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Abstract

In change impact analysis, obtaining guidance from automatic tools
would be highly desirable since this activity is generally seen as a
very difficult program comprehension problem. However, since the
notion of an ‘impact set’ (or dependency set) of a specific change is
usually very inexact and context dependent, the approaches and al-
gorithms for computing these sets are also very diverse producing
quite different results. The question ‘which algorithm finds pro-
gram dependencies in the most efficient way?’ has been preoccu-
pying researchers for a long time, but there are still very few re-
sults published on the comparison of the different algorithms to
what programmers think are real dependencies. In this work, we
report on our experiment conducted with this goal in mind using
a compact, easily comprehensible Java experimental software sys-
tem, simulated program changes, and a group of programmers who
were asked to perform impact analysis with the help of different
tools and on the basis of their programming experience. We show
which algorithms turned out to be the closest to the programmers’
opinion in this case study. However, the results also certified that
most existing algorithms need to be further enhanced and an effec-
tive methodology to use automated tools to support impact analysis
still needs to be found.

Categories and Subject Descriptors I.2.2 [Automatic Program-
ming]: Program modification

General Terms Experimentation, Human Factors, Algorithms

Keywords Change impact analysis, software dependencies, JRip-
ples, BEFRIEND, software co-change, SEA, static slicing, call
graph, Java

1. Introduction

During change impact analysis in software evolution processes,
the software engineer tries to assess the extent of potential impact
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that a particular (intended or performed) change to a software sys-
tem may have [6]. A change can have impact on various software
project artefacts like requirements, software components (at all lev-
els, including the source code itself), test cases, etc., but usually
also have secondary effects on business risks, maintenance costs,
market value, and so forth. In this work we focus on impacts on
software components. The incremental change model [6, 26] es-
tablishes a framework for change impact analysis by distinguish-
ing between concept location, impact analysis, change propaga-
tion and other necessary tasks like regression testing. During these
phases of the incremental change process, the initial and secondary
impacted components are identified, in a sense estimating the rip-
ple effect of the initial change request [10].
The identification of such impacted components basically

means finding and following the dependencies between software
components. But what actually are software dependencies? They
can be described (not defined!) in many ways. Determining the
relevant dependencies for the task at hand is basically a program
comprehension problem, and since it depends on the particular
situation, it cannot be relied upon a specific program analysis al-
gorithm. A specific, externally observable dependency is always
a reflection of the semantics behind, or in other words the inten-
tions of the software developer [25]. This means that finding the
most relevant dependencies is difficult, and is essentially a creative
mental task.
Having said that, tool support is extremely desirable in impact

analysis and for determining the dependencies, as it is generally
true for any program comprehension task. However, it is naïve to
think that there might be one ultimate algorithm that fits all tasks.
Over the time, different classes of such algorithms have been de-
veloped by researchers. One of the most general ones is the class
that we call computation based, in which the computation relation-
ships between program elements are followed, most notably pro-
gram slicing, call graphs, and other similar approaches. Another
approach is to analyze different software artefacts to find possible
semantic links like the ones based on historically consistent co-
change of program elements [17, 18, 28]. A notable property of the
methods is that depending on their nature, the dependencies may be
found with very different levels of recall and precision with respect
to the – only theoretically existing – relevant dependencies for the
actual task. What we can derive from the above is that there is no
universal definition for dependency, only algorithms that approxi-
mate dependencies. But then the question arises, which algorithm
is most suitable in a specific situation—which one finds the relevant



dependencies best? In other words, how do the algorithms differ in
terms of the ability to predict relevant dependencies?
A possible way to answer the questions above is to involve

programmers, and hear their subjective opinions based on exper-
tise and experience in program comprehension. In this paper, we
present such an experiment. We wanted to know what is the dif-
ference between some well-known algorithms and programmer’s
opinion, and hence we conducted a case study. We chose a com-
pact, easily comprehensible experimental Java software system,
simulated program changes and a group of programmers who were
asked to perform impact analysis with the help of different tools
and based on their programming experience. We applied several
well-known algorithms (callgraph, program slicing, static execute
after, historical co-change), a Java framework for change impact
analysis embedded in a development environment (JRipples [12]),
and used a tool to evaluate the results given by the programmers
(BEFRIEND [16]).
The paper is organized as follows. First, we overview related

work in Section 2, then we continue with a motivating example and
establish the main research questions in Section 3. In Section 4, we
overview the methods that we compared in the study, while Sec-
tion 5 is devoted to the detailed description of the experiment per-
formed. Section 6 discusses the results of the study, and Section 7
lists any possible threats to validity. Finally, we conclude in Sec-
tion 8.

2. Related Work

The comparison of different impact analysis techniques is not a
novel problem in the field of software maintenance [5]. One reason
that these comparisons are very difficult could be the lack of an
accepted definition of impact analysis. Although the definition of
Arnold and Bohner [5] for impact analysis is accepted in general,
the concept is still not included in the latest version of the IEEE
Standard Glossary of Software Engineering Terminology [3].
Arnold and Bohner give a framework for the categorization of

IA techniques based on the comparisons of the SIS (Starting Impact
Set), EIS (Estimated Impact Set) and AIS (Actual Impact Set), but
the general comparisons use only the following factors:

• weakness and strength,

• cost-precision tradeoffs,

• precision, space cost, and time overhead,

• Cohen-kappa value [13], which gives an overall indication of
the goodness of the prediction.

Many papers in the literature compare the existing impact anal-
ysis techniques with the help of another technique. For example,
Orso et al. compared PathImpact and Coverage impact analysis
[24] and gave the relative costs and benefits of the techniques in
practice. Breech et al. [11] compare online dynamic impact analy-
sis with the PathImpact and Coverage impact analysis. As a partic-
ular application of the impact analysis, Bible et al.made a compar-
ative study of coarse- and fine-grained safe regression test-selection
techniques [9] where two test selection tools were compared with
each other.
The methods which take the programmers’ opinion about the

software impacts into account are much more interesting for us,
but unfortunately the number of such paper in the literature is very
small. One of the first papers is the work of Lindvall and San-
dahl [23]. In this work the authors quantified how well experi-
enced software developers predicted change by conducting RDIA
(Requirement-driven impact analysis) where RDIA in their case
was the general activity of predicting changes based on the change
request. Contrary to our experiments they compared and evaluated
the predictions by examining the changes of the concrete imple-

mentation. Their results show that the impacted set predicted by
the programmers without any help is generally correct but underes-
timated, which is basically in alignment with our findings.
To describe the empirical study, we applied a widely used ap-

proach, the Goal-Question-Metrics (GQM) paradigm by Basili et
al. [7]. This approach has three levels: determine organization goals
first, generate questions, whose answers can determine if the goals
are met, and find measurements that can answer the questions. We
emphasize our goal, define 5 questions and 19 metrics which are
associated with the questions in order to answer them. Moreover,
we used another guideline by Kitchenham et al.[22] to improve the
quality of performing and evaluating our empirical research.

3. Motivation

To show that different algorithms can compute really different im-
pact sets, consider the example in Figure 1. Any average program-
mer can observe that class BB is dependent on class B due to the
inheritance, and class BB is dependent on class A since the computa-
tion of the get method of A determines the value of the _xmember
attribute of class BB through the method hiddenAndMagicAssign
in class C.
However, if we compute the dependencies of these classes with

different impact analysis algorithms we can get really different
results. Using a call graph [27] only, classes A, B, and BB are
dependent on class C, and there are no other dependencies in this
example. If we determine the impact sets of the particular classes
with the help of Static Execute After relations [8] we get that class
A is dependent on class C, classes B and BB are dependent on classes
A, C, BB, and that class C is dependent on classes A, B and BB. Finally,
if we compute the dependencies of these classes using forward
program slices [19], we get that the impact set of A contains classes
B and BB, furthermore the impact set of BB contains only class B,
and that the impact set of class C contains all the other classes.

class C {

public void hiddenAndMagicAssign() {

A a = new A();

B b = new B();

BB bb = new BB();

int result = a.get();

b.set(result);

bb.set(result);

}

}

class A {

public int get() {

return _someComputation();

}

}

class B {

public int _x;

public void set(int p) {

// intentionally do nothing

}

}

class BB extends B {

public void set(int p) {

_x = p;

}

}

Figure 1. Motivating example

This example shows how different the behavior of related im-
pact analysis algorithms and, moreover, the opinion of an average



programmer – who was able to take into account other semantic
properties like comments in the program – can be.
Our goal is to compare the different impact analysis methods

and the programmers’ opinion. This drives us to raise the following
research directions:

• What is the relationship between different kinds of static de-
pendencies, like the ones based on program slices, SEA, co-
changing files (classes) in version control repositories, or call
graphs, for instance? How different are the so-computed depen-
dency sets?

• What is the relationship between different kinds of dependen-
cies if we consider the dependencies that were evaluated by pro-
grammers, and filter out the irrelevant dependencies according
to them? How much improvement in the correctness of the al-
gorithms can be observed after such a filtering?

• How much the programmers’ opinions change after seeing the
results of different impact analysis algorithms over their initial
opinions when using no specific algorithms but a general impact
analysis tool within the development environment?

According to these research directions, we determine the fol-
lowing questions:

Q1: Do the different algorithms and the programmers identify the
same dependencies?

Q2: What is the relationship between the different kinds of depen-
dency sets?

Q3: According to the precision and recall values of the algorithms,
what is the rank of the algorithms?

Q4: Do the programmers identify the dependencies with the same
confidence levels?

Q5: How much the programmers’ opinions change after seeing the
results of different impact analysis algorithms over their initial
opinions?

4. Impact analysis methods

To answer the questions we applied different impact analysis algo-
rithms. In this section we overview the investigated algorithms.
The algorithms have been implemented within the JRipples Java

tool and framework [2, 12], which is an integrated tool in the
Eclipse development environment supporting incremental change,
and supports relevant program analysis for the programmer and
manages the organization of the steps that comprise the impact
analysis and the subsequent change propagation. JRipples is based
on the philosophy of ‘intelligent assistance’, which requires coop-
eration between the programmer and the tool itself. First, the tool
analyzes the program, keeps track of the inconsistencies, and then
automatically marks the classes/methods which are necessary to be
visited by the programmer. Its main advantage is that it covers the
algorithmic parts of the change propagation which are often diffi-
cult or error-prone for humans.
JRipples is implemented in Java as a plug-in for the Eclipse

platform and analyzes Java source code. The tool consists of three
Java packages that implement the parser, the database with organi-
zational rules, and the user interface. The parser has two default an-
alyzers, which analyze the project and extract class or method level
dependencies of several kinds: for example, class A depends on B
if class A refers to class B in a definition of a data member, local
variable, argument, data cast; if A refers to class B’s static members
(static methods or static data members); if A inherits from B; or
if A implements interface B. JRipples shows interactions between
classes/methods. Classes A and B interact if either A depends on B
or B depends on A.

Since it is easy to adapt other analyzer (algorithms) into JRip-
ples, it can serve us as a framework to determine several kinds of
static dependency. JRipples itself supports analysis on the granu-
larity of classes and methods. In our experimental study, we deter-
mine dependencies on the granularity of methods (except historical
cochange) but we lift the granularity to class level for the ability of
the comparison.
We implemented the following algorithms within JRipples:

• Callgraph. We build a directed graph that represents calling
relationships between methods [27]. The graph is built based
on AST computed by Eclipse JDT.

• Static slice. We apply static forward program slicing [19] (con-
sidering data and control dependencies) to determine the im-
pacts of the method modifications. The static forward slices
were computed by the Indus Java static slicer API [20]. A slice
is determined for every statement.

• Static Execute After (SEA). According to the definition of
SEA dependencies, method B depends on method A if and
only if B may be executed after A in any possible execution
of the program [8, 21]. The computation of SEA relations
is an efficient analysis algorithm, which is able to produce
conservative impact sets on method level. The determination
of these relations is based on the ICCFG representation [8] of
the program. We built the ICCFG graph based on AST and
computed by Eclipse JDT. We implemented the SEA algorithm
on this graph and determined all the method pairs which might
be in a SEA relationship.

• Co-changing files retrieved from SVN repositories. Some de-
pendencies are not written down in the code; the software en-
gineer only ’knows’ which certain set of modules needs to be
changed [4, 18, 28] to make a certain type of change. In these
cases, to derive the set of source files impacted by a proposed
change request, we can use historical data stored in a version-
ing system, namely SVN. Since this way only the changed files
can be retrieved, this analysis has only class granularity. A cor-
relation value can be set between 0 and 1.0, if we would like
to filter the found co-changed classes.1 We determined two re-
sult sets, one with a 0.4 correlation value and one with a 1.0
correlation value. We chose the correlation value 40% because
we would not like the union of the dependency sets to be too
large, the number of the SEA relations and the dependencies
determined by programmers were the most extended and find-
ing co-changing classes with a 40% correlation value to get the
same amount of dependencies.

Altogether, we have 5 kinds of dependency sets (call, static
slice, SEA, co-changing 0.4, and co-changing 1.0 relations). Two
of these result sets have method, two of them have class, and one of
them has statement granularity originally but, of course, we lift all
results to class level to be able to compare them. Since the callgraph
determines the call dependencies only step by step, we compute the
transitive closure of the call relations of each method.

5. Description of the Experiment

The experiment involving the participant programmers was per-
formed in two stages (see Figure 2). First, the participants were
asked to use JRipples in 7 different use cases to discover the im-
pact set of the hypothetical changes in some particular methods of
our chosen sample project. Secondly, for each scenario we stored
their results together with the results produced by the specific algo-

1 For example, if the correlation value is 0.4, it means that class A depends
on class B if in 40% of the commits when A file changed, B file changed as
well.
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Figure 2. The architecture of the empirical study

rithms mentioned in the previous section in a common repository
(BEFRIEND) that served as a control benchmark. Then we asked
the participants to evaluate all of the stored dependencies individu-
ally. This way we were able to calculate valuable statistics about
the usefulness of JRipples itself, the precision and the recall of
the examined algorithms with and without respect to the program-
mers’ opinion, and the rate of the changes in programmers’ opin-
ions made between the two phases. The following subsections pro-
vide detailed description of the above mentioned stages and their
preparation.

5.1 Preparation for the first stage

First, we have set up a test environment. We needed a sample
project in which the impact sets were defined according to the
hypothetical modifications. When choosing the sample project we
relied on the following considerations:

• The code is written in Java, since JRipples analyzes only Java
code.

• Accessible SVN repository with extended history.

• Relatively complex code but not too large code size – since the
Indus slicer could not produce slices for large programs due to
the excessive memory consumption.

• Compatible with JRE 1.4., since the Indus static slicer works
only on such kind of Java code.

• Code is unknown to the participants but it is easily comprehen-
sible for the programmers.

According to these requirements, we have found an open source
Java project called ownSync.2 This is a small Java application to
synchronize two folders (on different machines or on the same
machine) in both directions. The main characteristics of the sample
project can be seen in Table 1.

Nr. of Nr. of
LOC

Not empty Nr. of

classes methods LOC commits

30 234 3666 3108 92

Table 1. The characteristics of the subject system (ownSync)

2 http://sourceforge.net/projects/ownsync/

After selecting the sample project, 11 programmers with differ-
ent qualification and experience levels were asked to contribute to
our experiment. The group of participating programmers consisted
of 4 computer science students, 5 PhD students, and 2 software de-
velopers. Most of them has been working as software developer for
years: they have experience in Java and program analysis. Here-
after, we will call them programmers.
Before the first stage, we defined some hypothetic change sce-

narios. We gave 7 methods from the sample project to the program-
mers so that they examine them and determine their impact sets.
The methods are the following:

• writeFolderState (in FolderState class),

• internalMoveFile (in SyncTrashbox class),

• loadConfig (in OwnSyncConfiguration class),

• DeleteFolderAction (in DeleteFolderAction class),

• forceDelete (in FileUtils class),

• getSyncFolder (in FolderConfiguration class),

• isAnyActionFailed (in OwnSyncResult class).

This selection was purely based on investigating the method kinds
and their call information. Among these methods there are a con-
structor, a recursive, a getter method; simple or complex ones, it
is called several times or calls several methods. The list of the 7
methods from our sample project was given to each programmer.
Then, the task of the programmers was to use JRipples to discover
all of the methods impacted by any possible change made in these
methods.
We logged the programmers’ actions to retrieve the dependen-

cies which were determined by the programmers using JRipples.

5.2 Stage 1: Discovering dependencies step by step with
JRipples

As the starting point of the change (concept location) is found by
the programmers in JRipples, the remaining methods of the impact
set are discovered in a step-by-step look at the neighbours in the
dependency graph.
JRipples marks every method with a Next label that might be

affected by the change of the located method. It is then up to the
programmer to check all the possibilities offered by JRipples and
decide whether there is a real dependency between those methods.
After examining a method labelled with Next, the programmer



needs to make a decision and apply one of the labels Visited,
Continue, or Impacted to this method.
The label Visited means that the programmer did not find a real

dependency between the starting and the visited method. Applying
this label does not bring new possible dependencies into the impact
set.
With the label Continue, the programmers can mark that they

think there is no real dependency between the starting and the
visited method, but transitive dependencies could not be ruled out.
Therefore, the methods marked with Continue will not be a part
of the final impact set but JRipples marks them possibly impacted
neighbours for further checking. This means that applying the label
Continue may bring in some new possible dependencies (marking
the impacted neighbours with the label Next).
The label Impacted means that the programmer believes there

is a real dependency between this method and the starting method.
Every method labelled as Impacted will be a part of the final impact
set. Furthermore, setting the label to Impacted may bring in new
possible dependencies since JRipples marks all unmarked, possibly
impacted neighbouring methods with the label Next. The first stage
ends when none of the methods remains in the impact set labelled
as Next.

5.3 Preparation for the second stage

After everyone finished their first stage task, the logs were col-
lected. Despite the fact that the programmers searched for depen-
dencies on the level of methods, we lifted the results up to class
level. If at least one method in the class had the label Impacted, the
class got the label Impacted as well.
The algorithms were implemented within JRipples and before

the second stage we collected all the class level impact sets for the
same 7 criteria produced by the different algorithms. We got the
union of all dependencies in all kinds of impact sets in case of all 7
methods.
A general purpose benchmark tool called BEFRIEND (BEnch-

mark For Reverse engInEering tools workiNg on source coDe) [15]
was used to help getting through the second stage efficiently. With
BEFRIEND, the results of reverse engineering tools from different
domains that recognize the arbitrary characteristics of the source
code can be subjectively evaluated and compared with each other
through a web-based application. The benchmark was success-
fully applied for evaluating and comparing design pattern miner
tools [14], clone detector tools [15], rule violation checkers, and
now impact analysis algorithms. Despite the fact that BEFRIEND
is designed to be very general some major improvements were re-
quired in order to make it capable of evaluating and comparing
impact analysis results. The most important developments of the
system are the follows:

• A new file format for describing impact analysis results.

• A BEFRIEND plug-in for uploading results from this new for-
mat.

• New sibling connection strategy (for connecting dependencies).

• A new criterion for the evaluation of dependencies resulted by
impact analysis.

• Remarkable improvements in the statistics module (allowing
sophisticated statistic queries, e.g.: distribution of the tool re-
sults, various statistics about the evaluators, enhanced precision
and recall calculation, etc.).

In BEFRIEND, we have to create our own evaluation criteria
which are basically questions about the results with two or more
possible answers. Then the evaluation process is choosing an an-
swer to every question for every single uploaded result which de-
scribes it the best. We defined only one evaluation criterion, since

we are interested in the correctness of the results. So, the program-
mers have to answer the following question: ‘Do you think there is
a real dependency between these classes?’ for every uploaded de-
pendency. There are 4 possible answers to be given to this question:

• Yes, I am sure that there is a dependency.(100%)

• I think there is a dependency.(66%)

• I think there is NO dependency.(33%)

• No, I am sure that there is no dependency.(0%)

We give the possibility to the evaluator not only to choose yes/no
answers but to describe his/her level of confidence. Each answer is
associated with a percentage value forming a numerical scale from
the firm negative answer through the solid negative and solid pos-
itive answer to the firm positive answer. According to the Likert
scale a typical questionnaire should also contain the possibility for
a neutral answer (neither agree that there is a dependency nor dis-
agree). This neutral answer is included in BEFRIEND implicitly
by allowing users to skip the evaluation of some instances (where
they are unsure about their answers). The neutral answers are ex-
cluded from the calculation of statistic information making the re-
sults more relevant (there are also examples in our experiment for
users choosing the possibility of neutral answers).
Using BEFRIEND terminology, there are instances in the sys-

tem which can be evaluated against the evaluation criteria. We
chose the obvious approach and defined the instances as a depen-
dency between two classes (where one of the classes contains the
method from which the impact analysis is started). As a final step
of the preparation, the union of the impact sets computed by algo-
rithms or programmers was uploaded to the benchmark grouped by
the scenarios.

5.4 Stage 2: Discovering dependencies all at once with
BEFRIEND

In the second stage, the union of the results, either found by a pro-
grammer or an algorithm, are provided together for the program-
mers, who were asked to evaluate the dependencies individually.
The programmers evaluated the dependencies grouped by the sce-
narios but without knowing which tool or programmer found them.
The real work of the contributing programmers in stage two was

after the preparation steps are done. They were asked to proceed
as follows: vote for every dependency uploaded to the benchmark
via the online interface. The voting process was done by opening
all the sibling groups (impact sets of a method) and picking an
answer of the evaluation criteria for every dependency in this group.
The second stage ended when all the contributing programmers
evaluated every single dependency.
The BEFRIEND database used in our experiment is publicly

available online [1].

6. Results and discussion

In this section, we answer the research questions in two approaches.
We calculate statistics from 2 kinds of dependency sets. First, we
get the dependencies whose average votes are above 0% thresh-
old value (at least one programmer evaluated the dependency with
a 33% value), This means that a dependency is filtered out, if all
programmers agreed that it is not a true dependency (all program-
mers’ votes are 0%). So we throw away conservatively the depen-
dencies, which are determined by any algorithms but not by any
programmers. Secondly, we considered the dependencies, where
the average vote is above 50% threshold value. Hereafter, we will
call these dependencies positive votes. This means that a depen-
dency is filtered out, if the programmers mostly agreed that it is not
a true dependency (the average vote is less than or equal to 50%).



We chose the threshold value 50% to be between 33% and 66%,
which means filtering out irrelevant dependencies in BEFRIEND.
It could be reasonable to give the threshold value 66%(mainly solid
and firm positive answers), but – as you can see later – most of the
dependencies have a standard deviation between 30% and 50% in
the votes, such a high threshold value can cut off too much depen-
dencies which can be important to us.

Q1: Do the different algorithms and the programmers identify
the same dependencies?

In order to answer Q1 question, we calculate M1 and M2 metrics:

• M1: the number of algorithms which detected dependencies
whose average votes are above 0%,

• M2: the number of algorithms which detected dependencies
whose average votes are above 50% (positive votes).

When a programmer uses the own analysis of JRipples step
by step, the methods/classes are labelled considering undirected
dependencies (interactions). Our preexamination showed that for
each scenario the dependency set contains all of the classes if the
programmers use JRipples user interface. That is why we are sure
that all of the possible dependencies can be determined by JRipples,
so the programmers have only the role to filter out the less possible
dependencies.

Figure 3. Number of algorithms which detected dependencies
whose average votes are above 0% (left side) and 50% (right side)

The left hand side of Figure 3 shows how many algorithms de-
tected how many dependencies. The algorithms and the program-
mers recognized 118 dependencies altogether. In the first case, we
filtered out 15 dependencies with the 0% threshold value. Most of
the dependencies are found by only one algorithm and there are
34 dependencies which are determined only by the programmers,
and not by any of the algorithms. This diagram shows that the dif-
ferent algorithms find different kinds of dependencies which are
rarely the same. While less and less dependencies are found by 2
or 3 algorithms, there is one dependency which is determined by
4 algorithms. The only algorithm which did not find it was the co-
changing algorithm with a 1.0 correlation value. This dependency is
between the loadConfig method and the FolderConfiguration class.
The loadConfig method collects and stores properties about fold-
ers, states of the folders and regular expression patterns. The Fold-
erConfiguration class gets these properties.
In the right part of the Figure 3, only positive votes were con-

sidered. 99 dependencies are ruled out by this filtering, and only
19 real dependencies remain according to the programmers’ evalu-
ation. There is only one dependency which was determined only
by the programmers. This dependency is between the loadCon-
fig method and the OwnSyncTestCase class. The class has a cre-

ateOwnSyncConfiguration method whose body is similar to the
loadConfig. So the programmers thought if the loadConfig method
would change, they had to change the createOwnSyncConfigura-
tion method as well. The static analyzers did not determine this de-
pendency because there is no data or control dependency between
the method and the class. The co-change algorithm did not deter-
mine it because the OwnSyncTestCase class was added to history
at one of the last commits, and we were interested only in modified
classes and not added classes. The only dependency which were de-
termined by 4 algorithms disappeared. The programmers may have
thrown away this dependency because the loadConfig method sets
only attributes in the Property object which determine on which
directory the file synchronization works and what kind of patterns
it uses. Although the FolderConfiguration class uses this Property
object, its retrieved value is only delegated to other classes, so the
potential change of the loadConfig does not affect the functionality
of the FolderConfiguration class.
We can conclude from these metrics that the different algo-

rithms and the programmers determine almost different depen-
dency sets, only few dependencies are determined by more than
one algorithms.

Q2: What is the relationship between the different kinds of
dependency sets?

Six metrics are associated with Q2 question in order to answer it in
a quantitative way:

• M3: the normalized size of the intersection of two dependency
sets (A ∩ B), where the average votes of the dependencies are
above 0%,

• M4: the normalized size of the difference of two dependency
sets (A \ B), where the average votes of the dependencies are
above 0%,

• M5: the normalized size of the difference of two dependency
sets in the opposite direction (B \ A), where the average votes
of the dependencies are above 0%,

• M6: the normalized size of the intersection of two dependency
sets (A ∩ B), where the average votes of the dependencies are
above 50%,

• M7: the normalized size of the difference of two dependency
sets (A \ B), where the average votes of the dependencies are
above 50%,

• M8: the normalized size of the difference of two dependency
sets in the opposite direction (B \ A), where the average votes
of the dependencies are above 50%.

Table 2 presents M3, M4, M5 metrics, the relationships be-
tween each dependency set pair. We determined the intersection
and the differences of the dependency sets for every algorithm pair.
The values in the table are normalized by the size of the union of
the given sets. In most cases there is no complete containment and
almost every set has intersection with the others. There are only
2 cases where one of the sets is a subset of the other. These were
expected due to the definition of the algorithms: the co-changing
classes with a 1.0 correlation value are a subset of the co-changing
classes with a 0.4 correlation value; and calling dependency set is a
subset of the SEA relation set. This shows that no matter how dif-
ferent these algorithms are, some dependencies are mutually found
by more than one algorithm.
In Table 2, we considered the dependencies with 0% threshold

value. This results in that the union of these dependency sets can
contain the dependencies that are not relevant, due to the impreci-
sion of the algorithms.



Algorithms(A,B) M3 (A∩B) M4 (A\B) M5 (B\A)

programmers, call 16.28% 82.56% 1.16%
programmers, slice 11.36% 85.23% 3.41%
programmers, SEA 37.38% 42.06% 20.56%
programmers, co-change (1) 2.3% 95.4% 2.3%
programmers, co-change (0.4) 24.49% 62.24% 13.27%
call, SEA 24.19% 0% 75.8%
call, co-change (1) 0% 78.95% 21.05%
call, co-change (0.4) 8.33% 22.92% 68.75%
call, slice 47.37% 31.58% 21.05%
SEA, co-change (1) 4.76% 93.65% 1.59%
SEA, co-change (0.4) 23.75% 53.75% 22.5%
SEA, slice 13.64% 80.30% 6.06%
slice, co-change (1) 0% 76.47% 23.53%
slice, co-change (0.4) 2.04% 24.49% 73.47%
co-change (1), co-change (0.4) 10.81% 0% 89.19%

Table 2. Comparison of dependencies sets detected by different
algorithms

According to the M6, M7, M8 metrics, Figure 4 shows the
relationships among the dependencies with 50% threshold value.
By filtering dependencies, the containing relations became much
simpler.
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Figure 4. Comparison of dependencies sets detected by different
algorithms filtered out by the programmers’ evaluation (only pos-
itive votes). We represent the id-s of the dependencies which are
belong to the certain set.

It was a surprising observation that the slice dependency set is
a subset of the dependency set of the callgraph. The dependency
set retrieved from the callgraph shows relationships where in the
given method declaration one of the methods of the class is in-
voked. The slice dependency set does not contain #12 and #29 de-
pendencies which are super method calls, they call the constructor
of the ancestor class. We use the Indus static slicer API, which is
the only available static slicer for Java programs. These two de-
pendencies show that the slicer is not complete. For example, in
the case of #22 (dependency between the getSyncFolder method
and the FolderSynchronizer class), the getSyncFolder method is in-
voked from the getFolderLocation method of the FolderState class
(#27), which is invoked from the evaluateActions method of the
FolderSynchronizer class. We can mention here #15, #78, #79, and
#85 as well for the same reason. We considered only the forward
slice, so the dependencies #21, #27, #66 and #71 are contained
only in dependency set computed by SEA. #15 is a special depen-
dency since every time the FolderState class changed, the Own-
syncStarter class has changed as well according to the history re-
trieved from SVN repository. The dependency #87 is between the
loadConfigmethod and theOwnSyncTestCase class. The class has a

createOwnSyncConfiguration method whose body is similar to the
body of the loadConfig. So that the programmers thought if load-
Config method would change, they had to change the createOwn-
SyncConfiguration method as well, but none of the static analyz-
ers or examining co-changing detect it. The dependencies retrieved
from co-changing classes were examined and we noticed that they
were changed together but not for the same reason according to
the change log. The users erroneously determined them as depen-
dencies. For example, the dependency #28 (between DeleteFold-
erAction constructor and FolderState class) might be evaluated as
a dependency because the constructor has two parameters and the
type of one of them is FolderState.
The Venn diagram on Figure 4 depicts that there are a lot of

complete containments among the dependency sets. By raising the
threshold to 50%, the less relevant dependencies – according to
the programmers’ evaluation – have disappeared. The probable
explanation to this is that the programmers may have found some
errors in the results of the algorithms due to their imprecisions.

Q3: According to the precision and recall values of the
algorithms, what is the rank of the algorithms?

In our next experiment we verified how close were the algorithms’
dependency sets to the the programmers’ opinion and each others.
For this, we used precision and recall values, taking the collective
programmers’ opinion as the correct results.
From the precision and recall values, we determine 2 metrics

for each algorithm:

• M9: the harmonic mean of the precision and recall value of the
given algorithm, where the average votes of the dependencies
are above 0%,

• M10: the harmonic mean of the precision and recall value of the
given algorithm, where the average votes of the dependencies
are above 50%.

Algorithm Precision Recall M9 (Harmonic mean)

SEA 80.65% 48.54% 60.6%
cochange(0.4) 89.19% 32.04% 47.14%
call 86.67% 12.62% 22.03%
slice 92.31% 11.65% 20.69%
cochange(1.0) 100% 3.88% 7.47%

Table 3. Precision and recall value of different algorithms

Table 3 shows the precision and recall values of the algorithms.
We calculated precision as the rate of the number of dependencies
computed by the given algorithm with at least one positive vote
(at least one programmer evaluated it with a 33% value) and the
number of all detected dependencies by the given algorithm. We
calculated recall as the rate of the number of dependencies com-
puted by the given algorithm with at least one positive vote (at least
one programmer evaluated it with a 33% value) and the union of
the dependencies computed by the algorithms which are evaluated
at least once with at least with a 33% value.
The dependency sets computed by SEA have a relatively high

precision and recall values, and hence it produces the best result
according to the harmonic mean value. Although the precision of
a slice is very high, it has a very weak recall value. It is the same
for all the other algorithms as well. They found a small number
‘real’ dependencies but the ones they found are mostly right. The
set of the 100% co-changed classes contains 4 dependencies and
all the four dependencies proved to be real dependencies by the
programmers, however, these 4 dependencies are just a small part
of the union of the dependency sets.



Algorithm Precision Recall M10 (Harmonic mean)

SEA 24.19% 78.95% 37.03%
call 40% 31.58% 35.29%
cochange(0.4) 21.62% 42.11% 28.57%
slice 30.77% 21.05% 25%
cochange(1.0) 25% 5.26% 8.69%

Table 4. Precision and recall value of different algorithms filtered
out according to the programmers’ evaluation

Table 4 presents also the precision and the recall values of the
algorithms with the difference that we considered only dependen-
cies with positive votes. By filtering out the irrelevant dependen-
cies, the precision decreased and the recall increased on average.
These change directions are based on the increased threshold value:
the number of dependencies evaluated as real dependencies by the
programmers radically decreased. The number of true positive and
false negative dependencies decreased and the false positive ones
increased. The SEA dependency set has the highest overall rank-
ing, and it has a specifically high recall value compared to the oth-
ers in this case. This value is not 100% because the measurement
is based on programmers’ evaluation, and they confirmed several
false dependencies.

Q4: Do the programmers identify the dependencies with the
same confidence levels?

We compared the programmers’ evaluation for each dependency
to examine how different they evaluated the dependencies. We can
measure it with theM11 metric, the deviation of the programmers’
votes.

Figure 5. The deviation of the programmers’ votes.

Figure 5 depicts the deviation of the programmers’ votes. When
the programmers evaluated the relevance of the dependencies, they
could choose from four levels (0%, 33%, 66%, and 100%). This
figure shows how close the answers are. Most of the dependencies
have a standard deviation between 30% and 50% in the votes,
which means that there are not so many dependencies which are
evaluated similarly by the different programmers. In the case of
15 dependencies, the deviation was zero. The programmers were
sure that there was no dependency in these cases (they all voted
with 0% value). The dependency whose evaluation was the most
diverse is #5 with a 50.45% deviation value. This dependency was
determined by 3 algorithms and on the average it received a positive
vote from the programmers, only the co-changing algorithms with
both correlation values missed it. This dependency is between the
writeFolderStatemethod and theOwnSyncStatus class. Themethod

calls the setMessage and the appendToMessage methods from the
OwnSyncStatus class to prepare a message about how long it takes
to write a folder state into a file. 7 programmers were sure that it
was not a real dependency (they gave a 0% vote) but the remaining
4 programmers were sure that it was a dependency (a 100% vote).

Q5: How much the programmers’ opinions change after
seeing the results of different impact analysis algorithms over
their initial opinions?

We can compare the programmers’ evaluation not only for each
dependency, but for each programmer as well. First, we considered
the programmers’ precision and recall values in the two stages. The
metrics are the following:

• M12: the precision value of the given programmer in the first
stage,

• M13: the recall value of the given programmer in the first stage,

• M14: the precision value of the given programmer in the second
stage,

• M15: the recall value of the given programmer in the second
stage.
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Figure 6. Comparison of programmers’ precision and recall in the
first stage and the second stage

Figure 6 presents how much the programmers’ evaluation
changed in the second stage compared to the first stage. The bar-
chart shows the programmers’ individual precision and recall val-
ues in each stage with respect to the collective opinion. The calcu-
lation of the precision and recall values for the first stage is based
on the results produced by the programmers using JRipples. On
the other hand, in the second stage we have considered those de-
pendencies as positive instances that the programmer evaluated by
a 66% or 100% value. In both cases the dependencies with posi-
tive votes were used as the etalon. Generally we can say that the
programmers’ precision value decreased, while the recall values
increased. This is particularly true when a programmer introduced
many new dependencies in the second stage compared to his/her
first stage results. In view of dependencies determined by algo-
rithms, they found more ‘relevant’ dependencies and throw away
less ‘relevant’ dependencies.

A more detailed evaluation of the programmers’ opinion change
is presented in Figure 73. For each programmer four kinds of rate
were calculated:

3While in the first stage the programmers can mark a given method with
Visited or Impacted label, in the second stage, BEFRIEND gives 4 possible
values (0%, 33%, 66%, and 100%). In order to compare these two different
evaluation values, we mapped Visited label to 0% and Impacted label to a
100% value.
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Figure 7. Comparison of programmers’ evaluation in the first
stage and the second stage

• M16: changing rate,

• M17: upwards changing rate,

• M18: downwards changing rate,

• M19: new dependencies rate.

We calculate a rate for each scenario and for each program-
mer: the number of the dependencies where the evaluation value
changed (the programmer changed his opinion) divided by the to-
tal number of the dependencies identified by the given programmer
for the given scenario. The first bars show these rates averaging for
scenarios. These values are very different: from 20% to 90%. The
values show the number of changes upwards and downwards, and
the number of the dependencies which were not evaluated in the
first stage but were evaluated in the second stage with at least a
33% value. The second bars show only the rate of upward changes
(the evaluation of a certain dependency was changed at least 2 lev-
els upwards), the third ones show the rate of downward changes
(the evaluation of a certain dependency was changed at least 2 lev-
els downwards), and the fourth bars show the rate of dependencies
which are not evaluated in the first stage but were evaluated with
at least 33% value in the second stage. Generally, when the change
rate is high, the last bars are high as well. In most cases, the number
of downward changes are negligible, while the upward changes are
more significant. As a general rule, we can establish that there are
several dependencies appearing only in the second stage and the
programmers typically changed their mind upwards and not down-
wards. They insisted on their previously observed dependencies but
they were open to new dependencies, too.

7. Threats to Validity

This paper is an empirical study, and it has limitations that must
be considered during evaluating the result and generalizing in other
contexts.
First, our hypothetical change requests may not equally repre-

sent real maintenance situations. If a programmer has a mainte-
nance task, there is a certain program point in a method which
needs modification. Contrarily, in our experiment the programmer
had to find all the methods/classes impacted by any changes of the
forward defined methods. It is necessary because the algorithms
have method or class granularity, not a statement one. However, for
testers this can represent a real maintenance situation: if the devel-
opers give only the names of the changed methods to the testers,
they must proceed from these methods to determine their impact
sets and the necessary test cases.
There is another factor which is not common in software

maintenance: the programmers were not familiar with the sam-
ple project. No project exists that the participants equally know,
so that is why we chose a project which is not known for each of

them. And generally, the participants were all computer science
students, PhD students, or software engineers: most of them are
not familiar with impact analysis, they are common programmers
who determine dependencies according to their best knowledge.
We have considered algorithms which determine impact sets to

only one program. The constraints has been mentioned in Section 5
(only Java code, memory consumption limitation, extended SVN
history, etc.). In this case, the programmer can understand the
project much better despite understanding several projects a bit.
However, this project is an actual, non-trivial software system with
real SVN history. While only one subject system was examined,
the empirical study has low statistic power. We cannot claim that
the results are generalizable.
Next, comparing the programmers’ evaluation brought in some

difficulties. The two stages are very different: tools with different
user interfaces and different confidence levels. In the first stage,
the programmers determined the dependencies step by step where
only one piece of source code at the same time could be seen and
only ‘dependency’ or ‘not dependency’ could be stated. Contrary
to JRipples, at the second stage, BEFRIEND shows not only all the
dependency candidates but both of the sources of classes of a cer-
tain dependency could be seen simultaneously. BEFRIEND gives
4 possible values (0%, 33%, 66%, and 100%) in order to repre-
sent the programmers’ level of confidence. When we compared the
programmers’ evaluation, we noticed that they insisted on their pre-
viously observed dependencies, so it is possible that they remem-
bered their opinions from the first stage. The solution can be to split
the programmers into two groups and one of the groups determine
dependencies only in the first stage, while the others do it only in
the second stage.

8. Conclusion

In this paper, we presented an empirical comparison of four static
impact analysis techniques (call information, static slice, SEA re-
lation and co-changing files retrieved from SVN repositories) and
dependencies which are determined by programmers. We designed
and performed an empirical study to find out how much the differ-
ent kinds of dependency sets supported program comprehension,
and made finding the impact sets of several hypothetical modifica-
tions more successful.
Our first finding was that the algorithms produce quite different

results. There are a lot of dependencies that are found only by one
of the algorithms, and only one was found by almost all of them.
This suggests that the algorithms should be treated as complement-
ing each other.
The overall opinion of the programmers showed quite large

deviation, which also shows that no single algorithm can be relied
upon, and that the human opinion may depend on many different
things. We compared the precision and recall rates of algorithms
to the collective programmer opinion, and found that the results
produced by Static Execute After algorithm were the closest.
Finally, we checked how much the programmers changed their

initial opinion based on JRipples only, after seeing all the possible
dependencies computed by the different algorithms. Although the
rate of changes and consequently the precision and recall values of
the programmers’ decisions did not change so much, we found that
if there was a change it was mainly in an upward direction, meaning
that in principle the programmers observed the dependencies which
they determined at the first stage, but they were open to accept new
dependencies, too.
The results are promising and raising further interesting ques-

tions. Of course, a bigger case study (with more and bigger pro-
grams and more participants) could be useful to verify the findings.
An important enhancement to the experiment design would be to
start from concrete change requests and not only pointing to the



starting concept methods. In that case the oracle can be a manually
defined impact set, not the programmers opinions.
As the sideeffect of this empirical study, we have information

about the programmers’ decisions. Here, we did not process them
individually, but it would be interesting to compare the program-
mers to each other according to their answers and qualification.
Another topic for the future work is to compare static and dy-

namic impact sets. In this article we used only static analysis to
determine the dependency sets, however, we can determine dy-
namic impact sets as well (after we implement several dynamic
algorithms) or combine static and dynamic impact sets to retrieve
‘hybrid’ impact sets.
Finally, it would be interesting to perform a similar experiment

based on actual programmer activities within a tool like JRipples
using different algorithms, instead of investigating the complete
impact sets. This would make the comparison of the appropriate-
ness of the different algorithms in this environment more complete.
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