
Call Frequency-Based Fault Localization
Béla Vancsics

Software Engineering Department
University of Szeged

Szeged, Hungary
vancsics@inf.u-szeged.hu

Ferenc Horváth
Software Engineering Department

University of Szeged
Szeged, Hungary

hferenc@inf.u-szeged.hu

Attila Szatmári
Software Engineering Department

University of Szeged
Szeged, Hungary

szatma@inf.u-szeged.hu

Árpád Beszédes
Software Engineering Department

University of Szeged
Szeged, Hungary

beszedes@inf.u-szeged.hu

Abstract—Spectrum-Based Fault Localization (SBFL), in its
basic form, uses only local information about a program element’s
(such as a method’s) coverage to predict its faultiness, and rarely
is any additional (contextual) information leveraged about the
element itself, nor the test cases. As such an additional context,
in the presented approach, we rely on the frequency of the
investigated method occurring in call stack instances during the
course of executing the failing test cases. The basic intuition is
that if a method is called in many different contexts during a
failing test case, it will be more probable to be accountable for
the fault compared to other methods. We empirically evaluated
the fault localization capability of the approach compared to five
traditional SBFL techniques using the bug benchmark Defects4J.
We found that the new algorithms (i) find the location of bugs at
higher rank positions more often, (ii) can achieve 38%–52% rank
position improvement compared to the baseline algorithms with
statistical significance, and (iii) place more items at the top-10
positions of the suspiciousness ranking.

Index Terms—Spectrum-Based Fault Localization, Method
Call Frequency, Call Stacks, Testing, Debugging

I. INTRODUCTION

Fault Localization (FL) is inevitable, and often a very
difficult and time consuming step during debugging, hence,
its importance in maintenance and evolution is unquestionable.
This paper deals with a class of automated FL methods, which
are based on the notion of the “program spectrum” [1], [2]
(Spectrum-Based Fault Localization–SBFL). Spectrum refers
to the statistical information about how the executed test
cases relate to program elements and what are their outcomes
(hence, also Statistical Fault Localization is a commonly used
term for these methods) [3]–[7].

Several types of spectra have been defined over the past
decades, but the most common approach is to use the so-
called “hit-based” spectrum. This refers to the simple binary
information if a code element (e. g., statement or function
in a procedural, or method in an object-oriented context) is
covered during the execution of a test case or not. Using this
information, the basic intuition is that those code elements
are more suspicious to contain a fault that are exercised by
comparably more failing test cases than passing ones, while
non-suspicious elements are traversed mostly by passing tests.
Dedicated formulas are used to calculate the suspiciousness
levels, which in turn rank the code elements to provide a
debugging aid to the developer.

The traditional hit-based methods are generally seen as pro-
viding modest performance in terms of ranking precision [8]–
[11], but other issues have also been identified [6], [12]–[14],

which contributes to the fact that automated fault localization
is still ignored by industry for the most part. Consequently,
researchers proposed different approaches that go beyond the
hit-based spectrum and utilize other information available that
could help improve the overall ranking performance [15]–
[19].

However, it is quite intriguing that the most straightforward
extension of the hit-based spectrum, the count-based one is
rarely investigated. Some early results have been published
by Harrold et al [20], [21], but more recently Abreu et
al. [22] concluded that counts do not provide additional value
compared to hits. There might be several reasons to this
phenomenon, but a popular explanation is that many times
repeating program elements during execution (due to loops)
may lead to unwanted distortion in the test case statistics.

In this paper, we propose a method to improve hit-based
spectra using a more advanced count-based approach. In par-
ticular, we do not count all occurrences of a program element
during execution but only those that occur in unique call con-
texts. Our algorithm is at method-level granularity, meaning
that the basic program element considered for fault localization
is a function or a method. As a call context, we rely on call
stack instances. In particular, we build on observing the unique
deepest call stack instances upon executing a test case, and
count the occurrences of methods in these (hence we refer
to the approach as Call Frequency-Based Fault Localization).
This way, repeating patterns of method invocations due to, e.g.,
loops are excluded and only the relevant call context patterns
are considered.

We applied this approach on five traditional hit-based SBFL
formulas by replacing their crucial element, the numerator, and
empirically investigated if it brings improvement to the base
algorithms’ performance. We found that, for all but one formu-
las, this modification gained statistically significant improve-
ment in the average rank position of the faulty method in the
range 38%–52%. Other improvement measures also showed
that call frequency-based formulas can notably enhance hit-
based SBFL, such as in the number of best ranking positions
and high-rank position improvements. A surprising result is
that one of the base formulas that is traditionally seen as one
of the best ones, Ochiai [23] did not improve with this new
information, but a usually less successful one, Jaccard [24],
produced such great improvements that it outperformed all the
other candidates on all subjects and in all measurements.

The remainder of the paper is organized as follows. In

Section II, we introduce our novel approach building on
traditional methods. Section III contains the description of our
empirical evalution with results in Section IV. This is followed
by a discussion in Section V, overview of related work in
Section VI, and conclusions in Section VII.

II. CALL FREQUENCY-BASED FAULT LOCALIZATION
ALGORITHMS

This paper deals with method-level granularity for the anal-
ysis, which means that the basic element for localizing a fault
is a function or method of a class. It is a higher granularity than
the currently prevalent statement level approach, but for our
purposes it has at least two advantages. First, we may define
a more global contextual information about the investigated
program element, and it is scalable to large programs and
executions. Furthermore, there are some views that method-
level is a better granularity for the users as well [23], [25].

The traditional hit-based SBFL methods rely purely on
local information about a program element’s (in our case,
a method’s) coverage by the test cases, and no additional
(contextual) information is leveraged about the element itself,
nor the test cases. In this paper, we use as an additional
context the frequency of the investigated method occurring in
call stack instances during the course of executing the failing
test cases. The basic intuition is that if a method is called in
many different contexts during a failing test case, it will be
more probable to be accountable for the fault compared to
other methods. However, we do not use the simple count of
method calls because it has been shown that a simple count-
based modification does not bring additional value to the fault
localization process [22].

In this section, we first overview the basic hit-based SBFL
approach together with a selection of well-known formulas,
which we chose so that they are the most appropriate for
our extension. Then, we introduce our call-frequency based
method which replaces certain parts of the traditional formulas
by adding this new contextual information.

We will use a running example throughout this section
which is shown in Figures 1 and 2 (method (g) contains the
bug). It is an adapted version of the example from [26] with
added features to illustrate the benefits of the call frequencies.

A. Hit-Based Methods

Hit-based SBFL uses a binary coverage matrix (H) and a
test results vector (R) as the basic data structures to calculate
the suspiciousness scores for program elements [24], [27].
In the coverage matrix, the rows represent the tests and the
columns are the program elements, methods in our case. The
value of an element in the matrix is 1 or 0, depending on
whether the method is covered by the test or not, respectively
(denoted by ht,m ∈ {0, 1}, where m ∈ methods and t ∈ tests).
An element in the results vector is 0 if the given test passed,
otherwise it is 1 (rt,m ∈ {0, 1}).

In our example, {a, b, f, g} is the set of program elements
(methods), and {t1, t2, t3, t4} are the test cases, with the
resulting coverage matrix and results vector shown in Table I.

1 public class Example{
2 private int _x = 0;
3 private int _s = 0;
4 public int x() {return _x;}
5
6 public void a(int i){
7 _s = 0;
8 if (i==0) return;
9 if (i<0)

10 for (int y=0;y<=4;y++)
11 f(i);
12 else
13 g(i);
14 }
15
16 public void b(int i){
17 _s = 1;
18 if (i==0) return;
19 if (i<0)
20 a(Math.abs(i));
21 else
22 for (int y=0;y<=1;y++)
23 g(i);
24 }
25
26 private void f(int i){
27 _x -= i;
28 }
29
30 private void g(int i){
31 _x += (i+_s); //should be _x += i;
32 }
33 }

Fig. 1: Running example – program

1 public class ExampleTest {
2 @Test public void t1() {
3 Example tester = new Example();
4 tester.a(-1);
5 tester.a(1);
6 tester.b(1);
7 assertEquals(9, tester.x()); // failed -> 8
8 }
9

10 @Test public void t2() {
11 Example tester = new Example();
12 tester.a(1);
13 tester.b(1);
14 assertEquals(4, tester.x()); // failed -> 3
15 }
16
17 @Test public void t3() {
18 Example tester = new Example();
19 tester.a(1);
20 tester.b(0);
21 assertEquals(1, tester.x());
22 }
23
24 @Test public void t4() {
25 Example tester = new Example();
26 tester.a(-1);
27 tester.a(1);
28 tester.b(-1);
29 assertEquals(7, tester.x());
30 }
31 }

Fig. 2: Running example – test cases

All basic hit-based SBFL formulas rely on four fundamental
statistics that are calculated from the spectrum. For each
element m, the following sets are obtained, whose cardinalities
are then used in the formulas:

a) mep: set of passed tests covered by m
b) mef : set of failed tests covered by m
c) mnf : set of failed tests not covered by m
d) mnp: set of passed tests not covered by m

The four basic statistics for the methods in our example are
also presented in Table I.

There is a plethora of different formulas proposed by
researchers using these basic statistics (good summaries can be

TABLE I: Coverage hit spectrum (with four basic statistics)
and frequency spectrum

hit matrix frequency matrix

re
su

lts

a b f g a b f g
co

ve
ra

ge

t1 1 1 1 1 2 1 1 2 1
t2 1 1 0 1 1 1 0 2 1
t3 1 1 0 1 1 1 0 1 0
t4 1 1 1 1 3 1 1 2 0

ba
si

c
st

at
is

tic
s ef 2 2 1 2

ep 2 2 1 2
nf 0 0 1 0
np 0 0 1 0

found in [28], [29]). Moreover, some researchers experimented
with automatically deriving new formulas [30], [31]. For this
paper, we selected five well-known formulas to experiment
with, which are shown in Table II. As one can notice, all of the
chosen formulas share a common property that their numerator
is based on the same value, |mef |. In fact, all formulas rely
on this basic statistic in one way or the other since it is
very straightforward that the suspiciousness of a program
element is mostly affected by how many failing test cases are
going through it. The denominators use various approaches to
incorporate the non-suspicious cases, hence reduce the scores,
typically by using mep in some arithmetic combination with
the other metrics. The fact that all these formulas share the
same numerator will enable us to propose a common way
of extending them using our call frequency counts, and their
straightforward comparison in the experimental study.

TABLE II: Hit-based SBFL formulas

Barinel (B) [32]:
|mef |

|mef |+ |mep|
,

Jaccard (J) [24]:
|mef |

|mef |+ |mnf |+ |mep|
,

Ochiai (O) [24]:
|mef |√

(|mef |+ |mnf |) · (|mef |+ |mep|)
,

Russell-Rao (R) [29]:
|mef |

|mef |+ |mnf |+ |mep|+ |mnp|
,

Sørensen-Dice (S) [33]:
2 · |mef |

2 · |mef |+ |mnf |+ |mep|
,

The corresponding suspiciousness scores for each method
in our example and for each formula are shown in the upper
part of Table IV. As can be seen, the buggy method (g) is
hardly distinguishable from the other methods based on the
suspiciousness scores. Method f would be at the last place
in the suspiciousness list based on almost all metrics, except
Barinel . Hence, a programmer could rule this method out
during debugging. As for the other three remaining methods,
there would be a tie in the ranking.

B. Proposed Technique

Our idea to add contextual information to the simple hit-
based FL formulas is to incorporate how often a specific
method has been called (directly or indirectly) and in which
context from the test cases. A naı̈ve technique to incorporate
such a call frequency would be to count the number of
invocations of the methods while executing a test case. This
would correspond to the simple count-based SBFL. However,
it is easy to see that with this approach, in a situation where a
method is called directly or indirectly from a loop, it will be
counted potentially many times. If this call belongs to a failing
test case, then it will unnecessarily raise the suspiciousness
score of the affected non-faulty methods, which could cause
that the actually faulty elements (that are executed less times)
remain hidden.

This can be seen in the example in Fig. 1 and Fig. 2 where
method f was called five times by t1 (failed test) in a for loop,
as opposed to g (faulty method), which was called four times
in total by the two (t1 and t2) failed tests. This is illustrated
with t1 and its Call Tree in the upper part of Figure 3. Higher
execution count of a non-faulty method f compared to the
faulty g would result in a simple count-based SBFL approach
to miss successfully locating g.

Instead, in our approach we rely on method call stack traces,
and their different snapshots during the execution of a test
case. Call stack traces are artifacts occurring during program
execution which are well-known to programmers who perform
debugging, and can show, for instance, that a method may fail
if called from one place and perform successfully when called
from another. There is empirical evidence that stack traces help
developers fix bugs [34]. Furthermore, Zou et al. [23] showed
that stack traces can be used to locate crash-faults.

In particular, we extract unique deepest call stacks – UDCS-
s, which means that we build a particular instance of a
call stack snapshot until additional methods are transitively
called, and stop when a method returns. This way, repeated
invocations of methods from the same calling context (due to
loops) will not induce new call stack instances. UDCS is a
very similar concept to call chains introduced by Beszédes
et al. [26]. Similar concepts have been explored by other
researchers as well [22], [35], [36], however not in this detail
and not with these applications in focus.

We define UDCS more precisely as follows. Let M be the
set of methods in a program P , and T a set of test cases used
to test P . Then, a unique deepest call stack c is a sequence
of methods m1 → m2 → · · · → mn (mi ∈ M), which occur
during the execution of some test case t ∈ T , and for which:
• m1 is the entry point called by t,
• each mi directly calls mi+1 (0 < i < n), and
• mn returns without calling further methods in that se-

quence (we call such a method stack-terminating).
UDCS-s provide an opportunity to use coverage not only

as “hit/no hit” data but to compute the frequency of methods
occurring in such stacks and use this number in the SBFL
formulas instead of the basic statistics introduced earlier. More

precisely, for a method m under investigation, we calculate the
sum of its frequencies occurring in different UDCS-s generated
by the relevant test cases. In particular, if we summarize
these frequencies for each failing test case, we can get a
substitute for mef , which is, in a sense, its weighted version
that incorporates the desired context of method calls.

Figure 3 shows the UDCS-s generated by test case t1 in our
example: three method-calls are made directly from the test,
method a is called twice and b is called once. The frequencies
in the resulting unique deepest call stacks will provide the
basis for the new approach: Table I shows the summarized call
frequencies in the UDCS-s for each method in the example.

Fig. 3: Call tree and unique deepest call stacks (UDCS)

We will refer to this spectrum as the call frequency spectrum
and denote the matrix as C (the results vector remains R). As
can be seen, the result is similar to the corresponding binary
coverage matrix: if there is 0 in a hit-matrix position, it will
be 0 in the count-matrix as well, but the latter can contain not
only 1 but integer values as well.

Now, we can introduce our new SBFL formulas based
on the above as follows. Our approach is basically very
simple: we substitute the value |mef | in the numerator of each
technique presented in Section II-A with the counts introduced
above. More precisely, we will use the notation C(mef) for
this quantity and define it as follows (for clarity, we omit the
code element m from the formulas for which the score is
computed):

C(mef) =
∑

t∈mef

cm,t ,

where cm,t is an element in C. The modified formulas are
shown in Table III.

TABLE III: Call frequency-based SBFL formulas

BC :
C(mef)

|mef |+ |mep|
JC :

C(mef)

|mef |+ |mnf |+ |mep|

OC :
C(mef)√

(|mef |+ |mnf |) · (|mef |+ |mep|)

RC :
C(mef)

|mef |+ |mnf |+ |mep|+ |mnp|
SC :

2 · C(mef)

2 · |mef |+ |mnf |+ |mep|

C(mef) values and the suspiciousness scores computed for
our example program with the modified formulas are shown

in Table IV. As can be seen, the buggy method (g) has
higher suspiciousness scores using the call frequency-based
SBFL technique, which can be attributed to the corresponding
C(mef) values that weigh the candidate code elements as
expected. In other words, the extra information execution
stack traces carry helped to better rank the buggy element.
Both failing and passing test cases contained methods that
eventually called the buggy method. But call stack traces also
captured the different call contexts, i.e., the call sequences
leading to either failing or passing cases, and since the buggy
method occurred multiple times in call stacks of failing tests,
this resulted in more successful localization.

TABLE IV: Hit-based and call frequency-based SBFL scores

a b f g

hi
t-

ba
se

d
sc

or
es

Barinel 0.500 0.500 0.500 0.500
Jaccard 0.500 0.500 0.333 0.500
Ochiai 0.707 0.707 0.500 0.707

Russell-Rao 0.500 0.500 0.250 0.500
Sørensen-Dice 0.667 0.667 0.500 0.667

fr
eq

ue
nc

y-
ba

se
d

sc
or

es

C(mef) 3 2 1 4

BarinelC 0.750 0.500 0.500 1.000
JaccardC 0.750 0.500 0.333 1.000
OchiaiC 1.061 0.707 0.500 1.414

Russell-RaoC 0.750 0.500 0.250 1.000
Sørensen-DiceC 1.000 0.667 0.500 1.333

III. EMPIRICAL EVALUATION

The main goal of empirically evaluating the proposed ap-
proach was to compare the new algorithms’ fault localization
effectiveness compared to their traditional hit-based counter-
parts. Also, we were interested in finding out which of the
traditional SBFL formulas are best fitted to be extended with
call frequency information. In this section, we overview the
main parameters of the experiments: the benchmark used,
the evaluation measures, and we also formulate the research
questions more precisely.

A. Subject Programs

We implemented our approach for analyzing Java programs,
and for the evaluation we selected Defects4J (v1.5.0),1 a
widely used collection of Java programs and curated bugs
in FL research. This benchmark contains six open source
Java projects with manually validated, non-trivial real bugs.
To extract test results and stack-trace information from these
projects on per-test level, we extended Defects4J’s measure-
ment framework with a Java Agent-based tool. This includes
an online (on-the-fly) bytecode instrumentation tool, which we
used to collect UDCS-s during test execution.

The original dataset contains 438 bugs, however, there
were cases which we had to exclude from the study due to
instrumentation errors or unreliable test results. A total of 411
defects were included in the final dataset. Table V shows each
project and their main properties. The last column includes
the statistics about the UDCS-s generated by the test cases.

1https://github.com/rjust/defects4j/tree/v1.5.0

https://github.com/rjust/defects4j/tree/v1.5.0

TABLE V: Subject programs

Program Number
of bugs

Size
(KLOC)

Number
of tests

Number
of methods

Number of unique
deepest call stacks

Chart 25 96 2.2k 5.2k 122k
Closure 168 91 7.9k 8.4k 889k
Lang 61 22 2.3k 2.4k 6k
Math 104 84 4.4k 6.4k 228k
Mockito 27 11 1.3k 1.4k 11k
Time 26 28 4.0k 3.6k 150k

B. Evaluation of Effectiveness

Comparing the effectiveness of SBFL algorithms means
comparing the suspiciousness ranking lists, and how suc-
cessfully they approximate the actually faulty code element.
An algorithm is successful in locating the fault if the faulty
element is at or near the first position in the rank list. But, in
order to be able to compare the results of the algorithms their
outputs need to be compatible. Because the suspiciousness
score values are not necessarily produced in the same interval
by the different formulas, their relative position in the ranking
list is used instead.

The position (rank) of the faulty method gives a good
approximation of effectiveness because it indicates how many
methods developers or testers need to examine before finding
the bug. However, there are different ways to compare the
ranking lists, and various research reports prefer one or the
other. In this paper, we followed several different approaches
used earlier and also employed new ones. Thus, we believe
this thorough evaluation can highlight all the different aspects
of how successful each of the alorithms are in localizing faults.

A particular issue to handle are ties, that is, cases when two
or more elements share the same score. Essentially, there are
three ways to determine the ranks of such elements [37]: (i) the
average of the ranks of the faulty methods, (ii) the minimum
of the ranks, or (iii) the their maximum. In each case, the same
value is assigned to all elements with the tied values.

We used the average rank approach in our research. If there
are multiple bugs for a program version, we will use the
highest rank of buggy methods. Formula 1 shows the absolute
average rank calculation [24], where i and f are methods, the
latter being the faulty one, while si and sf are the respective
suspiciousness score values.

E =
|{i|si > sf}|+ |{i|si ≥ sf}|+ 1

2
(1)

The relative average rank (Formula 2) specifies how much
of the entire method set needs to be examined before finding
the bug.

E′ =
E − 1

N
· 100 [%] , N is the number of methods (2)

Both absolute and relative measures are often used in FL
literature, and they have their benefits and drawbacks, hence
we will use both of them. Table VI shows the average ranks
of the example program for the hit-based and for the call
frequency-based algorithms.

Using the average rank position, we can compare the
algorithms by following our first two Research Questions:

TABLE VI: Ranks of the example program

alg. E (E′)
a b f g (the bug)

B 2.5 (37.5%) 2.5 (37.5%) 2.5 (37.5%) 2.5 (37.5%)
BC 2.0 (20.0%) 3.5 (62.5%) 3.5 (62.5%) 1.0 (0%)

J 2.0 (20.0%) 2.0 (20.0%) 4.0 (75.0%) 2.0 (20.0%)
JC 2.0 (20.0%) 3.0 (50.0%) 4.0 (75.0%) 1.0 (0%)

O 2.0 (20.0%) 2.0 (20.0%) 4.0 (75.0%) 2.0 (20.0%)
OC 2.0 (20.0%) 3.0 (50.0%) 4.0 (75.0%) 1.0 (0%)

R 2.0 (20.0%) 2.0 (20.0%) 4.0 (75.0%) 2.0 (20.0%)
RC 2.0 (20.0%) 3.0 (50.0%) 4.0 (75.0%) 1.0 (0%)

S 2.0 (20.0%) 2.0 (20.0%) 4.0 (75.0%) 2.0 (20.0%)
SC 2.0 (20.0%) 3.0 (50.0%) 4.0 (75.0%) 1.0 (0%)

RQ1 In how many cases does the new, call frequency-based
SBFL approach give lower/equal/higher ranks than its hit-
based counterpart?
RQ2 How do the absolute and relative average rank posi-
tions compare in the two sets of algorithms?

Several studies report that developers investigate only first
5 or first 10 elements in the recommendation (rank-)list
by fault localization algorithms before giving up using the
ranking [10], [14]. Therefore, we distinguished between bugs
where the minimum of faulty methods rank is equal to 1 (Top-
1), it is less or equal to three (Top-3), less or equal to five
(Top-5), less or equal to ten (Top-10), and when it is over ten
(Other), commonly referred to as Top-N [11].

With this in mind, we compare the techniques using the
following Research Questions:

RQ3 What proportion of faulty methods are among the most
suspicious elements? That is, what is the number of buggy
methods that are among the 1, 3, 5 and 10 most suspicious
methods?
RQ4 What improvement can be achieved when the hit-based
methods assign the bugs with very bad ranks, beyond 10 (the
Other category), but call frequency-based SBFL classifies
them in one of the higher categories? We call these cases
enabling improvements [26].

Finally, besides comparing the pairs of SBFL formulas
to each other, using the same measurement data, we can
investigate which of the new frequency-based SBFL formulas
perform best compared to the others, which can tell us what
formulas are best fitted to be extended with call frequency
information:

RQ5 Is there a call frequency-based SBFL formula that can
be seen as a clear winner among all the others?

IV. RESULTS

In this section, we present the results of our evaluation
according to the measures described in Section III-B. This
will enable a quantitative comparisons and objective judgments
of the proposed algorithms in terms of fault localization
effectiveness.

A simple comparison is to look at how many times the call
freqency-based algorithms improve effectiveness, that is, they
result in a higher rank (closer to 1) than their traditional hit-
based counterparts, and how many times are the ranks lower
or equal (RQ1). Such a comparison of each algorithm pair is
shown in Table VII (counts and percentages with respect to
all bugs).

The ‘lose’ row represents the number (percentage) of bugs
for which the corresponding call frequency-based algorithm
resulted in worse ranks. The ‘draw’ rows show the cases where
the two ranks were equal, while the ‘win’ rows reveal how
many times the new approach performed better. ‘not-win’ and
‘not-lose’ are values derived from the above three numbers by
incorporating the ‘draw’ cases, correspondingly.

TABLE VII: Number (and percent) of times call frequency-
based methods outperformed hit-based ones

B J O R S

..lose 135 (32.8%) 137 (33.3%) 181 (44.0%) 77 (18.7%) 137 (33.3%)
..draw 89 (21.7%) 90 (21.9%) 74 (18.0%) 39 (9.5%) 89 (21.7%)
..win 187 (45.5%) 184 (44.8%) 156 (38.0%) 295 (71.8%) 185 (45.0%)

..not-win 224 (54.5%) 227 (55.2%) 255 (62.0%) 116 (28.2%) 226 (55.0%)
..not-lose 276 (67.2%) 274 (66.7%) 230 (56.0%) 334 (82.3%) 274 (66.7%)

It can be seen from this data that in all cases the im-
provement was notable except for one algorithm, when test-
hit performed better than call frequency (for Ochiai : 44% vs.
38%). However, when taking into account the equal cases,
Ochiai is not worse either with 44.0% lost cases compared to
56.0% better or equal. This performance improvement is the
highest for Russell -Rao: 18.7% vs. 71.8%.

RQ1: Overall, from the five new algorithms, all produced
at least the same ranking or higher in more cases than the
opposite. In four cases, the new algorithms are at least as
good as their traditional counterparts for more than two-
thirds of the bugs.

The next set of experiments dealt with the average ranks the
new algorithms produced (RQ2). The upper part of Table VIII
shows, for each project, new and old algorithm, the arithmetic
means of the absolute average rank (E) values (the best results
are highlighted in bold) as defined in the previous section. It
can be seen that in only one case (for subject Chart) was
one of the hit-based algorithms (Ochiai) better performing
than any of the call frequency-based ones. By comparing the
corresponding hit-based vs. call frequency-based formulas, it
is obvious that in the majority of the cases, the new approach
outperforms the traditional one. Except Ochiai , all algorithms
consistently produce better average ranks. In the case of this
algorithm, subject Closure makes the overall results worse, so
by ignoring this project (which seems to be an outlier anyway
with its very low overall ranks) it will be similar to the others.
The overall statistics can be seen in the last two rows: for all
subjects and excluding Closure.

Table VIII also shows that, overall, JaccardCperformed
best: on 3 projects and the full bug data set this method
placed the faulty methods at the highest ranks. This was

followed by BarinelC , with the best results in two projects,
and OchiaiC and Sørensen-DiceC , with one each. The
Russell -Rao-based algorithm produced mixed results: it man-
aged to improve relative to base algorithm, but compared to
the rest it was relatively poorly performing.

To determine if the differences we found are statistically
significant, we used Wilcoxon signed-rank [38], which exam-
ines whether two related paired ranks come from the same
distribution or not. This provided an answer to the question of
whether there is a significant difference between the results of
the algorithms (at threshold 0.05): if p-value is less than 0.05,
then we can say that there is a significant difference between
the results of two algorithms.

Next to the average values, we show the corresponding
p-value in Table VIII. The call frequency-based approach
produced statistically significant improvement in altogether
16 cases, while there were two cases (Ochiai on Closure
and Chart), where the difference was significant but in the
opposite direction. By more carefully observing the cases
where p-value was higher than 0.05, we can conclude that
these results could probably be attributed to the fact that the
corresponding subjects included too few bugs for the sample
size to be large enough. An important result is, however, that
taking into account the full dataset, all new approaches except
Ochiai achieved statistically significant improvement.

In Table VIII, we present some additional statistics about
this data: a) max: the lowest rank, b) median: this value is
the rank in the middle of the ordered results (compared to
the average, this has the positive feature that it is much less
sensitive to outlier values).

The highest ranks (values of min) are the same for all
algorithms, 1, but the other metrics are different. For each al-
gorithm, the maximum values among the results obtained with
the call frequency-based method is consistently better than
the highest rank obtained with the hit-based algorithm (row
’Max.’ in Table VIII), i.e. the call frequency-based algorithm
produces less extreme ranks. The results are different in terms
of the median values. This relationship is aligned with the
relation of the averages, i.e., in all cases except Ochiai , the call
frequency-based method achieves a lower median (exluding
Closure does not change the result here).

This set of data can further be analyzed with the help of
Table IX. Here, we also presented the relative average ranks
(E′), as well as the relative change between the hit-based
and call frequency-based algorithm variants. The difference
is shown as a simple difference between the two algorithm
variants both for E and E′, and also as a relative change
compared to the traditional hit-based algorithm. If this value
is negative, it means that we could achieve improvement with
our new algorithms, and these results are highlighted in bold.
Data is presented per subject program and also for the whole
benchmark as well in the last column.

It can be seen that call frequency-based algorithms that
achieve an improved E can produce relative improvement
between 39% and 52%. It is interesting to note that on the
full bug data set, the new Ochiai variant performs worse

TABLE VIII: Average ranks, maximum and median of the ranks and p-value of Wilcoxon signed-rank test
project B BC p-value J JC p-value O OC p-value R RC p-value S SC p-value

Chart 15.94 13.18 0.984 9.46 11.80 0.211 8.82 14.32 0.027 50.36 21.18 0.000 9.46 12.72 0.083
Closure 76.35 46.75 0.083 77.68 46.84 0.050 69.63 75.98 0.011 338.66 163.82 0.000 77.68 47.17 0.059

Lang 5.18 3.83 0.011 4.55 3.75 0.095 4.46 3.56 0.310 5.46 3.92 0.020 4.55 3.62 0.089
Math 10.20 6.04 0.000 10.08 6.00 0.000 10.32 6.18 0.000 21.45 9.23 0.000 10.08 6.03 0.000

Mockito 26.09 17.15 0.742 26.06 17.15 0.753 25.87 23.44 0.213 81.81 49.89 0.064 26.06 17.26 0.732
Time 19.77 8.31 0.077 19.67 8.19 0.075 18.38 8.88 0.357 55.46 16.98 0.000 19.67 8.19 0.068

all 38.50 23.66 0.000 38.51 23.58 0.001 35.13 36.12 0.096 156.61 75.52 0.000 38.51 23.77 0.001
all w/o Closure 12.32 7.70 0.000 11.43 7.51 0.000 11.28 8.57 0.112 30.76 14.47 0.000 11.43 7.60 0.001

Max. 927.5 523.0 927.5 520.0 927.5 653.5 1200.5 957.5 927.5 510.0

Median 5.5 4.0 5.5 4.0 5.0 6.0 46.5 12.5 5.5 4.0
Median w/o Closure 3.0 2.5 3.0 2.0 2.5 3.0 14.0 4.0 3.0 2.0

TABLE IX: Absolute and relative average rank improvements
Closure Chart Lang Math Mockito Time all

B -E (E’) 76.4 (0.80%) 15.9 (0.15%) 5.2 (0.24%) 10.2 (0.20%) 26.1 (2.01%) 19.8 (0.47%) 38.5 (0.70%)
BC -E (E’) 46.7 (0.49%) 13.2 (0.13%) 3.8 (0.17%) 6.0 (0.12%) 17.1 (1.32%) 8.3 (0.20%) 23.7 (0.43%)

Diff. E (E’) -29.7 (-0.31%) -2.7 (-0.02%) -1.4 (-0.07%) -4.2 (-0.08%) -9.0 (-0.69%) -11.5 (-0.27%) -14.8 (-0.27%)
Relative change -39% -17% -27% -41% -34% -58% -38%

J -E (E’) 77.7 (0.81%) 9.5 (0.09%) 4.5 (0.20%) 10.1 (0.19%) 26.1 (2.01%) 19.7 (0.47%) 38.5 (0.70%)
JC -E (E’) 46.8 (0.49%) 11.8 (0.11%) 3.7 (0.17%) 6.0 (0.12%) 17.1 (1.32%) 8.2 (0.20%) 23.6 (0.43%)

Diff. E (E’) -30.9 (-0.32%) 2.3 (0.02%) -0.8 (-0.03%) -4.1 (-0.07%) -9.0 (-0.69%) -11.5 (-0.27%) -14.9 (-0.27%)
Relative change -40% 24% -18% -41% -34% -58% -39%

O-E (E’) 69.6 (0.72%) 8.8 (0.09%) 4.5 (0.20%) 10.3 (0.20%) 25.9 (1.99%) 18.4 (0.44%) 35.1 (0.64%)
OC -E (E’) 76.0 (0.79%) 14.3 (0.14%) 3.6 (0.16%) 6.2 (0.12%) 23.4 (1.80%) 8.9 (0.21%) 36.1 (0.66%)
Diff. E (E’) 6.4 (0.07%) 5.5 (0.05%) -0.9 (-0.04%) -4.1 (-0.08%) -2.5 (-0.19%) -9.5 (-0.23%) 1.0 (0.02%)

Relative change 9% 62% -20% -40% -10% -52% 3%

R-E (E’) 338.7 (3.53%) 50.4 (0.49%) 5.5 (0.25%) 21.4 (0.41%) 81.8 (6.29%) 55.5 (1.32%) 156.6 (2.85%)
RC -E (E’) 163.8 (1.71%) 21.2 (0.21%) 3.9 (0.18%) 9.2 (0.18%) 49.9 (3.84%) 17.0 (0.4%) 75.5 (1.37%)

Diff. E (E’) -174.9 (-1.82%) -29.2 (-0.28%) -1.6 (-0.07%) -12.2 (-0.23%) -31.9 (-2.45%) -38.5 (-0.92%) -81.1 (-1.48%)
Relative change -52% -58% -29% -57% -39% -69% -52%

S -E (E’) 77.7 (0.81%) 9.5 (0.09%) 4.5 (0.20%) 10.1 (0.19%) 26.1 (2.01%) 19.7 (0.47%) 38.5 (0.70%)
SC -E (E’) 47.2 (0.49%) 12.7 (0.12%) 3.6 (0.16%) 6.0 (0.12%) 17.3 (1.33%) 8.2 (0.20% 23.8 (0.43%)

Diff. E (E’) -30.5 (-0.32%) 3.2 (0.03%) -0.9 (-0.04%) -4.1 (-0.07%) -8.8 (-0.68%) -11.5 (-0.27%) -14.7 (-0.27%)
Relative change -39% 34% -20% -41% -34% -58% -38%

than the hit-based formulas, but looking at the per project
data individually, we can observe that the traditional methods
achieve better ranks in only two of the six projects (Closure
and Chart). However, as these two projects contain almost half
of the bugs in the benchmark (47%) these can significantly
affect the aggregate result.

As an aggregate statistics, we can conclude that out of
a possible 35 project-algorithm pairs (5 algorithms times 6
projects and one aggregated set), there was a total of 5 cases
where the call frequency-based algorithm did not achieve some
improvement in the average ranks, which is only 14.3% of the
possible scenarios.

By comparing these results to those that we obtained for
RQ1 reveals an interesting insight. Despite some of the new
algorithms managed to outperform the original ones many
times and consistently to a large extent (Russell -Rao, for
instance), the improved version could still not outperform
some other algorithms. This was because the base version of
such algorithms performed very badly in the first place.

RQ2: For all but one subject, some of the proposed call
frequency-based algorithms achieved the best relative aver-
age rank. Of the new algorithms, JaccardC performed the
best overall, producing the lowest rank average on half of
the subjects and on the full data set as well. In 81% of the
algorithm-project pairs, the approach using call frequencies
gave better results, of which BarinelC stands out because
it achieved a lower rank than Barinel in all cases.

Looking at the average ranks has its drawbacks. First,
outliers could distort the overall information on the perfor-
mance of our algorithm, as we have seen with the subject
Closure. Second, it can tell us nothing about the distribution
of the different rank values, and how do they change from the
traditional to the new algorithm. We believe that not all (ab-
solute) rank positions are equally important, as we discussed
in Section III-B. Hence, in the next set of experiments we
will concentrate on the Top-N findings (RQ3). In Table X,
we can see the number of bugs belonging to the corresponding
Top-N categories (with their percentages), accumulated for the
whole benchmark, for each hit-based and call frequency-based
algorithm. The best values for each category are highlighted
in bold.

TABLE X: Top-N (count and percent)
Top-1 (%) Top-3(%) Top-5(%) Top-10(%) Other(%)

B 65 (15.82%) 165 (40.15%) 201 (48.91%) 248 (60.34%) 163 (39.66%)
BC 74 (18.00%) 179 (43.55%) 222 (54.01%) 269 (65.45%) 142 (34.55%)

J 66 (16.06%) 168 (40.88%) 203 (49.39%) 250 (60.83%) 161 (39.17%)
JC 77 (18.73%) 185 (45.01%) 223 (54.26%) 269 (65.45%) 142 (34.55%)

O 68 (16.55%) 172 (41.85%) 209 (50.85%) 254 (61.80%) 157 (38.20%)
OC 70 (17.03%) 162 (39.42%) 191 (46.47%) 245 (59.61%) 166 (40.39%)

R 10 (2.43%) 57 (13.87%) 72 (17.52%) 110 (26.76%) 301 (73.24%)
RC 34 (8.27%) 119 (28.95%) 154 (37.47%) 196 (47.69%) 215 (52.31%)

S 66 (16.06%) 168 (40.88%) 203 (49.39%) 250 (60.83%) 161 (39.17%)
SC 77 (18.73%) 183 (44.53%) 221 (53.77%) 266 (64.72%) 145 (35.28%)

We can instantly observe that JaccardC outperformed all
the rest in each of the categories, with two cases where

it produced the same results as with some of the other
call frequency-based approach (Sørensen-DiceC for Top-
1 and BarinelC for Top-10). Similarly to earlier findings,
only OchiaiC did not manage to outperform its hit-based
counterpart, except for Top-1.

RQ3: In each Top-N category, one of the call frequency-
based approaches provided the best results overall: they
put the most buggy elements in these high rank categories
(JaccardC and BarinelC performed specifically well in
this regard). Furthermore, four of them gave better results
in every category than their hit-based variants.

A particularly interesting case of the difference between the
hit-based and the call frequency-based results considering the
Top-N elements is when the traditional approach produces a
very high rank (Other category with rank > 10) while the
new algorithm moves this to a lower Top-N category. As this
brings a “new hope” that a bug could possibly be found by
the user with the new algorithm while it was very improbable
with the old, we call this these cases enabling improvements
(RQ4). Table XI summarizes such cases.

The second column shows the number of bugs where the
rank calculated by the hit-based algorithm was greater than
10. In the third column, we can see how many of these bugs
the call frequency-based algorithms classified in the Top-10
or better groups. The percentages in the 2nd and 3rd columns
were calculated with respect to the number of bugs in the
whole dataset. The last column shows the average difference
between the ranks in the enabling cases together with the
relative improvement compared to the original rank that was
calculated by the hit-based approach.

TABLE XI: Enabling improvements

test-hit
rank >10 (%)

Enabling
improv. (%)

Relative
improv. (%)

B vs. BC 163 (39.7%) 51 (12.4%) -34.9 (-87.5%)
J vs. JC 161 (39.2%) 50 (12.2%) -34.9 (-87.1%)
O vs. OC 157 (38.2%) 50 (12.2%) -35.2 (-87.5%)
R vs. RC 301 (73.2%) 91 (22.1%) -58.7 (-92.8%)
S vs. SC 161 (39.2%) 49 (11.9%) -35.1 (-87.4%)

We can observe that each call frequency-based algorithm
achieves enabling improvements for at least 11% of the bugs.
In these cases the test-hit algorithm ranked the faulty method
in the other category, but the frequency-based algorithm man-
aged to bring it forward into the Top-10 (or better) groups.
Considering the improvement of the actual ranks in these
cases, we can see that the frequency-based algorithms were
able to lower the ranks by about 34-59 positions, which
corresponds to a 87-93% relative improvement. Note that,
Russell -RaoC seems to be the best in this aspect, but since
Russell -Rao has the worst performance among other hit-based
algorithms there are twice as much bugs outside the Top-10 as
in the case of other algorithms. Overall, each algorithm was
able to achieve enabling improvements in about third of the
possible cases.

RQ4: Call frequency-based algorithms move more than 11%
of bugs in the total dataset from the “hopeless” category
of ranks > 10 to some of the higher rank positions that
are more probable to be actually useful for the users. The
improvement in rank value in such cases exceeded 87% for
all newly proposed algorithms.

TABLE XII: Global comparison of all algorithms

B BC J JC O OC R RC S SC

B © ↑ ← ↑ ↑ ↑ ← ← ← ↑
BC ← © ← ↑ ← ← ← ← ← ←
J ↑ ↑ © ↑ ↑ ↑ ← ← ↑ ↑
JC ← ← ← © ← ← ← ← ← ←
O ← ↑ ← ↑ © ← ← ← ← ↑
OC ← ↑ ← ↑ ↑ © ← ← ← ↑
R ↑ ↑ ↑ ↑ ↑ ↑ © ↑ ↑ ↑
RC ↑ ↑ ↑ ↑ ↑ ↑ ← © ↑ ↑
S ↑ ↑ ↑ ↑ ↑ ↑ ← ← © ↑
SC ← ↑ ← ↑ ← ← ← ← ← ©

better 4 8 3 9 6 5 0 1 3 7
worse 5 1 6 0 3 4 9 8 6 2

As a summarization of previous data, we compared all
algorithms – both the hit-based and call frequency-based ones
– with each other and examined how many times each method
results in a better (absolute) average rank than the others. This
comparison is included in Table XII. The arrows in this table
are used to denote which of the two corresponding algorithms
performed better, i.e., which achieved a better average rank
across the whole dataset. If the arrow points to the left then
the algorithm shown in the row is more efficient, and if it
points up the method in the column performed better. The last
two rows of the table summarize how many times a given
method proved to be better and worse than the others.

It can clearly be seen that JaccardC is a clear winner among
all methods as it provided lower average ranks than any other.
It is followed by BarinelC and Sørensen-DiceC . The last
two call frequency-based formulas did not perform particularly
well: Ochiai was better than five other algorithms but was
superseded by the rest four, while Russell -RaoC was beaten
by almost all the other algorithms. The hit-based methods
follow after this set, which underlines that the new proposed
methods can generally provide notable improvements. Also,
each call frequency-based method outperforms its hit-based
counterpart, except OchiaiC .

When we compare the relative order of the algorithms
according to this set of data within their families (i.e., hit-based
ones and call frequency-based ones to each other), we can
reveal interesting insights. The traditional algorithms give the
following order starting with the most successful one: Ochiai ,
Barinel , Jaccard /Sørensen-Dice, Russell -Rao. Previous lit-
erature reported similar relationships between these tech-
niques, e.g. [32]. On the other hand, the new approaches
generate this list: JaccardC , BarinelC , Sørensen-DiceC ,
OchiaiC , Russell -RaoC , which is different than what would
be expected. An interesting finding is, for instance, that
JaccardCmade to the first position, and OchiaiC turned out

to be much worse than expected, while this algorithm being
constantly reported as one of the most successful ones among
the hit-based SBFL families.
RQ5: Of the new algorithms examined, three call
frequency-based approaches (JaccardC , BarinelC and
Sørensen-DiceC) stand out from the others in terms of
their average ranks, JaccardCbeing the clear winner by
providing better results than all the others including the
hit-based approaches. Hence, these formulas seem to be
best fitted to benefit from call frequency information.
Contrary to what we expected, OchiaiC did not perform
well, while its hit-based version provides typically very
good results within its family of methods.

V. DISCUSSION

A. An Example from the Benchmark

To understand how does the proposed approach achieve
such improvements, we manually analyzed several bugs from
the Defects4J dataset. One interesting case we looked at was
bug 103 from the Commons Math project [39], [40]. Figure 4
visualizes schematically the test-to-code relations of this bug.

Fig. 4: Methods and tests related to the Math-103 bug

There are 16 test cases in this scenario, from which 15 are
passing and one is failing. The Methods box contains those
methods that are covered by the failing test. They are arranged
vertically (top-to-bottom) based on their ranks and the faulty
method is marked in red. The Tests box encloses the failing
test (in red) and a placeholder for all passing tests, which
cover the same methods as the failing test. For the sake of
clarity, passing tests were aggregated into one node and only
the 5 most suspicious methods are shown. The weights on the
edges indicate |mef | and |mep| values, and C(mef) values
are also shown in parentheses. For example, the method called
cumulativeProbability appears five times in the UDCS-s that
were collected during the execution of the failing test and it
was covered by 7 passing tests. Similarly, both printStackTrace
methods were found once in the UDCS-s generated by the
failing test, and they were covered by 2 passing tests.

In the case of the hit-based approach, Jaccard scores of
these methods (from 1st to 5th by rank) are 1

2 , 1
3 , 1

3 , 1
4

and 1
8 . JaccardC scores are the same as Jaccard values,

except for the buggy method where the JaccardC score is 5
8 .

(Other formulas produce different scores in this case but the
ranks are the same.) As can be seen, the traditional approach

emphasizes the exception handling parts of the code, which
are covered by the failing test, but otherwise unrelated to the
actual bug. However, the proposed formulas incorporate the
frequency values into their numerator, which emphasizes the
importance of the relationship between the failing tests and
a particular method. In case of this bug, testExtremeValues
calls cumulativeProbability directly repeatedly in a loop. Then,
cumulativeProbability calls several other utility methods to
calculate the probability. The loop is executed until the calcu-
lated probability reaches an extremely low or high value or an
exception is thrown. As a result, cumulativeProbability appears
5 times in 5 different UDCS-s, while other related methods
appear fewer times, hence the frequency-based approach can
distinguish cumulativeProbability based on the additional con-
textual information that is provided by the UDCS-s. Note that
a simple count-based algorithm would yield the same scores
for those methods that are called in the aforementioned loop.

B. Threats to Validity

A possible threat to validity of our empirical study is that
we had to exclude some parts of the Defects4J dataset, so this
could make it difficult to compare the results to other studies
employing the same benchmark. However, this affected only
27 bugs, which amounts to about 6% of the total bugs in the
original set. The reason was that we could not compute UDCS-
s for these cases due to technical limitations of the analysis.
This selection was in no ways influenced by the results of
the algorithms and the skipped bugs are distributed in the
benchmark approximately evenly, so we believe that this factor
can be considered minimal.

It is also a threat that we used only one benchmark that
includes programs written in one language, Java. However,
the bugs themselves are real and validated bugs and not
manually seeded or generated as is the case with many other
benchmarks used in FL research. Nevertheless, it would be
useful to examine the performance of the approach on other
data sets consisting of programs in other languages and other
types and quantity of defects. For example, it is not known
how would the approach perform in the presence of multiple
bugs.

To compare the effectiveness of the call frequency-based
approach, we selected a set of five SBFL formulas that share a
common property: their numerators are compatible. Our results
indicate that the proposed enhancement to the formulas can
result in improvements in almost all cases in this class of
algorithms. It is not known, however, if this concept could be
successfully applied to other types of SBFL formulas, which
is among our plans for future work.

Coarse granularity of analysis is a common criticism of
similar experiments. In the present phase of the research, we
relied on method-level granularity, and there are studies that
find that using the method-level is good enough to help users
identify the error [23], [25]. Currently, it is not known if the
concept could be successfully adapted to other granularities
such as statement. It remains future work to investigate this
aspect.

VI. RELATED WORK

A. Spectrum-based Fault Localization
Automated fault localization techniques have been around

for more than three decades. There have been several surveys
written [3], [4], [7], [41], and various empirical studies per-
formed [6], [23], [27] to compare the effectiveness of various
methods. While there are other fault localization techniques
as well [18], [42]–[46], SBFL emerged into one of the main
approaches of Software Fault Localization.

Despite the immense literature, SBFL is still to find its way
to be used in practice [12], [13], [27]. Often the faulty element
is placed far from the top of the rank-list [10], and this way
the developer will refuse to use any help for localizing bugs.
Abreu et al. [24] made a study on how accurate the SBFL
approaches are. They found that the SBFL’s accuracy is highly
independent of the quality of test design.

B. Extending Hit-based Spectra
The basic constituent of SBFL is code coverage information.

The most universally used spectra are based on individual
statements or methods [47], [48], [49].

Harold et al. [20] proposed several other types of program
spectra, however, the hit-based approach remained the most
studied one. Abreu et al. [22] performed an empirical study
on the count spectra for Fault Localization using Barinel [27].
They compared it to classical SBFL algorithms, however it
did not improve the average ranks on real programs and bugs.

Classical SBFL algoritms are limited for locating faults
in loops. Shu et al. [50] improved the Tarantula metric by
extending it with counting the statement frequency. Likewise,
our method tackles the same issue but in a different manner.

Lee et al. [51] proposed a new approach that improves SBFL
by using frequency counts of test coverage. However, only
counting the statement frequency can lead to distortion in the
statistics. We use UDCS-s to mitigate this issue.

Laghari et al. [52] proposed a heuristic for SBFL using
call sequences to rank the classes. Their method can pinpoint
56% of the faulty classes of NanoXML in all test runs.
Their apporach filters out the repetitive method calls, which
is similar to our approach.

C. Call Stacks and Function Call Information
Not many studies investigated call stacks and function call

information in the context of fault localization. Beszédes
et al. [26] used the Ochiai formula and expanded it with
function call-chains context information. Function call chains
and UDCS-s are both based on dynamic call information,
but while it is expensive to compute call chains for large
programs, UDCS-s are cheaper, hence our approach has better
performance. Also, our method does not need expensive data
structures such as call-chain matrices.

Jiang et al. [53] used the stack trace to locate null pointer
exceptions more efficiently. Gong et al. [54] generate stack
traces to help localize crash faults. They were able to find
64% crashing faults in Firefox 3.6.

VII. CONCLUSION

We proposed a new Spectrum-Based Fault Localization
concept that is based on method call frequency information.
We rely on the notion of Unique Deepest Call Stacks, data
structures that capture call stack state information occurring
on test case execution, and count the number of method oc-
currences within these structures. This is an advanced concept
over simple call counts, which eliminates the problem of very
large number of repetitions due to loops. With this information,
we modified five traditional hit-based SBFL formulas, and em-
pirically verified how much we can improve fault localization
effectiveness on the Defects4J benchmark.

We achieved improvement in most cases: four of the five
algorithms resulted statistically significant relative improve-
ments of rank position in the range from 38%–52%. The
remaining one (modified version of Ochiai) showed only a
minimal deterioration on the full bug data set (3%), and this
was caused by some outlier data. Without it, this algorithm also
showed a relative improvement between 10%–52%. Of the
total of 10 formulas examined (5 original and 5 modified), the
top three best performing were call frequency-based, the best
being the enhanced Jaccard , whose average ranks were better
than all the other candidates’. The same algorithm showed
specifically large improvements in the highest rank positions as
well (top-1 to top-10), which is important in terms of practical
usability of SBFL in general. So, we can conclude that the
best candidates to benefit from call frequency information are
formulas Jaccard , Barinel and Sørensen-Dice.

We have several plans for future work. We would like to
verify the performance of the approach on statement-level
granularity, as well as with other SBFL formulas and on other
benchmarks. In particular, we would like to systematically
compare our approach to simple count-based methods and
analyze more deeply the reasons behind the improvements.
Also, our plan is to experiment with other parts of the
formulas, not just the numerators. Finally, we investigated only
one property of the call stacks, but we think that there might
be other interesting features of these structures that are worth
investigating to include them in the SBFL formulas.

To enable the reproduction of our experiments and addi-
tional analyses, we made the measurement framework and
the final results publicly available on GitHub [55] and
Figshare [56].

ACKNOWLEDGMENT

This research was supported by grant NKFIH-1279-2/2020
of the Ministry for Innovation and Technology, Hungary. Attila
Szatmári was supported by project EFOP-3.6.3-VEKOP-16-
2017-0002, co-funded by the European Social Fund. This work
was partially supported by the EU-funded Hungarian national
grant GINOP-2.3.2-15-2016-00037 titled Internet of Living
Things.

REFERENCES

[1] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program profiling
for software maintenance with applications to the year 2000 problem,”
ACM SIGSOFT Software Engineering Notes, vol. 22, no. 6, pp. 432–449,
Nov. 1997.

[2] J. S. Collofello and L. Cousins, “Towards automatic software fault
location through decision-to-decision path analysis,” in Managing Re-
quirements Knowledge, International Workshop on(AFIPS), vol. 00, 12
1899, p. 539.

[3] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, Aug 2016.

[4] P. Parmar and M. Patel, “Software fault localization: A survey,” Interna-
tional Journal of Computer Applications, vol. 154, pp. 6–13, 11 2016.

[5] H. A. de Souza, M. L. Chaim, and F. Kon, “Spectrum-based software
fault localization: A survey of techniques, advances, and challenges,”
ArXiv, vol. abs/1607.04347, 2016.

[6] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the 39th International Conference on Software
Engineering, ser. ICSE ’17. IEEE Press, 2017, p. 609–620. [Online].
Available: https://doi.org/10.1109/ICSE.2017.62

[7] P. Agarwal and A. Agrawal, “Fault-localization techniques for software
systems,” ACM SIGSOFT Software Engineering Notes, vol. 39, pp. 1–8,
09 2014.

[8] F. Keller, L. Grunske, S. Heiden, A. Filieri, A. van Hoorn, and D. Lo,
“A critical evaluation of spectrum-based fault localization techniques on
a large-scale software system,” in 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS). IEEE, 2017, pp.
114–125.

[9] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 4, pp. 31:1–31:40, Oct. 2013.

[10] X. Xia, L. Bao, D. Lo, and S. Li, ““automated debugging considered
harmful” considered harmful: A user study revisiting the usefulness of
spectra-based fault localization techniques with professionals using real
bugs from large systems,” in 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2016, pp. 267–
278.

[11] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 international sym-
posium on software testing and analysis, 2011, pp. 199–209.

[12] T. B. Le, F. Thung, and D. Lo, “Theory and practice, do they match? a
case with spectrum-based fault localization,” in 2013 IEEE International
Conference on Software Maintenance, 2013, pp. 380–383.

[13] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based
fault locators,” ser. ISSTA 2013. New York, NY, USA: Association
for Computing Machinery, 2013, p. 314–324. [Online]. Available:
https://doi.org/10.1145/2483760.2483767

[14] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 165–176.

[15] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-based
fault localization using pagerank,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2017, pp. 261–272.

[16] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 169–180.

[17] W. Eric Wong and Y. Qi, “Bp neural network-based effective fault local-
ization,” International Journal of Software Engineering and Knowledge
Engineering, vol. 19, 11 2011.

[18] X. Zhang, H. He, N. Gupta, and R. Gupta, “Experimental evaluation
of using dynamic slices for fault location,” ser. AADEBUG’05,
New York, NY, USA, 09 2005, pp. 33–42. [Online]. Available:
https://doi.org/10.1145/1085130.1085135

[19] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” SIGPLAN Not., vol. 40, no. 6, p. 15–26, Jun.
2005. [Online]. Available: https://doi.org/10.1145/1064978.1065014

[20] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi, “An empirical
investigation of program spectra,” in Proceedings of the 1998 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software

Tools and Engineering, ser. PASTE ’98. New York, NY, USA:
Association for Computing Machinery, 1998, p. 83–90. [Online].
Available: https://doi.org/10.1145/277631.277647

[21] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An
empirical investigation of the relationship between spectra differences
and regression faults,” Software Testing, Verification and Reliability,
vol. 10, no. 3, pp. 171–194, 2000.

[22] R. Abreu, A. Gonzalez-Sanchez, and A. J. van Gemund, “Exploiting
count spectra for bayesian fault localization,” in Proceedings of the 6th
International Conference on Predictive Models in Software Engineering,
ser. PROMISE ’10. New York, NY, USA: Association for Computing
Machinery, 2010, pp. 1–10.

[23] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, 2019.

[24] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Testing: Academic and industrial
conference practice and research techniques-MUTATION (TAICPART-
MUTATION 2007). IEEE, 2007, pp. 89–98.

[25] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
2016, pp. 177–188.

[26] Á. Beszédes, F. Horváth, M. Di Penta, and T. Gyimóthy, “Leverag-
ing contextual information from function call chains to improve fault
localization,” in 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2020, pp. 468–
479.

[27] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund, “A practical
evaluation of spectrum-based fault localization,” Journal of Systems and
Software, vol. 82, no. 11, pp. 1780–1792, 2009.

[28] S. Heiden, L. Grunske, T. Kehrer, F. Keller, A. Van Hoorn, A. Filieri,
and D. Lo, “An evaluation of pure spectrum-based fault localization
techniques for large-scale software systems,” Software: Practice and
Experience, vol. 49, no. 8, pp. 1197–1224, 2019.

[29] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Transactions on software engineering
and methodology (TOSEM), vol. 20, no. 3, pp. 1–32, 2011.

[30] S. Yoo, “Evolving human competitive spectra-based fault localisation
techniques,” in International Symposium on Search Based Software
Engineering. Springer, 2012, pp. 244–258.

[31] N. Neelofar, L. Naish, and K. Ramamohanarao, “Spectral-based fault
localization using hyperbolic function,” Software: Practice and Experi-
ence, vol. 48, no. 3, pp. 641–664, 2018.

[32] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “Spectrum-based multi-
ple fault localization,” in 2009 IEEE/ACM International Conference on
Automated Software Engineering. IEEE, 2009, pp. 88–99.

[33] L. Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi, “Extended compre-
hensive study of association measures for fault localization,” Journal of
software: Evolution and Process, vol. 26, no. 2, pp. 172–219, 2014.

[34] A. Schröter, N. Bettenburg, and R. Premraj, “Do stack traces help
developers fix bugs?” in 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010). IEEE, 2010, pp. 118–121.

[35] A. Rountev, S. Kagan, and M. Gibas, “Static and dynamic
analysis of call chains in java,” in Proceedings of the 2004 ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ACM. New York, NY, USA: ACM, 2004. [Online]. Available:
http://doi.acm.org/10.1145/1007512.1007514

[36] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware
performance counters with flow and context sensitive profiling,”
SIGPLAN Not., vol. 32, p. 85–96, 1997. [Online]. Available:
http://doi.acm.org/10.1145/258916.258924

[37] X. Xu, V. Debroy, W. Eric Wong, and D. Guo, “Ties within fault local-
ization rankings: Exposing and addressing the problem,” International
Journal of Software Engineering and Knowledge Engineering, vol. 21,
no. 06, pp. 803–827, 2011.

[38] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics. Springer, 1992, pp. 196–202.

[39] [Online]. Available: http://program-repair.org/defects4j-dissection/#!
/bug/Math/103

[40] V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, and M. A. Maia,
“Dissection of a bug dataset: Anatomy of 395 patches from defects4j,”
in Proceedings of SANER, 2018.

https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1145/2483760.2483767
https://doi.org/10.1145/1085130.1085135
https://doi.org/10.1145/1064978.1065014
https://doi.org/10.1145/277631.277647
http://doi.acm.org/10.1145/1007512.1007514
http://doi.acm.org/10.1145/258916.258924
http://program-repair.org/defects4j-dissection/#!/bug/Math/103
http://program-repair.org/defects4j-dissection/#!/bug/Math/103

[41] W. E. Wong and V. Debroy, “A survey of software fault localization,”
Department of Computer Science, University of Texas at Dallas, Tech.
Rep. UTDCS-45, vol. 9, 2009.

[42] H. Cao, S. Jiang, X. Ju, Z. Yanmei, and G. Yuan, “Applying association
analysis to dynamic slicing based fault localization,” IEICE Transactions
on Information and Systems, vol. E97.D, pp. 2057–2066, 08 2014.

[43] T. Simomura, “Critical slice-based fault localization for any type of
error,” IEICE Transactions on Information and Systems, vol. 76, pp.
656–667, 1993.

[44] M. Papadakis and Y. Le Traon, “Metallaxis-fl: Mutation-based fault
localization,” Softw. Test. Verif. Reliab., vol. 25, no. 5–7, p. 605–628,
Aug. 2015. [Online]. Available: https://doi.org/10.1002/stvr.1509

[45] ——, “Effective fault localization via mutation analysis: A selective
mutation approach,” in Proceedings of the 29th Annual ACM
Symposium on Applied Computing, ser. SAC ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 1293–1300.
[Online]. Available: https://doi.org/10.1145/2554850.2554978

[46] Z. Li, Y. Wu, H. Wang, and Y. Liu, Test Oracle Prediction for Mutation
Based Fault Localization, 09 2019, pp. 15–34.

[47] G. Shu, B. Sun, A. Podgurski, and F. Cao, “Mfl: Method-level fault
localization with causal inference,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, 2013, pp.
124–133.

[48] R. Santelices, J. A. Jones, Yanbing Yu, and M. J. Harrold, “Lightweight
fault-localization using multiple coverage types,” in 2009 IEEE 31st
International Conference on Software Engineering, 2009, pp. 56–66.

[49] C. Oo and H. M. Oo, Spectrum-Based Bug Localization of Real-World

Java Bugs. Cham: Springer International Publishing, 2020, pp. 75–89.
[Online]. Available: https://doi.org/10.1007/978-3-030-24344-9 5

[50] T. Shu, T. Ye, Z. Ding, and J. Xia, “Fault localization based on
statement frequency,” Information Sciences, vol. 360, pp. 43 – 56,
2016. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0020025516302663

[51] H. J. Lee, L. Naish, and K. Ramamohanarao, “Effective software bug
localization using spectral frequency weighting function,” in 2010 IEEE
34th Annual Computer Software and Applications Conference, 2010, pp.
218–227.

[52] G. Laghari, A. Murgia, and S. Demeyer, “Localising faults in test
execution traces,” ser. IWPSE 2015, 08 2015, pp. 1–8.

[53] S. Jiang, W. Li, H. Li, Z. Yanmei, H. Zhang, and Y. Liu, “Fault
localization for null pointer exception based on stack trace and program
slicing,” in Proceedings of the 2012 12th International Conference on
Quality Software, ser. QSIC ’12. USA: IEEE Computer Society, 08
2012, pp. 9–12.

[54] L. Gong, H. Zhang, H. Seo, and S. Kim, “Locating crashing faults based
on crash stack traces,” 04 2014.

[55] “Supplemental material for paper ‘Call Frequency-Based
Fault Localization’ - GitHub,” 2021. [Online]. Avail-
able: https://github.com/sed-szeged/SpectrumBasedFaultLocalization/
tree/CallFrequencyBasedFL

[56] “Supplemental material for paper ‘Call Frequency-Based Fault
Localization’ - figshare,” 2021. [Online]. Available: https://doi.org/10.
6084/m9.figshare.13537298.v1

https://doi.org/10.1002/stvr.1509
https://doi.org/10.1145/2554850.2554978
https://doi.org/10.1007/978-3-030-24344-9_5
http://www.sciencedirect.com/science/article/pii/S0020025516302663
http://www.sciencedirect.com/science/article/pii/S0020025516302663
https://github.com/sed-szeged/SpectrumBasedFaultLocalization/tree/CallFrequencyBasedFL
https://github.com/sed-szeged/SpectrumBasedFaultLocalization/tree/CallFrequencyBasedFL
https://doi.org/10.6084/m9.figshare.13537298.v1
https://doi.org/10.6084/m9.figshare.13537298.v1

	Introduction
	Call Frequency-Based Fault Localization Algorithms
	Hit-Based Methods
	Proposed Technique

	Empirical Evaluation
	Subject Programs
	Evaluation of Effectiveness

	Results
	Discussion
	An Example from the Benchmark
	Threats to Validity

	Related Work
	Spectrum-based Fault Localization
	Extending Hit-based Spectra
	Call Stacks and Function Call Information

	Conclusion
	References

