
Interactive Fault Localization for Python with CharmFL
Attila Szatmári

szatma@inf.u-szeged.hu
Department of Software Engineering,

University of Szeged
Szeged, Hungary

Qusay Idrees Sarhan
sarhan@inf.u-szeged.hu

Department of Software Engineering,
University of Szeged
Szeged, Hungary

Department of Computer Science,
University of Duhok

Duhok, Iraq

Árpád Beszédes
beszedes@inf.u-szeged.hu

Department of Software Engineering,
University of Szeged
Szeged, Hungary

ABSTRACT
We present a plug-in called “CharmFL” for the PyCharm IDE. It em-
ploys Spectrum-based Fault Localization to automatically analyze
Python programs and produces a ranked list of potentially faulty
program elements (i.e., statements, functions, etc.). Our tool offers
advanced features, e.g., it enables the users to give their feedback on
the suspicious elements to help re-rank them, thus improving the
fault localization process. The tool utilizes contextual information
about program elements complementary to the spectrum data. The
users can explore function call graphs during a failed test. Thus
they can investigate the data flow traces of any failed test case or
construct a causal inference model for the location of the fault. The
tool has been used with a set of experimental use cases.

CCS CONCEPTS
• Software and its engineering → Dynamic analysis; Software
maintenance tools; Integrated and visual development environments;
Software testing and debugging; • Human-centered comput-
ing → Interactive systems and tools.

KEYWORDS
Debugging, spectrum-based fault localization, Interactive Fault Lo-
calization, CharmFL, Python, PyCharm

ACM Reference Format:
Attila Szatmári, Qusay Idrees Sarhan, and Árpád Beszédes. 2022. Interactive
Fault Localization for Python with CharmFL. In Proceedings of the 13th Inter-
national Workshop on Automating Test Case Design, Selection and Evaluation
(A-TEST ’22), November 17–18, 2022, Singapore, Singapore. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Software systems and applications cover many aspects of our day-
to-day activities. However, they are still far from being free of faults.
Software faults may cause critical undesired situations, including
life loss. Therefore, various software fault localization techniques

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
A-TEST ’22, November 17–18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

have been proposed over the last few decades, including Spectrum-
based fault localization (SBFL) [6]. In SBFL, the probability of each
program element (e.g., statements) being faulty is calculated based
on program spectra obtained by executing test cases. However, SBFL
is not yet widely used in the industry because it poses a number of
issues [4]. One such issues is that most SBFL tools currently target
programs written in C/C++ and Java. Thus, there is a lack of SBFL
tools that help developers debug their programs that are written
in other programming languages, including Python, which is also
considered to be one of the most popular programming languages.

In our previous paper [9], we presented a framework called
“CharmFL” to support the fault localization process in the PyCharm
IDE. However, it does not employ interactive fault localization for
its users.

SBFL approaches usually compute program elements’ suspicious-
ness scores without consulting the user, which is considered one
of the main issues that decrease its applicability [14]. As a result,
the user’s prior knowledge of the subject program is not used to
increase fault localization accuracy. By including the users and
taking into account their feedback on the suspicious elements or an
element’s context and ranks, the fault localization process can be
improved. We introduce “close” and “far” contexts for each program
statement. “Close” context refers to the method that contains the
statement and “far” context refers to the methods that call or have
been called by the method that contains the investigated statement.
In this paper, we introduce “CharmFL” with an interactivity fea-
ture. Another feature it provides is the display of a static call graph,
which adds context that helps users to provide their feedback on
the suspiciousness of code elements, and in particular, changes the
scores based on the calling distance from the investigated element.

2 SPECTRUM BASED FAULT LOCALIZATION
(SBFL)

Fault localization is a time-consuming part of the software debug-
ging process, therefore, the need for automation is very important.
There are several approaches implementing the process[15]. Using
the program’s spectra (i.e., program elements, per-test coverage,
and test results), SBFL can help programmers find the faulty element
in the target program’s code easier. The code coverage matrix is a
two-dimensional matrix used to represent the relationship between
the test cases and the program elements. Its rows demonstrate the
test cases and its columns represent the program elements. An
element of the matrix is 1 if it is covered by the test case, otherwise
it is 0. In another matrix vector, the test results are stored, where

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

A-TEST ’22, November 17–18, 2022, Singapore, Singapore Attila Szatmári, Qusay Idrees Sarhan, and Árpád Beszédes

0 means the test case passed and 1 means it failed. Using these
matrices, the following four basic statistical numbers are calculated
for each program element 𝑒:

• 𝑒 𝑓 : number of failed tests covering 𝑒
• 𝑒𝑝 : number of passed tests covering 𝑒
• 𝑛𝑓 : number of failed tests not covering 𝑒
• 𝑛𝑝: number of passed tests not covering 𝑒

Then, our tool uses these four numbers with an SBFL formula
such as Tarantula [11] or Ochiai [1], etc. to provide a ranked list of
program elements. Whichever element ranked the highest in the
list, is the most suspicious of containing a bug.

3 RELATEDWORKS
“Whyline”, a standalone debugging tool for Java programs, was
proposed by Ko and Myers [12]. The tool uses static and dynamic
slicing to generate why and why not questions, which are then
displayed in a graphical and interactive style. Each question helps
the user to have some useful information about a selected program
element and also the tool collects the user’s answer to each question
to include or exclude an element from the displayed list.

Horvath et al. [8] proposed an SBFL tool called “iFL” for Java
developers using Eclipse. The tool provides a ranked list to the
user, and while debugging they flag elements that are buggy or not.
However, choosing the latter they have two options; either they
say the element’s context is suspicious or not. Given this, the tool
will recalculate the ranks with the additional information.

In [5, 7], the authors also presented an interactive fault local-
ization approach that relies on straightforward user feedback. The
user can interact with their approach by deciding whether or not
a recommended suspicious element is valid. Following that, the
proposed approach takes the simple user feedback and re-orders
the rest of the suspect program elements based on it, with the goal
of putting actually faulty elements at the top of the ranking list.

In [13], the authors proposed an approach called "Enlighten".
It uses dynamic program slicing to form a Dynamic Dependence
Graph (DDG) for every failed test in the test suite. This information
will then be used to create queries. Each query consists of a method
invocation with its input and output values, which the user can
mark as correct or incorrect. This approach in each iteration updates
the debugging data and the ranking list based on the user feedback
until the fault is found.

In [2], the authors suggested an interactivemethod for estimating
the number of coincidentally correct test cases (those that execute
faulty statements but do not cause failures) based on user comments
about the correctness of a set of statements. Thus, helping them
exclude such test cases and improve the fault localization process.

Janssen et al. [10] and Campos et al. [3] proposed a fault local-
ization tool that adopts SBFL and it is available as a command-line
tool called “Zoltar” and as an Eclipse plug-in called “Gzoltar”. It
also uses colors to mark the execution of program entities from red
to green based on their suspiciousness scores.

Compared to the tools mentioned above, our tool offers many
unique features such as: (a) it targets Python programs. (b) it sup-
ports interactivity from a new context perspective, i.e. via “close”
and “far” contexts. (c) it supports different types of coverage spectra.

(d) it can be used as a command-line tool or as a plug-in tool. (e) it
supports a hierarchical navigation of program elements.

4 INTERACTIVITY IN SBFL
Our tool implements interactivity similar to iFL4Eclipse [8], the
fault localization tool for Java programs. Via interactivity, the de-
veloper can give feedback on the elements to the tool, and it will
help the developer by recalculating the elements’ suspicious scores.

Horváth et. al. [8] defined the developer feedback as: either the
investigated element is definitely not buggy but its context may be,
or the element and its context do not contain the bug. Otherwise, the
user finds the bug. Based on their findings, including the elements’
context can help the developer, however, context may vary for
different program structures. This may be true for Python as well.
In our tool, we extend the context by investigating the static call
graph and update the element’s callers’ and callees’ scores by a
certain amount. (i.e. “recalculation factor”)

Our tool provides the possibility to generate a static call graph
for the investigated Python program. Whenever the user selects a
program element its callers and callees will be highlighted.

This is useful for developers, since they can visualize the context,
thus it helps to efficiently find the buggy element. When developers
are debugging, they investigate the “close” and “far” contexts as
well. One context might seem buggier than the other, i.e. we know
the bug is not in the method but the callee seems faulty or the other
way around. Table 1 presents an example code with a seeded fault.
It has two methods and an exception handler class. The test cases
check if the returned text equals "You guessed X right!", where X is
a provided integer. We can see the iterations of how the user’s feed-
back alternates the scores (we used Tarantula for demonstration).
The first iteration represents the basic suspiciousness scores for
each element. We set the recalculation factor for “close” context
to 1.5 and “far” context to a lower number, 1.2. The user of the tool
is provided with the option to modify these values as needed.

Following the example output from Table 1, the developer in-
vestigates the first element with the highest score (i.e., the 10th
statement). During debugging they are not sure about the “close”
context, but they can tell that the statement and the called Error
class are not faulty so they set the statement and its “far” con-
text to non-buggy. This results in multiplying the scores of the
close context elements. They investigate the next element with
the highest score and its context. The “close” context contains an
expression assignment, if-else, and print statements. They conclude
that the statement is not buggy, neither is its “close” context. In
the next iteration, the 5th statement is the only element left with a
suspiciousness score. They investigate it and find the bug.

In this simple example, they were able to find the bug only in 3
iterations, instead of following the whole original list of suspicious
elements, which would have taken at least 7 iterations. The more
complex the program, the more iterations the interactive approach
can save in finding the bug. The difference highly depends on the
developer’s expertise. However, in the worst-case scenario, they
use “CharmFL” as a basic SBFL tool, i.e. following the provided
ranked list while debugging.

Interactive Fault Localization for Python with CharmFL A-TEST ’22, November 17–18, 2022, Singapore, Singapore

Table 1: Example code and fault localization process with seeded fault

Source code Test cases Scores
Line Code tc1 tc2 tc3 tc4 tc5 0. iteration 1. iteration 2. iteration
1 class Error(Exception): - - -
2 pass • • • 0.5 0 0
3 - - -
4 def congratulations_for(i_num): - - -
5 return "".join("You guessed",i_num,"right!") # error; should be separated by white spaces • • 0.37 0.45 0.54
6 - - -
7 def guess_the_num(i_num): - - -
8 number = 10 • • • 0.5 0.75 0
9 if i_num <number: • • • 0.5 0.75 0
10 raise Error • 1 0 0
11 elif i_num >number: • • 0,37 0.56 0
12 raise Error • 1 1.5 0
13 - - -
14 return congratulations_for(i_num) • 0 0 0

Pass/Fail status F F P F P

Test cases: tc1 = guess_the_num(9); tc2 = guess_the_num(11); tc3 = guess_the_num(10); tc4 = congratulations_for(10); tc5 = Error();

5 TOOL’S OVERVIEW
5.1 Architecture
Figure 1 shows the architecture of our tool. The CharmFL engine
runs tests, collects coverage, creates static call graphs, and does
fault localization. To collect coverage, the engine uses one of the
most popular coverage frameworks for Python called coverage.py 1.
The list of options is:

python main.py -fl -d <projects_directory>-alg tarantula -r <rank_mode> To start the basic fault localization
python main.py -cg -d <projects_directory> To generate static call graph
python main.py -c <filename> To get class coverage
python main.py -m <filename> To get method coverage
python main.py -s <filename> To get spectrum

Figure 1: CharmFL architecture

The PyCharm plug-in gets the data from the engine and displays
the outcome of fault localization and the call graph. The users can
interact with this part, they can modify the list according to the
methodology presented in Section (4). They can view the corre-
sponding context of the element. After the user gives their insight,
the UI will rearrange the list accordingly and let the user continue
debugging.

5.2 Graphical User Interface (GUI)
The tool’s user interface is an IDE-specific plug-in for PyCharm.
After installing the plug-in, i.e. drag and drop the zip file into the
IDE, the user can either run fault localization or generate the static
call graph.

The hierarchical ranked list (tree) of suspicious elements is pro-
vided in the results table (Figure 2). The Action button can be used
to hide/show the elements inside each level of the hierarchy or to
1https://coverage.readthedocs.io/en/6.4.1/

jump to a specific element via clicking on the element. Even though
this is a compact view, developers find the separated lists useful.
Thus, we made three new table views, that show the ranked list of
suspicious classes, methods, and statements separately (Figure 3).

Figure 2: CharmFL ranking list output

Figure 3: CharmFL ranked list of suspicious classes

Figure 4: CharmFL interactivity window

Right-clicking any element will result in a pop-up window (Fig-
ure 4), where the user can interact with the fault localization algo-
rithm. The user has several options to choose from:

https://coverage.readthedocs.io/en/6.4.1/

A-TEST ’22, November 17–18, 2022, Singapore, Singapore Attila Szatmári, Qusay Idrees Sarhan, and Árpád Beszédes

• the element is buggy
• only the “close” context seems buggy
• only the “far” context seems buggy
• all contexts seem buggy
• neither the element nor its context seem buggy

The user can view both “close” and “far” contexts. Clicking the
“View close context" button, the PyCharm IDE navigates the user
to the code element. Clicking the “View far context", the PyCharm
IDE opens the static call graph highlighting the callers and callees
of the element as shown in Figure 5.

Figure 5: Static call graph.

6 APPLICABILITY SCENARIOS
When developers notice bugs in their Python programs, they have
several options while debugging. In order to find the bug, they
can run test cases to see which ones are failing or they can start
understanding and debugging the code. Our tool can be used in
either situation to locate faults using test results, coverage, and
contextual information. In this section, we will give two scenarios
that show how our tool can be used.

1) The developers can use the tool as a basic SBFL tool. The
users start the fault localization process and the tool provides the
hierarchical tree of suspicious elements. Checking the first element
with the highest rank, they click on the element in the tree and
the tool navigates them to the element. They investigate the code
element and decide whether it caused the fault or not. If it did, the
task terminates. However, if the element did not cause the fault
they can move on to the next element in the tree based on the ranks.
The user goes through the elements until they find the one that is
causing the fault.

2) The developer can interact with the algorithm. The same steps
apply as in the first scenario until the user is sure the investigated
code element is not buggy. They have a few options at this point.
The developer knows the element, e.g. statement, is not causing
the fault, however its context might, e.g. method, caller, callee, etc.
They are prompted with the opportunity to view these contexts and
decide on whether they are suspicious. Let us say the investigated
code element was in a “getter” method. The developer knows this
one is not faulty but the method that called it could be. In this
case they can say the far context is suspicious and the program
will recalculate the list accordingly. After this point, the developer
repeats this scenario until they find the buggy element.

7 CONCLUSION
The present state of the tool is a research prototype, which we are
using in our SBFL-related research activities in our department. It
is also a framework in which various experimental ideas (including
student works) are tried. We provide the tool 2 as open-source for
the research community to be able to conduct related experiments.
2https://interactivefaultlocalization.github.io/

For future work, we would like to add different types of interac-
tivity to enable the user to give their feedback on the suspicious
elements to help re-rank them, thus improving the fault localization
process. Assessing the tool with real users and in real-world sce-
narios would be a valuable next step as well. Our ultimate goal is to
improve the usability of implemented features and test on various
subjects and scenarios to attain a state in which Python developers
can be effectively supported in their debugging tasks.

ACKNOWLEDGEMENTS
Project no. TKP2021-NVA-09 has been implemented with the sup-
port provided by the Ministry of Innovation and Technology of
Hungary from the National Research, Development and Innovation
Fund, financed under the TKP2021-NVA funding scheme.

REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. J. C. Van Gemund. 2006. An Evaluation of Similarity

Coefficients for Software Fault Localization. In 2006 12th Pacific Rim International
Symposium on Dependable Computing (PRDC). 39–46. https://doi.org/10.1109/
PRDC.2006.18

[2] Aritra Bandyopadhyay and Sudipto Ghosh. 2012. Tester Feedback Driven Fault
Localization. In 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation. IEEE, 41–50. https://doi.org/10.1109/ICST.2012.84

[3] José Campos, André Riboira, Alexandre Perez, and Rui Abreu. 2012. Gzoltar:
An eclipse plug-in for testing and debugging. 2012 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2012 - Proceedings (2012),
378–381.

[4] Higor A. de Souza, Marcos L. Chaim, and Fabio Kon. 2016. Spectrum-based
Software Fault Localization: A Survey of Techniques, Advances, and Challenges.
(jul 2016), 1–46. arXiv:1607.04347 http://arxiv.org/abs/1607.04347

[5] Liang Gong, David Lo, Lingxiao Jiang, and Hongyu Zhang. 2012. Interactive
fault localization leveraging simple user feedback. In 2012 28th IEEE International
Conference on Software Maintenance (ICSM). IEEE, 67–76. https://doi.org/10.
1109/ICSM.2012.6405255

[6] C. Gouveia, J. Campos, and R. Abreu. 2013. Using HTML5 visualizations in soft-
ware fault localization. In First IEEE Working Conference on Software Visualization
(VISSOFT). 1–10. https://doi.org/10.1109/VISSOFT.2013.6650539

[7] Dan Hao, Lu Zhang, Tao Xie, Hong Mei, and Jia-Su Sun. 2009. Interactive Fault
Localization Using Test Information. Journal of Computer Science and Technology
24, 5 (2009), 962–974. https://doi.org/10.1007/s11390-009-9270-z

[8] F Horváth, V S Lacerda, Á Beszédes, L Vidács, and T Gyimóthy. 2019. A New
Interactive Fault Localization Method with Context Aware User Feedback. In
2019 IEEE 1st International Workshop on Intelligent Bug Fixing (IBF). 23–28. https:
//doi.org/10.1109/IBF.2019.8665415

[9] Qusay Idrees Sarhan, Attila Szatmari, Rajmond Toth, and Arpad Beszedes. 2021.
CharmFL: A Fault Localization Tool for Python. In 2021 IEEE 21st International
Working Conference on Source Code Analysis and Manipulation (SCAM). 114–119.
https://doi.org/10.1109/SCAM52516.2021.00022

[10] Tom Janssen, Rui Abreu, and Arjan J.C. Van Gemund. 2009. Zoltar: A spectrum-
based fault localization tool. SINTER’09 - Proceedings of the 2009 ESEC/FSE Work-
shop on Software Integration and Evolution at Runtime (2009), 23–29.

[11] J. A. Jones, M. J. Harrold, and J. Stasko. 2002. Visualization of test information
to assist fault localization. In Proceedings of the 24th International Conference on
Software Engineering (ICSE). 467–477. https://doi.org/10.1145/581396.581397

[12] Andrew J. Ko and Brad A. Myers. 2008. Debugging reinvented: Asking and
answering why and why not questions about program behavior. Proceedings -
International Conference on Software Engineering (2008), 301–310.

[13] Xiangyu Li, Shaowei Zhu, Marcelo D’Amorim, and Alessandro Orso. 2018. En-
lightened debugging. In Proceedings of the 40th International Conference on Soft-
ware Engineering. ACM, New York, NY, USA, 82–92. https://doi.org/10.1145/
3180155.3180242

[14] Qusay Idrees Sarhan and Arpad Beszedes. 2022. A Survey of Challenges in
Spectrum-Based Software Fault Localization. IEEE Access 10 (2022), 10618–10639.
https://doi.org/10.1109/ACCESS.2022.3144079

[15] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Transactions on Software Engineering
42, 8 (aug 2016), 707–740. https://doi.org/10.1109/TSE.2016.2521368

https://interactivefaultlocalization.github.io/
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/ICST.2012.84
https://arxiv.org/abs/1607.04347
http://arxiv.org/abs/1607.04347
https://doi.org/10.1109/ICSM.2012.6405255
https://doi.org/10.1109/ICSM.2012.6405255
https://doi.org/10.1109/VISSOFT.2013.6650539
https://doi.org/10.1007/s11390-009-9270-z
https://doi.org/10.1109/IBF.2019.8665415
https://doi.org/10.1109/IBF.2019.8665415
https://doi.org/10.1109/SCAM52516.2021.00022
https://doi.org/10.1145/581396.581397
https://doi.org/10.1145/3180155.3180242
https://doi.org/10.1145/3180155.3180242
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/TSE.2016.2521368

	Abstract
	1 Introduction
	2 Spectrum Based Fault Localization (SBFL)
	3 Related Works
	4 Interactivity in SBFL
	5 Tool's Overview
	5.1 Architecture
	5.2 Graphical User Interface (GUI)

	6 Applicability Scenarios
	7 Conclusion
	References

