure 1). Many coverage measurement tools (e.g., EMMA [28]) exist
that are not specific but can be used on Android applications. However, these are
applicable only during the early development phases as they are able to measure
code coverage on the development platform side. This kind of testing omits to test
the real environment and misses the hardware-software co-existence issues which
can be essential in embedded systems. We are not aware of any common toolchain
that measures code coverage directly on Android devices.

Our coverage measurement toolchain starts with the instrumentation of the ap-
plication under test, which allows us to the measure code coverage of the given
application during test execution. As the device of the pilot project runs the Java-
based Android operation system, Java instrumentation techniques can be used.
Then, the test cases are executed and the coverage information is collected. In the
pilot implementation, the collection is split between the Android device and the
used testing tool RT-Executor [24]: the service collects the information from the
individual applications of the device, while the testing tool processes the informa-
tion (through its plug-ins).

The coverage information gathered with the help of the coverage framework can
be utilized by many applications in the testing methodology. They can be used for
selecting and prioritizing test cases for further test executions, or for helping to
generate additional test cases if the coverage is not sufficient. It is also useful for
dead code detection or traceability links computation.

The resulting methodology and toolset were reused in another project which
aims usability testing on Android devices. In this project, we investigated whether
the coverage information gathered by the described method can be used to deter-
mine locations in the code that must be “watched” during test executions in order
to collect relevant information of the usability of the software. The long-term goal
was to reduce the number of instrumentation points in the examined software which
results in less performance decrease and, thus, supports aimed mass field testing.

In this paper, we introduce the pilot implementation, discuss our experiments
conducted to examine the further use of the coverage results, and evaluate these
experiments.
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Figure 1: Coverage collection methodology on the Set-Top-Box

1.3 Paper structure

The rest of the paper is organized as follows. In Section 2 we give an overview on the
related work. Section 3 presents the implementation of the coverage measurement
framework. In Section 4 some use cases are shown to demonstrate the usefulness of
coverage information. Finally, we summarize our achievements and introduce some
possible future works in the last section.

2 Related Work

In the CIRENE project, one of our first tasks was to assess the state-of-the-art in
embedded systems testing techniques with special attention to the combined use of
black and white-box techniques. As a result of this task we presented a technical
report [3] in which we report only a few number of combined testing techniques
that have been specialized and implemented in the embedded environment.

Gotlieb and Petit [17] presented a path-based test case generation method. They
used symbolic program execution and did not execute the software on the embedded
device prior to the test case definitions. We use code coverage measurement of real
executions to determine information that can be used in test case generation.

José et al. [9] defined a new coverage metric for embedded systems to indicate
instructions that had no effect on the output of the program. Their implementation
used source code instrumentation and worked for C programs at instruction level,
and had a great influence on the performance of the program. Biswas et al. [4]
also utilized C code instrumentation in embedded environment to gather profiling
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information for model-based test case prioritization. We use binary code instrumen-
tation at method level, use traditional metric that indicates whether the method is
executed during the test case or not, and our solution has a minimal overhead on
execution time. The resulting coverage information can also be used for test case
selection and prioritization.

Hazelwood and Klauser [18] worked on binary code instrumentation for ARM-
based embedded systems. They reported the design, implementation and applica-
tions of the ARM port of the Pin, a dynamic binary rewriting framework. However,
we are working with Android systems that hides the concrete hardware architecture
but provides a Java-based one.

There are many solutions for Java code coverage measurement. For example,
EMMA [28] provides a complete solution for tracing and reporting code coverage
of Java applications. However, it is not concerning the specialities of Android or
any embedded systems.

Most of the coverage measurement tools utilize code instrumentation. In Java-
based systems, byte code instrumentation is more popular than source code instru-
mentation. There are many frameworks providing instrumenting functionalities
(e.g., DiSL [21], InsECT [6, 26], jCello [27], and BCEL [2]) for Java. These are
very similar to each other regarding their provided functionalities. We chose Javas-
sist [7] to be our instrumentation framework in the pilot project.

Traceability links between requirements and source code are important in soft-
ware development. Automatic methods for traceability link detection include infor-
mation retrieval ([20, 1, 8]) and probabilistic feature location ([22]) and combined
techniques ([11]). We used code coverage based feature location to retrieve trace-
ability information.

3 Coverage Measurement Toolchain

The implemented coverage measurement toolchain consists of several parts. First,
the applications selected for measurement have to be prepared. This process in-
cludes program instrumentation that inserts extra code into the application so that
the application can produce the information necessary for tracing its execution path
during the test executions. The modified applications and the environment that
helps collecting the results must be installed on the device under test.

Next, tests are executed using this measurement environment and the prepared
applications, and coverage information is produced. In general, test execution
can be either manual or automated. In the current implementations, we use two
different approaches for test automation.

Within the CIRENE pilot implementation RT-Executor [24] (a black-box test
automation tool for multimedia devices testing) is used as the automation tool.

In the usability testing project we use a simplified tool in the testing process,
which helps gathering and preparing the coverage information for the evaluation.
The functions of this tool are based on the Robotium [16] framework. Robotium is
an Android test automation framework that has full support for native and hybrid
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applications and makes it easy to write powerful and robust automatic black-box
tests for Android applications.

During the execution of the test cases, the instrumented applications produce
their traces which are collected, and coverage information is sent back to the au-
tomation tool.

Third, the coverage information resulted from the previous test executions is
processed and used for different purposes, e.g., for test selection and prioritization,
additional test case generation, traceability computation, and dead code detection.

In the rest of this section, we describe the technical details of the coverage
measurement toolchain.

3.1 Preparation

In order to measure code coverage, we have to prepare the environment and/or
the programs under test to produce the necessary information on the executed
items of the program. In our case, the Android system uses the Dalvik virtual
machine to execute the applications. Although modifying this virtual machine
to produce the necessary information would result in a more extensive solution
that would not require the individual preparation of the measured applications,
we decided not to do so, as we assumed that modifying the VM itself had higher
risks than modifying the individual applications. With individual preparation it is
much easier to decide what to measure and at what level of details. So, we decided
to individually prepare the applications to be measured. As we were interested in
method level granularity, the methods of the applications were instrumented before
test execution, and this instrumented version of the application was installed on
the device. In addition, a service application serving as a communication interface
between the tested applications and the network was also necessary to be present
on the device.

3.1.1 Instrumentation

During the instrumentation process, extra instructions are inserted in the code
of the application. These extra instructions provide additional functionality (e.g.,
logging necessary information) but they should not modify the original behaviour
of the application. Instrumentation can be done on the source code or on the binary
code.

In our pilot implementation, we are interested in method level code coverage
measurement. It requires the instrumentation of each method inserting a code that
logs the fact that the method is called. As our targets are Android applications
usually available in binary form, we have chosen binary instrumentation.

Android is a Java-based system which in our case means that the applications
are written in Java language and compiled to Java Bytecode before a further step
creates the final Dalvik binary form of the Android application. The transforma-
tion from Java to Dalvik is reversible, so we can use Java tools to manipulate the
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Figure 2: Instrumentation toolchain

program and instrument the necessary instructions. We used the Javassist [7] li-
brary for Java bytecode instrumentation, apktool [13] for unpacking and repacking
the Android applications, the dex2jar [14] tool for converting between the Dalvik
and the Java program representations, and aapt [15] tool for sign the application.
The Instrumentation toolchain (see Figure 2) is the following:

• The Android binary form of the program needs to be instrumented. It is an
.apk file (a special Java package, similar to the .jar files, but extended with
other data to become executable).

• Using the apktool the .apk file is unpacked and .dex file is extracted. This
.dex file is the main source package of the application, it contains its code in
a special binary format. [15, 5]

• For all .dex files the dex2jar is used to convert them to .jar format.

• On the .jar files we can use the JInstrumenter. The JInstrumenter is our
Java instrumentation tool based on the Javassist library [7].

JInstrumenter first adds a new collector class with two responsibilities to
the application. On the one hand, it contains a coverage array that holds the
numbers indicating how many times the methods (or any other items that is
to be measured) were executed. On the other hand, this class is responsible
for the communication with the service layer of the measurement framework.
Next, the JInstrumenter assigns a unique number as ID to each of the meth-
ods. This number indicates the method’s place in the coverage array of the
collector class. Then a single instruction is inserted in the beginning of all
methods which updates the corresponding element of the coverage array on
all executions of the method.

The result of the instrumentation is a new .jar file with instrumented meth-
ods and another file with all the methods’ names and IDs.

• The instrumented .jar files are converted to .dex files using the dex2jar
tool again.
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• Finally, the .apk file instrumented application is created by repacking the
.dex files with the apktool and signing it with the aapt tool.

During the instrumentation, we give a name to each application. This name
will uniquely identify the application in the measurement toolchain, so the service
application can identify and separate the coverage information of different applica-
tions.

After the instrumentation, the application is ready for installation on the target
device.

3.1.2 Service application

In our coverage measurement framework implementation it is necessary to have
an application that is continuously running on the Android device in parallel with
the program under test. During the test execution, this application is serving as
a communication interface between the tested applications and the external tool
collecting and processing the coverage data. On the one hand this is necessary be-
cause of the rights management of the Android systems. Using the network requires
special rights from the application and it is much simplier and more controllable to
give these rights to only a single application than to all of the tested applications.
On the other hand, this solution provides a single interface to query the coverage
data even if there are more applications tested and measured simultaneously.

In Android systems, there are two types of applications: “normal” and “service”.
Normal applications are active only when they are visible. They are destroyed
when moved in the background, although their state can be preserved and restored
on the next activation. Services are running in the background continuously and
are not destroyed on closing. So, we had to implement this interface application as
a service. It serves as a bridge between the Android applications under test and
the “external world” as it can be seen on Figure 3. The tested applications are
measuring their own coverage and the service queries these data on-demand. As
the communication is usually initiated before the start and after the end of the test
cases, this means no regular communication overhead in the system during the test
case executions.

Messages are accepted from and sent to the external coverage measurement
tools. The communication uses JSON [10] objects (type-value pairs) over the
TCP/IP protocol. Implemented messages are:

NEWTC The testing tool sends this message to the service to sign that there is
a new test case to be executed and asks it to perform the required actions.

ASK The testing tool sends this message to query the actual coverage information.

COVERAGE DATA The service sends this message to the testing tool in re-
sponse to the ASK message. The message contains coverage information.

Internally, the service also uses JSON objects to communicate with the instru-
mented applications. Implemented signals are:
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Figure 3: Service Layer

reset With this signal the service asks the apps to reset the stored coverage values.

ask The service sends this signal to query the actual coverage information.

coverage data The application sends this message to the service in response to
the ask signal. The message contains coverage information.

3.1.3 Installation

To measure coverage on the Android system, two things need to be installed: the
particular application we want to test and the common service application that
collects coverage information from any instrumented application and provides a
communication interface for querying the data from the device.

The service application needs to be installed on a device only once; this single
entity can handle the communication of all tested applications.

The instrumented version of each application that is going to be measured must
be installed on the Android device. The original version of such an application
(if any) must be removed before the instrumented version can be installed. It is
necessary because Android idetifies the applications by their special android-name
and package, and our instrtumentation process does not change these attributes
of the applications; it only inserts the appropriate instructions into the code. Our
toolchain uses the adb tool (can be found in Android Development Kit) to remove
and install packages.

3.2 Execution
During test execution, the Android device executes the program under test and the
service application simultaneously. The program under test counts its own coverage
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information and sends this information when the service layer application asks for
it. The coverage information can be queried from this service layer application
through network connection.

We used two possible modes of test execution: manual and automated. Either
mode is used, the service layer application must be started prior to the beginning
of the execution of the test cases. It is done automatically by the instrumented
applications if the service is not running already.

We implemented a simple query interface in Java for manual testing, a plug-in
for the RT-Executor [24], and a simple set of functions for the Robotium [16]. The
two automated frameworks use different yet somewhat similar approaches.

On one hand, we used the RT-Executor, which reads the test case scripts and
executes the test cases. The client side of the measurement framework is contained
in a plug-in of the automation tool, and this plug-in must be controlled from the
test case itself. Thus, the test case scripts must be prepared in order to measure
the code coverage of the executed applications.

The plug-in can indicate the beginning and the end of the particular test cases
to the service, so the service can distinguish the test cases and separate the col-
lected information. In order to measure the test case coverages individually, one
instruction must be inserted in the beginning of the test script to reset the coverage
values and one instruction must be inserted in the end instructing the plug-in to
collect and store coverage information belonging to the test case.

During test execution the following steps are taken:

• The program under test (PUT) is started.

• The start of the program triggers the start of the measurement service if
necessary. Then PUT connects to the service and registers itself by its unique
name given to it in instrumentation process.

• The test automation system starts a test case. The test case forces the client
of the automation system to send a NEWTC message to the service. The
service sends a reset signal to PUT, which resets the coverage array in its
collector class. The service returns the actual time to the client.

• The test automation system performs the test steps. PUT collects the cover-
age data.

• The test case ends. The client of the automation tool sends an ASK message
to the service. The service sends an ask signal to PUT, which sends back the
coverage data to the service. The service sends back the coverage data and
the actual time to the client.

• The client calculates the necessary information from the coverage data and
stores it in the local files. The stored data are: execution time, trace length,
coverage value, lists of covered and not covered methods. Another plug-in
decides if the test case was passed or failed and stores this information in
other local files.
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These steps are repeated during the whole test suite execution. At the end, the
coverage information of all the executed test cases are stored in local files and are
ready to be processed by different stages of the testing methodology.

On the other hand, we used the Robotium framework as a black-box test aiding
tool, the Android testing API, and JUnit as the testing environment. Robotium
provides useful functions to help accessing the graphical user interface layer of
Android applications. This way it makes easy to write JUnit test cases which test
any application without user interaction.

In this case, the Android framework executes the JUnit test cases like RT-
Executor executes its test scripts. The client-side of the measurement framework
is contained in a TestHelper class that controls data flow during test execution.
Similar to the previous settings, this class must be controlled from the test case
itself, so the test cases must also be prepared in order to measure code coverage.

The helper class works like the plug-in of the RT-Executor. Thus, the execution
steps are very similar to those mentioned above except that only the coverage
information is stored at the end.

3.3 Processing the Data

As we mentioned above, the client side of the coverage measurement system is
realized as a plug-in of the RT-Executor tool and as an extension to the Robotium
framework.

Figure 4: Test execution framework with coverage measurement

In the RT-Executor settings (Figure 4) the plug-in is controlled from the test
cases. It indicates the beginning and the end of a test cases to the service layer
application. The service replies to these messages by sending the valuable data
back. When the measurement client indicates the start of a test case (by sending a
NEWTC message to the service), the service replies with the current time which
is stored by the client. At the end of a test case (when an ASK message is sent
by the client), the service replies with the current time and the collected coverage
information of the methods.



450 F. Horváth, Sz. Bognár, T. Gergely, R. Rácz, Á. Beszédes, V. Marinkovic

When the coverage data is received, the measurement client computes the ex-
ecution time, trace length (the number of method calls), and the list of covered
and not covered methods’ IDs. Then, the client stores these data in a result file
for further use. The client makes other files, the trace files, separately for each
test case. Such a trace file stores the identifiers of the methods covered during the
execution of the test case.

Figure 5: Robotium based test execution environment with the integrated
TestHelper

In the Robotium settings (Figure 5) the communication between the service
layer and the tested application is very similar to the RT-Executor based one. The
difference is that the test cases are executed directly by the device and that instead
of an external plugin, an internal test helper will communicate with the service
application and will produce the coverage data.

As an alternative client, we implemented a simple standalone Java application
that is able to connect to the measurement service. This client is able to visual-
ize the code coverage information online, and is useful during the manual testing
activities.

3.4 Applications on the Measurement Framework Results

The code coverage and other information collected during the test execution can
be used in various ways. In the pilot project, we implemented some of the possible
applications. These implementations process the data files locally stored by the
client plug-in.
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3.4.1 Test Case Selection and Prioritization

Test case selection defines a subset of a test suite based on some properties of the
test cases. Test case prioritization is a process that sorts the test suite elements
according to their properties [29]. A prioritized list of test cases can be cut at some
points resulting in a kind of selection.

Code coverage data can be used for test case selection and prioritization. We
implemented some selection and prioritization algorithms as a plug-in of the RT-
Executor, which utilizes the code coverage information collected by the measure-
ment framework:

• A change-based selection algorithm that used the list of changed methods
and the code coverage information to select the test cases that covered some
of the changed methods.

• Two well-known coverage-based prioritization algorithms: one that prefers
test cases covering more methods; and another that aims at higher overall
method coverage with less test cases.

• A simple prioritization that used the trace length of the test cases.

3.4.2 Not Covered Code

Not covered code plays an important role in program verification. There are two
possible reasons for a code part not being covered by any test case executions. The
test suite can simply omit its test case, in which case we have to define some new
test cases executing the missed code. It can also happen that the not covered code
cannot be executed by any test cases, which means that the code is dead. In the
latter case, the code can be dropped from the codebase.

In our pilot implementation, automatic test case generation is not implemented.
We simply calculate the lists of methods covered and not covered during the tests.
These lists can be used by the testers and the developers to examine the methods in
question and generate new test cases to cover the methods, or to simply eliminate
the methods from the code.

3.4.3 Traceability Calculation

Traceability links between different software development artifacts play a very im-
portant role in the change management processes. For example, traceability infor-
mation can be used to estimate the required resources to perform a specific change
or to select the test cases related to the change of the specification. Relationship
exists between different types of development artifacts. Some of them can simply
be recorded when the artifact is created, some of them must be determined later.

We implemented a traceability calculator that computes the correlation between
the requirements and the methods. The correlation computation is based on two
binary matrices: the pre-defined relationship matrix between the requirements and
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the test cases and the matrix between the test cases and the methods (code cover-
age). From these matrices a binary vector can be assigned to each requirement and
method representing whether the test cases assigned to the elements of this vector
have relationship to the given requirement or method. If a requirement-method pair
is assigned with high correlation (i.e., their assigned binary test case vectors are
highly correlated), we can assume that the required functionality is implemented in
the method. To calculate the correlation of these binary vectors we implemented
three different well-known methods: the Pearson’s product-moment coefficient [25],
the Kendall’s correlation coefficient [25], and a Manhattan distance based method
where the similarity coefficient was defined as

SM (a, b) =
1

1 +
∑n

i=1 |ai − bi|
. (1)

The use of the information that is extracted from the results of the correlation
computational processes can be diverse. For example, it can be used to assess the
number of methods to be changed if the particular requirement changes. Addition-
ally, as we observed during our usability testing project, if we define functionalities
closely related to the usage of UI elements, then it can indicate the relations between
these graphical elements and the parts of the code-behind.

4 Usage and Evaluation
In this section, we present and evaluate some use cases to demonstrate the usability
of the measurement toolchain.

4.1 Additional Test Case Generation

In the pilot project our target embedded hardware was an Android-based Set-
Top-Box. We had this device with different pre-installed applications and test
cases for some of these apps. Considering the available resources we decided to
test our methodology and implementation on a media settings application. After
executing the tests of this application with coverage measurement, we found that
the pre-defined tests covered only 54% of the methods. We examined the methods
and defined new test cases. Although the source code of this application was not
available, based on the not covered method names and the GUI, we were able to
define new test cases that raised the proportion of covered methods to 69%. This is
still far from the required 100% method level coverage, but shows that the feedback
on code coverage can be used to improve the quality of the test suite.

4.2 Traceability Calculation

We made two experiments with the framework using it for traceability calculation.
First, in the CIRENE pilot project a simple implementation that is able to de-

termine the correlation between the code segments and the requirements was made.



Code Coverage Measurement Framework for Android Devices 453

We did not conduct detailed experimentation in this topic, but we did test the tool.
Instead of the requirements, we defined 12 functionalities performed by three media
applications (players) on our target Set-Top-Box device. Then, we assigned these
functionalities to 15 complex black-box test cases of the media applications and ex-
ecuted the test cases with coverage measurement. The traceability tool computed
correlations between the 12 functionalities and 608 methods, and was able to sep-
arate the methods relevant in implementing a functionality from the not relevant
methods.

In the experiment connected to the usability testing project our direct goal was
to investigate whether the coverage information could be used to determine a small
set of program locations to be instrumented in order to collect relevant information
for usability analysis. The main idea was that by reducing the number of instru-
mentation points needed for comprehensive usability testing we would be able to
minimize the possible negative effects on the performance of the application un-
der test and, therefore, analysing complex applications would become easier. We
conducted an experiment involving 10 small to medium sized Android applications
(see Table 1). Test cases were created for the applications each one modelling some
typical complex usage sessions. Next, we defined some functionalities for each ap-
plication. This measurement aimed to verify that automatic methods are able to
uncover relevant traceability links, and to evaluate the efficiency of different corre-
lation computation methods in indicating traceability links between the artefacts.

Table 1: List of applications used for experiments

Application Classes Methods Functionalities Test cases
A0 134 671 4 13
A1 144 1083 4 25
A2 303 1675 5 12
A3 545 2565 9 12
A4 812 3897 5 14
A5 861 6760 5 11
A6 1257 9619 5 12
A7 1519 11854 5 11
A8 1537 11166 5 15
A9 4247 24747 5 12

In order to evaluate the results of the three different computations we exam-
ined the functionalities and methods of the applications and created reference links
between them by manually classifying the methods of each application and con-
necting them to the functionalities. First the functionalities were determined by
usage scenarios. Next, we used some kind of semantic similarity: words seman-
tically connected to the determined functionalities and usual Android UI element
name fragments were searched for in the class and method names. Functionalities
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were initially assigned with the matching elements. Then this initial classification
was refined manually by examining each program element and looking for hidden
or false reference links.

For evaluating the traceability calculation methods and comparing them to our
manual method, we used the precision, recall, and F-measure metrics [23]. The first
step of assessing these metrics was to compare the manually determined reference
links to the function-method traceability links that were selected by the different
correlation based traceability calculation methods. The comparison of the reference
and the computed links classified each traceability link as true or false positive,
and each lack of link as true or false negative records [23] for a calculation method.
Based on this classification of links, the three metric values were computed for each
traceability calculation method and for all applications.

All of the used correlation computation methods assigns a real value within
an interval ([−1, 1] or [0, 1]) to a functionality-method pair, but the existence of
the link is a binary information. To evaluate the methods we had to define some
thresholds to convert real values into true and false values. As the different methods
give different numbers, we could not use the same value for all the three ones. Thus,
we checked the precision, recall and F-measure values of different threshold values
for each methods and computed averages for all applications. The results are shown
in Figure 6.

By comparing the curves, we can observe that precision first slightly improves
as the treshold grows, then it suddenly drops. Although completeness cannot be
totally ignored, for our purposes less noise (fewer false positives) in the generated
data is more important than completeness. Thus, we have chosen to select tresholds
where the precision is maximal before its drop down. It resulted in 0.8, 0.3, and
0.1 treshold values for methods Pearson, Manhattan, and Kendall, respectively.

Table 2 shows the precision, recall, F-measure values of the three computation
methods using the previously defined threshold values. As can be seen, in half of
the cases the Pearson method produces the smallest set, and in four cases of them
this is the best choice according to the precision. Manhattan and Kendall methods
produce the same smallest sets in three cases and each of them produce the smallest
set individually in one case. However, the precision for these sets is always the best
among the three methods.

These results show that any of these three methods can be effectively used for
calculating traceability between source code and functionalities of a software. For
these 10 applications, the Pearson method seems to be slightly better than the other
two, but the results are not convincing. Which is the best is probably depending
on some other characteristics of the software.

Based on these results we can say that the investigated methods that infer trace-
ability links from code coverage data can be used to identify program points whose
inspection provide relevant information for usability testing. The effectiveness of
these methods are comparable to the manual traceability link detection. Therefore,
it is possible to use them to support the usability testing of large sized Android
applications.
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(a) Pearson (b) Manhattan

(c) Kendall

Figure 6: Precision, recall, and F-measure values at different thresholds for the
three methods. (X axis: treshold; Y axis: metric value.)

5 Conclusions and Future Work
In this paper, we presented a methodology for method level code coverage measure-
ment on Android-based embedded systems. Although there were more solutions
allowing the measure of the code coverage of Android applications on the devel-
opers’ computers, no common methods were known to us that performed coverage
measurement on the devices. We also reported the implementation of this method-
ology on a digital Set-Top-Box running Android. The coverage measurement was
integrated in the test automation process of this device allowing the use of the
collected coverage data in different applications like test case selection and prioriti-
zation of the automated tests, or additional test case generation. We also presented
an application of the framework. Using the produced coverage data we performed
experiments with three traceability computation methods.
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Table 2: Precision (P), recall (R), F-measure (F) values for applications and com-
putation methods

Application (a) Pearson (b) Manhattan (c) Kendall
0.8 0.3 0.1

P R F P R F P R F

A0 0.78 0.13 0.22 0.79 0.10 0.17 0.79 0.10 0.17
A1 0.27 0.06 0.10 0.27 0.08 0.12 0.00 0.00 0.00
A2 0.35 0.07 0.10 0.76 0.04 0.07 0.76 0.04 0.07
A3 0.07 0.01 0.02 0.28 0.13 0.16 0.28 0.13 0.16
A4 0.54 0.07 0.12 0.46 0.02 0.04 0.46 0.02 0.04
A5 0.63 0.05 0.06 0.54 0.03 0.05 0.54 0.03 0.05
A6 0.81 0.09 0.14 0.86 0.10 0.16 0.86 0.10 0.16
A7 0.44 0.13 0.12 0.66 0.09 0.11 0.66 0.09 0.11
A8 0.83 0.10 0.17 0.84 0.08 0.14 0.84 0.08 0.14
A9 0.52 0.08 0.19 0.50 0.03 0.05 0.50 0.03 0.05

Average 0.52 0.08 0.12 0.60 0.07 0.11 0.57 0.06 0.10
Deviation 0.25 0.04 0.06 0.22 0.04 0.05 0.27 0.04 0.06

There are many improvement possibilities of this work. Regarding the imple-
mentation of code coverage measurement on Android devices, we wish to examine
if the granularity of tracing could be fined to sub-method level (e.g., to basic block
or instruction levels) without significantly affecting the runtime behaviour of the
applications. This would allow us to extract instruction and branch level coverages
that would result in more reliable tests. In addition, we are thinking of improv-
ing the instrumentation in order to build dynamic call trees for further use. The
current implementation (simple coverage measurement) does not deal with timing,
threads and exception handling, which are necessary for building the more detailed
call trees. It would also be interesting to help the integration of this coverage
measurement in commonly used continuous integration and test execution tools.

Furthermore, we are examining the use of the resulting coverage data. There
are other ways code coverage and computed traceability information can be used in
usability testing, for example to partially automate collecting data and to establish
usability models. The implemented code coverage measurement and the testing
process that utilizes this information are a good base for measuring the effect of
using coverage measurement data on the efficiency and reliability of testing.
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