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Abstract—New customers often require custom features of a
successfully marketed product. As the number of variants grow,
new challenges arise in the maintenance and evolution activities.
Software product line (SPL) architecture is a timely answer to
these challenges. The SPL adoption however is a large one time
investment that affects both technical and organizational issues.
From the program code point of view, the extractive approach is
appropriate when there are already several product variants.
Analyzing the feature structure, the differences and commo-
nalities of the variants lead to the new common architecture.
In this work in progress paper we report initial experiments
of feature extraction from a set of product variants written
in the Magic fourth generation language (4GL). Since existing
approaches are mostly designed for mainstream languages, we
adapted and reused reverse engineering approaches to the 4GL
environment. We followed a semi-automatic feature extraction
method, where the higher level features are provided by domain
experts. These features are then linked to the internal structure of
Magic applications using a textual similarity (IR-based) method.
We demonstrate the feasibility of 4GL feature extraction method
and validate it on two variants of a real life logistical system
each consisting of more than 2000 Magic programs.

Keywords-Product lines, SPL, feature extraction, Magic, 4GL,
information retrieval, LSI

I. INTRODUCTION

When the number of product variants increases, a natural
step towards more effective development is the adoption of
product line architecture. This holds for systems developed in
fourth generation languages (4GLs) as well. However this very
high level paradigm needs special treatment. In the traditional
sense there is no source code, rather the developer sets up
user interface and data processing units in a development
environment. The flow of the program follows a well-defined
structure. 4GL environments today play an important role in
maintaining crucial, mission critical legacy software. In addi-
tion, evolving languages offer new (web based) technologies
and the efficiency of a real RADD (Rapid Application Deve-
lopment and Deployment) environment. These environments
usually offer ready solutions for problems in developing a
typical business application (e.g. connecting to database, sup-
porting different database management or operating systems,

managing data, etc.). The Magic XPA language [1] has come
a long way since its release decades ago. Migrating to new
technologies was the key factor in its evolution.

Magic systems however face other challenges than pure
technological questions. Maintaining and releasing similar new
products accumulates significant overhead over time. Product
line architecture offers a timely solution for these challen-
ges [2]. Product line adoption is usually approached from
three directions: the proactive approach starts with domain
analysis and applies variability management from scratch. The
reactive approach incrementally replies to the new customer
needs when they arise.

Finally, the extractive approach analyzes existing products
to obtain feature models and build the product line architec-
ture [3]. An advantage of the extractive approach in general
is that several reverse engineering methods exist to support
feature extraction and analysis [4]. Static analysis methods
for obtaining structural information and dependencies and the
analysis of dynamic execution traces foster feature detection
and location activities [5], [6].

In the case of well established Magic systems, where usually
there are already a number of systems in production, the
extractive approach seems to be the most feasible choice.
During the extractive approach the adoption process benefits
from systematic reuse of existing design and architectural
knowledge. On the other hand, in case of 4GL the reverse
engineering tool support is not as advanced as in the case of
mainstream, object oriented languages.

The scope of our work is the feature identification and
analysis phase, which is a well studied topic in the literature
of mainstream languages [5]. Our work is motivated by a
research project where product line architecture is to be built
based on existing set of products. Our subject is a high market
value logistical wholesale system, which is adapted to various
domains in the past using clone-and-own method. Although
there is reverse engineering support for usual maintenance
activities [7], [8], the special structure of Magic programs
makes it necessary to experiment with targeted solutions
for coping with features. The current paper is a work in
progress report of the feature extraction phase. We introduce



an information retrieval (IR) based approach to overcome 4GL
specifics, and especially the fact that there are products written
in Magic’s different main versions of more than 20 years.

The paper is organized as follows. We present the back-
ground of our research in the next section by depicting the
variability in systems developed by a software company using
Magic language. We introduce an information retrieval based
feature analysis method for Magic systems, present experiment
design and results in Section III. Related work is briefly
introduced in Section V, and we conclude our paper in the
last section.

II. BACKGROUND

Adopting software product line architecture is usually a
sign of a successful software company. This is a necessary
step in the software evolution of a large scale system with
a high number of derived specific products. Started more
than 30 years ago, the subject system of our analysis has
become a leading pharmaceutical logistical wholesale system.
During this period of time, more than 20 derived products
were introduced at various complexity and maturity levels.
Currently these products have independent life cycles and their
maintenance is isolated.
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Fig. 1. Total 19 currently active product variants implemented in various
versions of Magic

The 4GL environment used to implement the systems re-
quires different approaches and analysis tools than today‘s
mainstream languages like Java [7], [9]. For example there
is no source code in its traditional sense. The developers
work in the development environment by customizing several
properties of programs. Our industrial partner is the developer
of market leading solutions in the region, which are built upon
a common root and implemented in the Magic XPA 4GL. Over
time, both the Magic language and the development environ-
ment improved a lot. The language had several main releases,
changed its console-based outlook to a modern interface and
the underlying architecture is changed to the .NET framework.

The aim of the current project is to form a Magic product
line architecture in a semi-automatic way. In the center of
the work there are 19 concrete product variants, which are
analyzed manually and using experimental analysis tools.
Magic analysis tool support is not comparable to mainstream
languages, hence this is a research-intensive project. The

TABLE I
OVERVIEW OF THE COMMON PROGRAM BASE OF APPLICATION VARIANTS

Largest application size
Variants Programs Models Tables

19 4 251 822 1 065

overall size of the common codebase of product variants is
shown in Table I. The first column states that there are 19
currently active variants of the application, while the remaining
columns contain the main specifications of the largest variant.
Magic is a data-intensive language, which clearly reflects on
these values as well, containing a large amount of data tables.

Product variants themselves are written in 4 different lan-
guage versions as shown in Figure 1. There is a huge diffe-
rence in the success of various versions. This is also reflected
in the figure. The oldest version (Magic V5) is still a stable
version, but outdated from many points of view. In case of
Magic V5 systems, there is a high demand on the migration
to a newer version. A new era is represented by uniPaaS 1.9
systems, where the .NET engine is already used. Most systems
are implemented in that version. The newest Magic XPA 3.x
line of the language lies closer to the uniPaaS v1.9 systems,
hence the latter are in transition to the newest language.

The existing set of products provide appropriate environ-
ment for an extractive SPL adoption approach. Characterizing
features is usually a manual or semi-automated task, where
domain experts, product owners and developers co-operate.
Our aim is to help this process by automatic analysis of the
relation of higher level features and map program level entities
to features.

III. FEATURE EXTRACTION AND ANALYSIS

Product line adoption first copes with features. In the feature
detection phase various artifacts are obtained to identify featu-
res in the program. This phase is also called feature location.
The analysis phase targets common and variable properties of
features and prepares the reengineering phase. This last phase
migrates the subject system to the product line architecture.

In this phase of the research project we address the fea-
ture location/extraction phase. Our inputs are the high level
features of the system and the program code. We apply a
semi-automated process as in [4]. High level features are
collected by domain experts from the developer company. The
concrete task is to establish a link between features and main
constituents of the Magic applications. Information retrieval
is successfully applied in traceability scenarios for object
oriented languages [10]. For our purpose it is appropriate for
two main reasons. One of the main challenges of the project
is to cope with the substantially different language versions in
a uniform way. There are 9 selected products which are the
main target of our work. Four of them are v5 systems and five
of them are v1.9 systems. Reverse engineering 4GL systems
in not well studied topic in literature. Although there exists a
common analysis infrastructure for reverse engineering both
languages [11], [7], [8], the concrete program models differ.



Applying IR-based solutions make it easier to cope with a
4GL language because they are based on textual features and
not on the syntax of the language, and this provides a good
way to handle text with less dependence on the code. A good
IR-based technique for our specific problem could be Latent
Semantic Indexing (LSI), which is a well known and widely
used method throughout software engineering.

A comprehensive overview of Natural Language Processing
(NLP) techniques – including LSI – is provided by Falessi et
al. [12]. In their work several parameters are introduced that
may affect the result of an NLP technique. The motivation is
to choose the best technique for the product line based analysis
of the requirements of a newly developed system of systems.
The paper concludes that complex techniques like LSI perform
better in case of traceability link recovery scenario, where the
query and the corpus belong to different abstraction levels.
Since we face this type of problem, we applied LSI to obtain
similarity information between features and Magic programs.

A. The Structure of a Magic Application

Magic applications are constructed in the development
environment, not relying heavily on coding tasks, therefore
there is no traditional source code as a product of the work.
This means that our information retrieval methods can work
with the names of the various elements of an application. This
usually produces quite a small amount of text to work with.

Fig. 2. The most important elements of a Magic application

A Magic application can be most easily described as a
tree-structure. Figure 2 shows the most important elements
of a typical Magic application with a little more in-depth
glance at the Menu aspects we used through our work. A
Magic application always consists of one or more Projects,
which usually have their own Data Tables accommodating the
relevant data of each Project. The most important building

blocks of Projects are called Tasks. Tasks could be viewed
as the methods of a traditional programming language. The
most important distinction here is that each Task can have
several subtasks, which are Tasks in their own right. Therefore
each task has it’s own tree-structure of subtasks. The topmost
level of Tasks branching from Projects are called Programs.
In our research we mainly worked on this Program level.
Aside from subtasks, Tasks usually consist of Logic Units,
which represent a series of Logic Lines, providing the base
functionality needed, calling Tasks or handling variables.

To utilize a Task, we have to call it. This can occur by the
workings of other Tasks or a Menu. The functional distinction
of Tasks can be mainly reached through Menus. A Menu is a
Project-level element of the application, consisting of several
kinds of Menu Entries, of which we would like to distinguish
the Program Menus. A Program Menu’s purpose is to call a
Task when needed, specifically to call the Program stored by
it’s Task Reference.

IV. EXPERIMENTS

During our experiments we used the LSI [13] technique
widely applied throughout software engineering for various
information retrieval tasks. For our purposes, we used the
Gensim [14] implementation of the technique. The LSI works
with a parameter representing the size of the eigenvector used
during its process, during our experiments this was set to
the value of 600. LSI is a topic modeling algorithm. This
basically means that it can discover clusters of data based on
the semantic structures of a body of text. LSI works with a
corpus built from documents and with queries containing the
data we are curious about. A semantic space is constructed
from the corpus with each document occupying a specific
point in this space. This point is determined by the semantic
structure of each document and the documents with more
similar semantic structure occupy points closer to each other.
LSI determines the cosine distance of queries from each of
these documents, and thus the similarity to each.

In this section we overview the experiments we did as part
of this research. We had several Magic application variants on
our disposal. We also had a list of the menu-tree used in all
of these variants with multiple levels of menu elements. The
applications did not use all the menu elements described on
the list, merely a subset of it, each using a different set. This
also indicates the difference in their functionalities. We also
have been provided with a multi-level feature list describing
the basic functionalities provided by these applications.

Our main goal was to find the implementing programs of
the application for each feature in the list. In most cases,
the description of a feature consists of two or three words
of Hungarian language text. This provides a rather small text
base for each feature, and this usually reflects badly on the
result of the LSI similarity, since under these circumstances
one mere mention of a word from the feature results in a
disproportionally large similarity value, making the LSI over-
sensitive to these words. Sadly this over-sensitivity cannot be
totally eliminated since it stems from the base behavior of
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Fig. 3. Extracted features from Magic program code – features (large) and linked programs (small)

the technique. To reduce it, we utilized the other levels of the
feature-tree, so that each feature is represented not only by
their own textual value, but the value of its parent features
and child features too. This provides more versatility to each
feature, and still remains fairly loyal to the true meaning
of each feature text (since the parent and child features are
representing mostly the same functionality the feature does).

The core of our process was the following: We assembled
the text of each program using the names of the programs
and the elements they contain. This text, and the feature’s
text alike went through a preprocessing method, in which we
used the magyarlanc tool [15] for Hungarian lemmatization
purposes and we filtered out accentuated letters common in
Hungarian text and the different punctuation marks. With the
preprocessed text of the programs we built the corpus, and
the feature names became the queries for the LSI. The LSI’s
results were filtered by their determined similarity.

1) Experiment 1: The aim of our first experiment was to
validate the feasibility of our process, and provide a success
rate of our results. As already mentioned, we had a menu-
tree, a subset of which corresponds to the menus used by
each application. Each feature invokes one or usually more
programs through these menus, covering possibly a rather
large base of all the programs of the application variant. This is
achieved through the menu elements which are responsible for
calling their associated programs. We have also been provided
with a tree of each feature and their invoked menus. Through
these connections we were able to produce quantifiable results,
which can demonstrate the feasibility of the process.

Bug localization is one of the most studied scenarios, which
is an appropriate baseline of our experiment. We compare our
results to a recent result bug localization result from Thomas et
al. [16]. They evaluated the set of top 20 recommended items
by LSI and reached 40-70% results. Our results are shown
in Table II. The applications of the table represent different
product variants of the Magic application. Our results in
the table represent the rate of features which had at least
one genuinely connecting program assigned to them by our
method. These results correspond to the state-of-the-art IR-
based bug localization scenarios. Thus, we consider that IR-
based approach is feasible on Magic applications with a com-
parable success as in case of similar scenarios of mainstream
languages.

TABLE II
RESULTS OF FIRST EXPERIMENT

Application Features Present Features Found Success Rate

Variant 1 22 11 50%
Variant 2 25 16 64%

2) Experiment 2: The aim of the second experiment was
to extract features from the program code by linking high
level features provided by domain experts with a set of Magic
programs. In practice there can be features which are handled
by only one program, and there are also some which are
handled by many more than 20 programs, at the top level
of features this number could be in the hundreds. Luckily the
LSI method can provide a similarity value for each feature-



program pair, so we do not have to resolve on attaining the
20 most similar to each, we can use more intelligent methods,
like setting up a similarity threshold.

TABLE III
STATISTICS OF FEATURE-PROGRAM LINKS AT THRESHOLD VALUE 0.45

Application All Programs Programs Assigned Max
Programs Assigned to 1 feat. to more Ass.

Variant 1 2719 708 (26%) 208 500 18
Variant 2 2001 377 (19%) 185 192 17
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Fig. 4. Distribution of feature sizes (number of linked programs)

The threshold can be a number between 0 and 1; 0 meaning
that we allow connections between very dissimilar programs
and features, while 1 meaning that we accept only exact
similarities, filtering out most of the possible connections,
resulting in a very small amount of matches.

The results of this second experiment can be seen in Table
III. These results were produced with the similarity threshold
set to the value of 0.45. These results of course only represent
the statistical side of our output, validation of the connections
themselves is still up for manual evaluation done by domain
experts, which we are planning for in the future. In Figure 3
we can see the connections our process found in Experiment
2 at the Variant 1 of the application at a similarity level of
0.45. The large circles represent the high level features, while
the small circles represent the programs of Variant 1. The
arrows represent the connections our process found, namely a
large enough textual similarity between features and programs.
It can be clearly seen that some features share the same
programs, and that each feature is deemed most similar to
a different number and set of programs, providing a rather
lifelike image. It is also clear that some programs are only
connected to one feature, as they presumably only exist to
serve one concrete purpose, while others may contribute to
more features. The distribution of programs for each feature
can be seen in Figure 4.

We have built an experimentational tool-chain to conduct
a whole line of experiments with different IR settings (in-
cluding corpus extraction and similarity thresholds and other

parameters). It features a visually pleasing graphical interface,
making it easier to locate features in Magic applications. The
user interface of this tool can be seen in Figure 5 and Figure 6.
Figure 5 displays the tool in an initial state providing the
opportunity to set the most basic settings of the process,
while Figure 6 shows the result of an experiment, displaying
the number of most similar programs for each feature, and
optionally listing these programs for the user.

Fig. 5. Configuration window for Magic feature location experiments

Fig. 6. IR-based feature–program links in a concrete application

V. RELATED WORK

The literature of reverse engineering 4GL languages is not
extensive. By the time the 4GL paradigm arisen, most papers
coped with the role of those languages in software develop-
ment, including discussions demonstrating their viability. The
paradigm is still successful, on the other hand only a few works
are published about the automatic analysis and modeling
4GL or concretely Magic applications. The maintenance of
Magic applications is supported by cost estimation and qua-
lity analysis methods [17], [18], [11]. Architectural analysis,
reverse engineering and optimization are visible topics in the
Magic community [9], [19], [8], [7], as well as, after some
years of Magic development, migration to object-oriented
languages [20].



SPL literature is widespread and there is an observable
increasing tendency during the last 8-10 years. All three phases
of feature analysis (identification, analysis, and transforma-
tion) are tackled by researchers. A recommended mapping
study on recent literature on feature location can be read in [5].

Feature models are first class artifacts in variability mo-
deling. Haslinger et al. [21] present an algorithm that reverse
engineers a FM for a given SPL from feature sets which
describe the characteristics each product variant provides.
She et al. [22] analyze Linux kernel (which is a standard
subject in variability analysis) configurations to obtain fea-
ture models. LSI is applied for recovering traceability links
between various software artifacts. The work of Marcus and
Maletic [10] is an early paper on applying LSI for this purpose.
Eyal-Salman et al. [6] use LSI for recovering traceability link
between features and source code with about 80% success rate,
but experiments are done only for a small set of features of a
simple java program. IR-based solution for feature extraction
is combined with structural information in the work of Al-
msie’deen et al. [23]. This is a promising direction and in
case of Magic applications call dependencies are also planned
to be used for detailed feature analysis.

Several existing approaches can be adapted to 4GL environ-
ment, as we showed in this paper, however none of the above
cited papers cope with 4GL product lines directly.

VI. CONCLUSIONS

In this paper we reported initial experiments in feature
extraction of a Magic 4GL application. The work is motivated
by the several product variants that are currently maintained
in parallel. Since there are several products written in different
language versions, we conducted experiments with an infor-
mation retrieval method. To validate the method for Magic
applications, the links between menus and programs were
recovered with a successful rate acceptable in the state-of-
the-art of bug localization for Java programs. The method is
then applied to extract features in Magic by establishing links
between high level features and application programs. The
preliminary results are promising, however manual validation
by domain experts is still needed. The next step towards the
Magic product line architecture is to analyze variability of the
above identified features across existing applications.
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