
Adding Process Metrics to Enhance Modification Complexity Prediction

Gabriella Tóth, Ádám Zoltán Végh, Árpád Beszédes and Tibor Gyimóthy

Department of Software Engineering

University of Szeged, Hungary, Árpád tér 2. H-6720

Email: gtoth, azvegh, beszedes, gyimothy@inf.u-szeged.hu

Abstract—Software estimation is used in various contexts
including cost, maintainability or defect prediction. To make
the estimate, different models are usually applied based on
attributes of the development process and the product itself.
However, often only one type of attributes is used, like historical
process data or product metrics, and rarely their combination
is employed. In this report, we present a project in which we
started to develop a framework for such complex measurement
of software projects, which can be used to build combined
models for different estimations related to software mainte-
nance and comprehension. First, we performed an experiment
to predict modification complexity (cost of a unity change)
based on a combination of process and product metrics. We
observed promising results that confirm the hypothesis that a
combined model performs significantly better than any of the
individual measurements.

Keywords-Metrics, changeability, effort prediction

I. INTRODUCTION

Reliably estimating expected software project properties

like modification cost is desirable during development or

maintenance. The modification cost mainly depends on the

comprehension time of the program and the difficulty of

the modification. The modification cost estimation is often

relied upon only on the experience of project leaders, and

no methodic approaches are used. However, different current

attributes of the project and the product itself can be quite

good predictors of the mentioned properties. For example,

a large and complex module is usually more difficult to

comprehend and modify than a simpler one, hence this

property can be an indication of higher maintenance cost.

But similarly, past data about the development process, like

programmer productivity can also be used successfully to

estimate the expected modification cost. In the former case,

we use product metrics to predict the desired attributes,

while in the latter case, process metrics are employed. Both

approaches are used by software engineering professionals

aided by different estimation models [1].

The research on good predictor models is very important

though, as often important decisions are made upon these

approaches. There is a large body of literature dealing with

the mentioned methods, but surprisingly, it can be observed

that it is rarely the case that the initial data for estimation

includes different kinds of software properties, such as both

process and product metrics. We motivate our research on

this observation, and work towards verifying the importance

of such a combined estimation model, and establishing

accurate prediction frameworks and models for specific

development and maintenance estimations. In this report, we

present our initial results of the research project in which

we collected, over a certain period of time, different process

and product metrics of a real industrial project, and used

them to predict modification complexity, reporting promising

results. Namely, the combined prediction using process and

product metrics was more efficient than using only one

type of metrics. We used machine learning techniques to

automatically derive the prediction models. Although the

current results require further investigation, and the model

is still modest in its prediction capability, the sole fact that

the combined model performs much better, strengthens our

determination to continue this research.

The paper is organized as follows. After reviewing related

work in Section II, we describe our experimental study in

Section III. Empirical results are described in Section IV,

and we discuss the results and conclude in Section V.

II. RELATED WORK

In contrast to most of the previous work, our primary

goal is not to analyze the prediction accuracy for a set

of predictors, instead, we focus on a comparative analysis

between predictions with different kinds of predictors.

An effort estimation model was introduced by Mockus

et al. [2] which predicts the amount and the distribution

over time of the maintenance effort. They used the following

factors: the developer herself, the type, the status, the size,

and the rate of size and complexity of a change. They found

that introducing a new feature is more difficult than repairing

previous changes, which essentially means that looking at

the progress of time is sufficient.

Product metrics are often used for prediction of mainte-

nance effort. A well-known group of object-oriented product

metrics has been proposed by Chidamber and Kemerer [3].

Many empirical studies were performed to validate empiri-

cally C&K suite, showing an acceptable correlation between

C&K metrics values and software fault-proneness [4], [5] or

maintenance effort [6].

Using not only product metrics but also developer’s exper-

tise or other process properties has already been investigated

in the fault prediction area. Mockus and Weiss [7] applied

a model, where the factors of their prediction were the



diffusion and the size of a change, the type of the change and

the developers’ expertise with the system. They found that

change diffusion and developer’s expertise were essential

to predict failures. Moser et al. [8] stated that the most

powerful defect indicators are high number of revisions, high

number of bug-fixing activities, small sized CVS commits,

and small number of refactorings. Yuan et al. [9] applied

fuzzy subtractive clustering method to predict the number of

faults, and they used module-order modeling to classify the

modules into faulty/non-faulty classes. They built a model

which is based on process and product metrics. Contrarily

with other researchers, they stated that process metrics do

not improve the classification accuracy and such a model

does not provide acceptable results. In the present work, we

examine whether the developer properties and other process

metrics can improve the estimation model in the area of

program comprehension and change effort estimation.

III. THE EXPERIMENTAL STUDY

Our long term goal is to build a framework which can be

applied for the prediction of different kinds of maintenance

properties from various kinds of metrics. Apart from the

theme of our current research, it will be used to predict for

example, testability, error proneness and other maintainabil-

ity and comprehension attributes as well. In this paper we

use this framework to predict modification complexity, which

means how long, on average, the modification of a line in a

given class will take at the next change.

We experimented with different prediction models, after

identifying the following research questions:

RQ1a: How does the level of modification complexity

change during the implementation/maintenance life

cycle?

RQ1b: Is the progress of time sufficient to predict the level

of modification complexity? Some researchers ar-

gued that the progress of time is a sufficient pre-

dictor for some maintenance related attributes [2],

so we wanted to verify that hypothesis.

RQ2: Can the modification complexity prediction by

product metrics be enhanced with additional pro-

cess metrics? In the fault prediction area, it has

been shown [7] that it can. Here we examine this

hypothesis in connection with effort estimation.

Our framework is suitable to answer these questions.

Very briefly, it is structured as follows (see Figure 1).

On each workstation, Productivity Plug-in was installed

into development environment, which logs the development-

related low level information (e.g. active file, perspective,

developer, task, elapsed time, etc.). Each log is then up-

loaded to the Productivity Log Server. The project manager

estimated some project metrics (e.g. task time, developers’

experience, etc.). Process metrics are calculated from the

Productivity Log Server, while the product metrics are

obtained using the Columbus tool [10], which analyzes the

Internet

Productivity 
log server

Version 
Control Server Columbus

Aggregating 
and Processing 

Framework

Project Manager

pr
oc
es
s 

me
tri
cs

estimated project metrics

pr
od

uc
t 

me
tri
cs

predictors

Weka

effort 
estimation

Developer: IDE + 
Productivity plugin

Developer: IDE + 
Productivity plugin

Developer: IDE + 
Productivity plugin

Figure 1. The architecture of the framework.

source code retrieved from the Version Control Server. The

framework collects, processes, and aggregates these metrics

which serve as input to the Weka [11] machine learning tool,

which finally predicts the maintenance effort.

The Project We gathered data from an industrial R&D

project in the area of telemedicine, which involves the JBoss

SEAM, Symbian and Android technologies. Altogether, 7

developers worked in this project during our experimen-

tation period, which lasted 23 working days. We started

the experiment after an initial development of the system

was over (revision r954), and finished when the system

had been released (revision r1805). During the experiment,

both development- and maintenance-type tasks have been

performed (the latter being prevalent), the size of the system

increased from 16,338 lines to 19,765 lines (Logical-LOC),

and from 309 classes to 337 classes.

In the prediction model, three types of metrics have been

used. The first category, Product Metrics are the following:

LLOC (Logical Lines Of Code): total non-empty and non-

comment lines of the class.

C&K metrics:DIT (Depth of Inheritance Tree), NOC

(Number Of Children), CBO (Coupling Between

Object Classes), RFC (Response For a Class),

WMC (Weighted Methods per Class), LCOM

(Lack of COhesion in Methods).

ECLOC (Effectively Changed Lines Of Code): the delta

calculated from the SVN, the number of added,

deleted or modified lines by comparing the previ-

ous version of the class with the current version.

The Process Metrics we used were the following:

TT (Task Time): Estimated development time of a task,

aggregated into 3 groups: short, medium, long.

DEP (Developer’s Experience in Programming): The

level of experience of the developer, aggregated

into 3 groups: low, medium, high.

NFA (Number of File Access): Shows how many times

a developer accessed (got back to) a file during a

modification.

NDF (Number of Developers of File): Shows how many

developers have modified the file before.

DT (Development Time): The net development time

during the modification in minutes.



While product metrics are based on classes, process

metrics are based on files, unambiguous association between

classes and files was necessary.

We also used the Revision Number (RN) as a metric

in prediction, which was the number of the revision when

the file was modified, essentially the representation of the

time. Finally, we define the metric Level of Modification

Complexity (LMC) as the ratio of DT and ECLOC for the

next change of the file/class. This is our target of prediction.

Data collection During the 851 examined commits to

the SVN, 1134 file modifications have been made. For

each file modification, we collected the C&K and LLOC

product metrics calculated by Columbus. These metrics were

processed in three ways: we calculated 1) the value of the

metric in the given revision and file, 2) the relative value

of the metric in the given revision and file compared to the

base revision (r954), 3) the relative value of the metric in

the given revision and file compared to the previous revision.

We determined the ECLOC metric from the SVN repository.

The next step was to relate the logs from Productivity Log

Server to SVN changes. Unfortunately, we realized that

the developers had not used continuously the Plug-in (they

simply had not switched it on many times), so a lot of low

level development information had been lost, so we were

unable to connect all of the SVN commits to developer

logs. Eventually, 200 file modifications had connection with

both product and process metrics. Finally, we calculated the

LMC values for the training set of the machine learner.

However, since there were file modifications among the 200

cases where the file was not modified again at all, or the

connection of process metrics to the next modification of

the file was impossible, several modifications had to be

discarded again. At the end, 91 file modifications remained

as a training set to predict LMC.

The Prediction The predictor set consisted of one or

more of the following groups of metrics: 1) RN, 2) Product

metrics: processed C&K and LLOC, ECLOC and 3) Process

metrics: TT, DEP, NFA, NDF, DT.

The to-be-predicted LMC metric is a nominal attribute,

so we aggregated it into 3 groups: low, medium, and high,

to be able to feed it to the learner. To distribute the target

classification approximately equally, we defined the limits

accordingly, which resulted in having 30, 32 and 29 mod-

ification complexity values in the different classes. Finally,

we validated the model with 10-fold cross validation.

IV. PRELIMINARY RESULTS

Table I summarizes our main findings from the experi-

ment, in which the number of true positives (from the total of

91) and the weighted average of precision and recall values

for each model can be seen. We built 4 models: one using

only the revision number as predictor (column 2), one using

the revision number and the product metrics (column 3), one

using the revision number and the process metrics (column

4), and one using all three kinds of predictors (column 5).

The first column shows 3 typical learning methods we used:

decision tree, neural network, and regression.

Now, let us evaluate the results following the research

questions set up at the beginning of the article.

RQ1: It was interesting to observe, how the values of

our target prediction (LMC) actually changed over the range

of the dataset. Generally, at the beginning of implementing

a file, in the first revisions the developer implemented

new features to the class and, in parallel, he/she was also

designing future features to it. So, during this time the

modification complexity level was usually high. This was

followed by a period of smaller corrections, which did not

take so long, so the modification complexity level became

lower. Finally, when the class became more difficult to

change, the modification complexity level was becoming

higher and higher. This resulted in an overall ‘U’ shape,

which is similar to what other researchers found [2].

The second part of this research question dealt with the

strength of the progress of time as the sole predictor. In

our case, it was represented by the revision number. The

accuracy of prediction when only this measure was used can

be seen in the second column of Table I. We can say that

in two cases the accuracy of prediction is higher than the

random case (where the precision value would be 33.33%),

so we can conclude that progress of time can be an important

predictor (sometimes even better than the product or process

metrics taken individually). Due to the significance of the

revision number, henceforward in the further predictions we

always used it together with the other two categories.

RQ2: Our most important research goal was to find out

whether the combined use of different types of metrics is

any better than using only one type. We can observe in

columns 3 and 4 of Table I that product metrics are good

predictors of LMC, while the prediction capability based on

only the process metrics is low (compared to the random

33.33%). However, the last column of the table shows a

clear evidence that the combination of the product and

process metrics results a significantly higher accuracy

in prediction. Compared to the product metrics, in the

case of the decision tree the prediction increased by 4.4

percentage points, 3.1 points with RBF network, and by

using classification model it increased by 2.7 points.

V. DISCUSSION AND CONCLUSIONS

We introduced an approach to enhance maintenance effort

prediction using low level process information in addition

to product metrics-based estimation only. Our primary goal

was not to find the best set of predictors for predicting the

modification complexity level, but to verify which set of

predictor types offers more possibilities for the prediction.

We found that using process metrics in addition to product

metrics can be obtained a significantly better prediction

model. Surprisingly, we observed that the progress of time



J48 Only Revision Number Product Metrics Process metrics Product & Process Metrics

Nr. of true positives 32 39 31 43

Precision 31.9% 43.1% 34.2% 47.5%

Recall 35.2% 42.9% 34.1% 47.3%

RBFNetwork

Nr. of true positives 35 32 29 36

Precision 36.6% 36.6% 31.7% 39.7%

Recall 38.5% 35.2% 31.9% 39.6%

ClassificationViaRegression

Nr. of true positives 36 38 30 41

Precision 35.2% 40% 26.7% 42.7%

Recall 39.6% 41.8% 33% 45.1%

Table I
PREDICTION RESULTS.

is more significant than the process metrics alone. However,

the best result can be obtained if all three types are com-

bined, which coincides with the result of related works in

other areas like fault prediction. We can draw some other

conclusions as well, as overviewed below.

Although the learning precision of 40-47% seems not to

be very high (although much better than the random case),

we think this result is quite remarkable in this early stage

of our research. It has a number of potential improvement

points, so we are confident that in another, more thoroughly

designed experiment even better results will be obtained.

The main limitation of this experiment was that the process

measurement was not so complete as could have been if the

programmers were using the tool more conscientiously. The

limitation of the small number of programmers and the small

period of time might impose a threat to the generalizability

of the results as well.

The usage of the Productivity Plug-in serves us valuable

low level process metrics (exact development time, number

of file access), while most of related works deal with

only version control system, problem tracking system or

configuration management database.

Apart from our most important goal to enhance the

collection of process metrics with the Productivity Plug-in,

we have some other plans for future research as well. We

have built a general framework with which we will be able

to predict other maintenance or comprehension attributes,

like testing effort, development time, error proneness, or the

number of faults, involving various other predictors as well.

Our other goal is to extend the approach to be able also to

compare to each other the effectiveness of different kinds of

technologies in terms of productivity or maintainability.

VI. ACKNOWLEDGMENTS

This research was supported by Telenor, Nokia Komárom,

the Hungarian national grants TECH 08-A2/2-2008-0089,

GOP-1.1.2-07/1-2008-0007, and OTKA K-73688.

REFERENCES

[1] L. M. Laird and M. C. Brennan, Software Measurement and
Estimation: A Practical Approach. Wiley-IEEE Computer
Society Pr, 2006.

[2] A. Mockus, D. M. Weiss, and P. Zhang, “Understanding and
predicting effort in software projects,” in In 2003 Interna-
tional Conference on Software Engineering. ACM Press,
2002, pp. 274–284.

[3] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Trans. Softw. Eng., vol. 20, pp.
476–493, June 1994.

[4] V. R. Basili, L. C. Briand, and W. L. Melo, “A Validation
of Object-Oriented Design Metrics as Quality Indicators,” in
IEEE Transactions on Software Engineering, vol. 22, no. 10,
Oct. 1996, pp. 751–761.

[5] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical Validation of
Object-Oriented Metrics on Open Source Software for Fault
Prediction,” in IEEE Transactions on Software Engineering,
vol. 31, no. 10. IEEE Computer Society, Oct. 2005, pp.
897–910.

[6] W. Li and S. Henry, “Object-oriented metrics that predict
maintainability,” J. Syst. Softw., vol. 23, pp. 111–122, Novem-
ber 1993.

[7] A. Mockus and D. M. Weiss, “Predicting risk of software
changes,” Bell Labs Technical Journal, vol. 5, pp. 169–180,
2000.

[8] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction,” in Proceedings of the 30th international
conference on Software engineering, ser. ICSE ’08. New
York, NY, USA: ACM, 2008, pp. 181–190.

[9] X. Yuan, T. M. Khoshgoftaar, E. B. Allen, and K. Gane-
san, “An application of fuzzy clustering to software quality
prediction,” Application-Specific Software Engineering and
Technology, IEEE Workshop on, p. 85, 2000.

[10] R. Ferenc, A. Beszédes, M. Tarkiainen, and T. Gyimóthy,
“Columbus – reverse engineering tool and schema for C++,”
in Proceedings of the IEEE International Conference on Soft-
ware Maintenance (ICSM 2002). IEEE Computer Society,
Oct. 2002, pp. 172–181.

[11] I. H. Witten and E. Frank, Data Mining: Practical machine
learning tools and techniques. San Francisco: Morgan
Kaufmann, 2005.


