
Spectrum-Based Fault Localization Aided by
Program Slicing

Péter Soha
Software Engineering Department

University of Szeged
Szeged, Hungary

psoha@inf.u-szeged.hu

Árpád Beszédes
Software Engineering Department

University of Szeged
Szeged, Hungary

beszedes@inf.u-szeged.hu

Abstract—Determining the actual location of the fault dur-
ing debugging can be aided by various automated techniques.
Spectrum-Based Fault Localization (SBFL) is a popular auto-
mated fault localization method that is based on test execution
statistics (also known as Statistical Fault Localization). The
fundamental approach in SBFL is to observe pass/fail and
coverage statistics of each test case and based on these assign
suspiciousness ranks to program elements using one of the
many possible heuristical formulae. A fundamentally different
approach is to use the syntactic relationship of the program
elements to follow the computation path from the observed
behavior to the actual fault. For example, with (backward
dynamic) Program Slicing (PS) one computes a program subset
(including the fault itself) which might have contributed to the
computation at the observed program location.

Both areas have large literatures on their own, but attempts
have been made to combine the two as well in the hope to
find the fault more effectively. Previous research has shown that
these hybrid solutions can combine the advantages of the base
techniques, but most of these articles focus on a specific SBFL and
PS algorithm, and a specific kind of combination is proposed. The
goal of our work is to systematically investigate the possibilities
of combining these two approaches for fault localization, and
because we believe that the area has not yet been fully explored,
we hope to be able to devise novel methods as well.

Index Terms—Program Slicing, Spectrum-based Fault Local-
ization, debugging, combined FL

I. INTRODUCTION AND MOTIVATION

Different (semi-)automatic debugging and fault localization
techniques have been proposed that aid the programmer in
these activities. In our research, we focus on two important
areas, namely Spectrum-Based Fault Localization (SBFL) [13,
17] and Program Slicing (PS) [7, 11, 22]. These two ap-
proaches are fundamentally different: while program slicing is
based on the structure and the syntactic relationship between
the elements, spectrum-based fault localization is a statistical
approach which relies on test execution statistics.

SBFL uses the execution information of a program to locate
the faulty code element. It takes the program spectra as input,
which has two components, the code coverage matrix and the
error vector. A code element is then assigned a suspiciousness
value based on how many failing test cases are executing it
compared to passing ones. Since there is no perfect formula
to compute the suspiciousness ranking [23], the results are
approximate and the efficiency is difficult to predict [2].

On the other hand, using PS, we can compute a subset of
a program (the program slice) which might have an influence
on a program point of interest (in our case, the point where
the failure has been observed). There are numerous program
slicing techniques available with many different applications.
However, debugging is one the most important ones [19]. In
particular, dynamic slicing (DS) [12] is often advised as a
technique most suitable for debugging (and fault localization)
because it computes the result for specific program executions,
as opposed to static slicing (SS) where all possible executions
are considered [19].

There could be different ways of combining the two ap-
proaches, such as using the program slice to further enhance
the SBFL rank list, or using the highly suspicious elements
to parameterize program slicing. Also, there is a vast set of
concrete algorithms to choose from in both areas, so it is not
evident how the combination would work the best.

Some examples of existing methods are the following. Reis
et al. used SBFL and DS to increase the diagnostic accuracy
by reducing the suspiciousness of those components that often
failed but were not involved in passed tests and were not
related to the fault according to DS [14]. Soremekun et
al. examined a hybrid approach [16], and found that if the
programmer first checks the most suspicious elements and
then uses DS on them, the average lines of code that need to
be examined can be reduced. Alves et al. combined DS and
SBFL to reduce the cost of inspection without increasing the
computational cost [3]. To achieve this, the authors used ad-
ditional analysis information to remove non-faulty statements
from the SBFL ranking. Shu et al. improved SBFL with “failed
execution slices” [15], which were prioritized using the SBFL
ranking.

The main motivation for the work presented in this paper is
that we did not find a systematic overview of the possibilities
to combine statistical fault localization with program slicing,
and it is not clear which particular approach performs best
in practical situations. Also, since the ultimate application
is debugging and the target users are programmers working
with their integrated development environments, it would be
important to understand how these hybrid methods could be
best used in practice.

II. BACKGROUND

A. Fault Localization

In Spectrum-Based Fault Localization (SBFL), every entity
of the investigated program is assigned a suspiciousness score
that indicates the possibility of the failure at that entity. To
calculate this score, these techniques use the program spectrum
which contains information about the dynamic behaviour of
the code [1]. This information can be represented using a
binary matrix. Each column of it denotes a component of the
program (blocks, functions, etc...), and every row is a test
case. The value aij denotes if the ith test case covered the jth

component (1) or not (0). In addition, a binary vector is used
to hold the test outcomes, that is, ei = 1 if the ith test case
failed and 0 otherwise.

Based on this information, we can calculate the suspicious-
ness score of each component with a frequency aggregation
function npq(j) = |{i|Mij = p∧ ei = q}| where npq(j) is the
count of runs where the jth component was active (p = 1) or
not (p = 0) and the test failed (q = 1) or passed (q = 0) [1].
These four fundamental metrics are used in the SBFL formulae
which typically increase the suspiciousness of code elements
activated by many failed test cases compared to the others.
Some of the most popular formulae include Tarantula, Ochiai,
DStar, and many others [20, 21].

B. Program Slicing

Program slicing is a code analysis technique which aims
to reduce the program into a set of instructions that contains
those statements that may affect or may be affected by the
values at some point referring as the slicing criterion [18]. The
former is called the backward slice and the latter the forward
slice. Generally, slicing algorithms can be classified by the
information they use to find the faulty instructions. In static
slicing only the statically available information will be used,
while dynamic slicing algorithms compute those statements
which affect the value of variables for the given program input
or inputs (effectively, the test cases).

Dynamic slicing is consequently more precise, and is often
proposed as the better alternative for debugging. In particular,
with backward DS one computes a program subset which
might have contributed to the computation at the observed
program location in a debugging session, which typically
manifested the failure. The computed backward slice should
contain the faulty program element, so if it is small enough,
it should aid the programmer in locating the fault.

Over the past decades, various slicing algorithms have been
designed that effectively compute the slices, but most of them
are based on some form of following the data and control
dependences. Also, other techniques have been devised that
combine static and dynamic analysis. For example, relevant
slicing extends the dynamic slices with potentially dependent
predicates and their static data dependences [9], while union
slices are defined as a union of all possible dynamic slices
regarding to a criterion [4].

III. RESEARCH GOALS

The goal of our work is to systematically investigate the
possibilities of combining SBFL and PS to enhance the
effectiveness of automated fault localization, and in a broader
context, debugging. Based on our preliminary review of the
related literature, we believe that the area has not yet been fully
explored, hence we hope to be able to devise novel methods as
well. We will address the following main Research Questions.

RQ1: What is the state-of-the-art in the combined
application of statistical (spectrum-based) fault localization
and program slicing?
This will include a systematic literature review and surveying
the existing techiques with the goal to identify current achieve-
ments, challenges and open questions, which will enable us to
identify the most promising research directions.

RQ2: Which slicing approach can most successfully
enhance SBFL methods?
Several program slicing techniques have been proposed since
Weiser’s original definition [19], and some excellent surveys
have been published [5, 6, 8, 18]. Our goal is to examine the
impact of the different techniques on SBFL.

RQ3: Which SBFL method is most suitable to be
combined with program slicing?
As mentioned, SBFL uses various formulae to rank program
elements according to their suspiciousness. Jie examined this
question in his PhD Thesis [10] and gave a basic comparison
of several formulae. We would like to continue this line of
research and find out how the different techniques can be
best combined with program slicing.

RQ4: How such a combination can be applied in actual
debugging scenarios and debuggers? Real life usability is
an important measure of an automated debugging and fault
localization technique. Our goal is to integrate our approach
into popular IDEs, such as IntelliJ or Netbeans, and to devise
practical usage scenarios combined with existing debugging
approaches. To test the scenarios, we plan to involve real
developers to get relevant feedback on our approaches.

IV. ONGOING RESEARCH

Following the overall research goals, currently we are
working on two topics:

Survey article: First, we will address RQ1, and compare
the existing methods also in terms of accuracy, space and time
requirements. We plan to publish the results in a survey paper.

Combined fault localization: In RQ2 and RQ3, we will
more systematically investigate the possibilities of combining
different SBFL and PS methods based on the results from
RQ1. However, one direction is particularly promising, which
we already started working on. Namely, we first compute a
backward dynamic slice starting from the observed failure in
a test case, and then use the obtained program slice to filter
the results of the ranked program elements from SBFL. The
expectation is that this way we would obtain the faulty element
more effectively.

REFERENCES

[1] Rui Abreu, Peter Zoeteweij, and Arjan J.C. Van
Gemund. “On the accuracy of spectrum-based fault lo-
calization”. In: Proceedings - Testing: Academic and In-
dustrial Conference Practice and Research Techniques,
TAIC PART-Mutation 2007 (2007), pp. 89–98.

[2] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan
J.C. van Gemund. “A practical evaluation of spectrum-
based fault localization”. In: Journal of Systems and
Software 82.11 (2009), pp. 1780–1792.

[3] Elton Alves, Milos Gligoric, Vilas Jagannath, and
Marcelo d’Amorim. “Fault-localization using dynamic
slicing and change impact analysis”. In: 2011 26th
IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011). 2011, pp. 520–523.

[4] Árpád Beszédes, Csaba Faragó, Zsolt Mihály Szabó,
János Csirik, and Tibor Gyimóthy. “Union slices for
program maintenance”. In: Conference on Software
Maintenance May (2002), pp. 12–21.

[5] David W Binkley and Keith Brian Gallagher. Program
slicing. 1996.

[6] David W Binkley and Mark Harman. “A survey of
empirical results on program slicing.” In: Adv. Comput.
62.105178 (2004), pp. 105–178.

[7] Andrea De Lucia. “Program slicing: Methods and ap-
plications”. In: Proceedings First IEEE International
Workshop on Source Code Analysis and Manipulation.
IEEE. 2001, pp. 142–149.

[8] Keith Gallagher and David Binkley. “Program slicing”.
In: 2008 Frontiers of Software Maintenance. IEEE.
2008, pp. 58–67.

[9] Tibor Gyimóthy, Árpád Beszédes, and István Forgács.
“An efficient relevant slicing method for debugging”.
In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 1687 LNCS (1999),
pp. 303–321.

[10] Lee Hua Jie. “Software Debugging Using Program
Spectra”. PhD thesis. 2012, pp. 244–258.

[11] Mariam Kamkar. “An overview and comparative clas-
sification of program slicing techniques”. In: Journal of
Systems and Software 31.3 (1995), pp. 197–214.

[12] Bogdan Korel and Janusz Laski. “Dynamic program
slicing”. In: Information Processing Letters 29.3 (1988),
pp. 155–163.

[13] Priya Parmar and Miral Patel. “Software fault localiza-
tion: A survey”. In: International Journal of Computer
Applications 154.9 (2016).

[14] Sofia Reis, Rui Abreu, and Marcelo D’Amorim. “De-
mystifying the combination of dynamic slicing and
spectrum-based fault localization”. In: IJCAI Interna-
tional Joint Conference on Artificial Intelligence 2019-
Augus (2019), pp. 4760–4766.

[15] Ting Shu, Lei Wang, and Jinsong Xia. “Fault Lo-
calization Using a Failed Execution Slice”. In: 2017

International Conference on Software Analysis, Testing
and Evolution (SATE). 2017, pp. 37–44.

[16] Ezekiel O. Soremekun, Lukas Kirschner, Marcel
Böhme, and Andreas Zeller. “Locating Faults with
Program Slicing: An Empirical Analysis”. In: CoRR
abs/2101.03008 (2021).

[17] Higor Amario de Souza, Marcos Lordello Chaim, and
Fabio Kon. “Spectrum-based Software Fault Localiza-
tion: A Survey of Techniques, Advances, and Chal-
lenges”. In: CoRR abs/1607.04347 (2016).

[18] Frank Tip. “A Survey of Program Slicing Techniques”.
In: Journal of Programming Languages 5399.3 (1995),
pp. 1–65.

[19] Mark Weiser. “Program Slicing”. In: IEEE Transactions
on Software Engineering SE-10.4 (1984), pp. 352–357.
ISSN: 00985589.

[20] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and
Franz Wotawa. “A survey on software fault localiza-
tion”. In: IEEE Transactions on Software Engineering
42.8 (2016), pp. 707–740.

[21] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and
Baowen Xu. “A Theoretical Analysis of the Risk Evalu-
ation Formulas for Spectrum-based Fault Localization”.
In: ACM Trans. Softw. Eng. Methodol. 22.4 (Oct. 2013),
31:1–31:40.

[22] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu,
and Lin Chen. “A brief survey of program slicing”.
In: ACM SIGSOFT Software Engineering Notes 30.2
(2005), pp. 1–36.

[23] Shin Yoo, Xiaoyuan Xie, Fei-Ching Kuo, Tsong Yueh
Chen, and Mark Harman. “Human Competitiveness of
Genetic Programming in Spectrum-Based Fault Local-
isation: Theoretical and Empirical Analysis”. In: ACM
Trans. Softw. Eng. Methodol. 26.1 (June 2017), 4:1–
4:30.

