
Poster: Supporting JavaScript Experimentation
with BUGSJS

Béla Vancsics∗, Péter Gyimesi∗, Andrea Stocco†, Davood Mazinanian†, Árpád Beszédes∗, Rudolf Ferenc∗, Ali Mesbah†

∗University of Szeged, Hungary †University of British Columbia, Canada
{vancsics, pgyimesi, beszedes, ferenc}@inf.u-szeged.hu

{astocco, dmazinanian, amesbah}@ece.ubc.ca

Abstract—In our recent work, we proposed BUGSJS, a bench-
mark of several hundred bugs from popular JavaScript server-
side programs. In this abstract paper, we report the results of our
initial evaluation in adopting BUGSJS to support an experiment
in fault localization. First, we describe how BUGSJS facilitated
accessing the information required to perform the experiment,
namely, test case code, their outcomes, their associated code
coverage and related bug information. Second, we illustrate how
BUGSJS can be improved to further enable easier application to
fault localization research, for instance, by filtering out failing
test cases that do not directly contribute to a bug.

We hope that our preliminary results will foster researchers
in using BUGSJS to enable highly-reproducible empirical studies
and comparisons of JavaScript analysis and testing tools.

Keywords-JavaScript, bug database, real bugs, fault localiza-
tion, benchmark, reproducibility, BUGSJS.

I. INTRODUCTION AND MOTIVATION

JavaScript is a popular language for developing highly
interactive web applications, recently also adopted for server-
side code [1]. However, JavaScript is an error-prone language,
due to its asynchronous, dynamic, and loosely typed nature.
Research has focused in recent years on devising automated
testing techniques for JavaScript, among which automatic fault
localization [2], or root cause analysis of bugs [3].

Novel software analysis and testing techniques are typi-
cally evaluated through empirical methods (e.g., controlled
experiments), which rely on various software-related artifacts,
such as source code, test suites, and descriptive bug reports.
Comparing the efficacy of these techniques on a common
centralized benchmark is imperative to ensure reliability and
replicability. Unfortunately, in the JavaScript domain, our sur-
vey of the previous studies showed an extensive heterogeneity
in the used evaluation subject systems [4].

To fill this gap, we have proposed BUGSJS, a benchmark
of several hundreds manually-validated bugs from 10 popular
JavaScript programs, along with comprehensive bug reports
and one or more test cases that demonstrate the bugs [4].
These artifacts can be used for devising and evaluating analysis
and testing techniques for JavaScript, facilitated through an
API that allows accessing and executing the faulty and fixed
versions of the programs and the corresponding tests. While
several benchmarks of bugs have been proposed [5, 6, 7, 8,
9, 10], to our knowledge, BUGSJS is the first benchmark of

detailed, descriptive, and curated programs and bug reports for
JavaScript.

In this extended abstract, we report the results of using
the BUGSJS benchmark and infrastructure to perform an
experiment in fault localization, along with some lessons
learned and future directions.

II. BUGSJS

BUGSJS includes 453 reproducible bugs from 10 popu-
lar Node.js server-side JavaScript programs that adopt the
Mocha testing framework. We have mined these projects from
GitHub with the following criteria: (i) popularity: stargazers
count ≥ 100, (ii) maturity: number of commits > 200, and
(iii) recency: year of the latest commit ≥ 2017. Table I shows
the characteristics of the selected projects. The last column
shows the initial number of bug candidates we considered for
inclusion in the benchmark, from which several had to be
removed due to reasons explained below.

TABLE I: Subjects included in BUGSJS

kLOC Stars Commits Forks
Candidate

Bugs

Bower 16 15,290 2,706 1,995 10
ESLint 240 12,434 6,615 2,141 559
Express 11 40,407 5,500 7,055 39
Hessian.js 6 104 217 23 17
Hexo 17 23,748 2,545 3,277 24
Karma 12 10,210 2,485 1,531 37
Mongoose 65 17,036 9,770 2,457 56
Node-redis 11 10,349 1,242 1,245 25
Pencilblue 46 1,596 3,675 276 18
Shield 20 6,319 2,036 1,432 10

Total 444 137,493 36,791 21,432 795

The bugs included in BUGSJS are automatically extracted
from the issue tracking systems of the included programs. To
ensure artefacts traceability, we included closed issues which
were assigned with a specific bug label in the issue tracker.

For each bug, BUGSJS contains the full textual descrip-
tion of the bug reports and their metadata, along with the
developers’ discussions. Moreover, we have included the cor-
responding bug-fixing commit in order to keep the source code
changes required to fix each bug. All bug-fixing commits in



TABLE II: Manual and dynamic validation statistics

B
ow

er

E
SL

in
t

E
xp

re
ss

H
es

si
an

.js

H
ex

o

K
ar

m
a

M
on

go
os

e

N
od

e-
re

di
s

Pe
nc

ilb
lu

e

Sh
ie

ld

To
ta

l

Candidate bugs 10 559 39 17 24 37 56 25 18 10 795
After manual validation 8 382 33 13 13 26 41 11 8 7 542
After dynamic validation 3 333 27 9 12 22 29 7 7 4 453

BUGSJS have been validated and cleaned, both manually—
by multiple authors—and dynamically, to ensure that the bugs
and their fixes were relevant, isolated, and reproducible.

Relevance means that the bug-fixing commits are actually
fixing the bug described in the issue, rather than, for example,
implementing a new feature. Isolation means that the bug-
fixing code exclusively aim at fixing the bug, and no other
changes (e.g., refactorings) are interleaved within it. Isolation
is particularly important in domains where bug-fixing changes
should be clearly identifiable, hence must be cleaned (e.g.,
training machine learning models to learn the fixes from source
code to devise automated program repair techniques). Bugs
in BUGSJS are also reproducible, since we have manually
extracted the test cases that demonstrate each bug. Each set of
such tests was executed on the buggy revision (i.e., dynamic
validation) to ensure their relevance to the bug, and can
be leveraged, for instance, to devise novel automated test
generation techniques. The results of our validation of the bugs
in BUGSJS are reported in Table II.

We have used the GitHub’s fork feature to include the entire
history of the projects in BUGSJS. Each bug in BUGSJS is
tagged to five source code revisions, as follows:

1) The parent commit of the revision in which the bug was
fixed (i.e., the buggy revision);

2) A revision with the original bug-fixing changes (including
the production code and the newly added tests);

3) A revision with only the tests introduced in the bug-fixing
commit, applied to the buggy revision;

4) A revision only containing the production code changes
introduced to fix the bug, applied to the buggy revision;

5) A revision containing both the cleaned fix and the newly
added tests, applied to the buggy revision.

 

BugsJS Organization

...

Forked

...

Forked

Subject#N 
Fork

Source code 
Tests 
Cleaned patches 
Tagged bug fixes

Subject#N 
Original repository

Subject#1 
Fork

Source code 
Tests 
Cleaned patches 
Tagged bug fixes

Subject#1 
Original repository

bug dataset 
Repository 

Utility framework 
Bug statistics 
Test commands 
Bug report data 

docker environment 
Repository 

Pre -built environment 

Fig. 1: BUGSJS architecture

BUGSJS consists of two other components (see Figure 1):
a Docker image that provides a runtime environment, and
a bug dataset. The dataset can be queried through an API
that supports the following commands: (i) info: printing out
information about a given bug, (ii) checkout: checking-out
the source code, (iii) test: running all tests and retrieving
the overall test suite coverage (iv) per-test: running each
test individually and retrieving the per-test coverage. These
commands facilitate the use of BUGSJS for other researchers
to a large extent.

More details about the characteristics of BUGSJS, its ar-
chitecture, and our design choices can be found in our full
paper [4]. The interested reader can find more information on
BUGSJS and access the benchmark on our website:

https://bugsjs.github.io/

III. POSSIBLE USE CASES

BUGSJS can be useful to support experimentation in several
testing research areas, some of which we list next.
Regression testing. More than 25k test cases included in
BUGSJS can facilitate various regression testing studies, e.g.,
test prioritization, software oracles, or automated test repair.
Bug prediction. The source code and various information
pertaining to a large set of bugs available in BUGSJS can be
used to construct bug prediction models. The availability of
both cleaned and uncleaned bug-fixing patches in the dataset
can allow assessing the sensitivity of the proposed models to
noise.
Automated program repair. The manually-cleaned patches
available in BUGSJS can be used as learning examples
for patch generation in novel automated program repair for
JavaScript. Also, BUGSJS provides an out-of-the-box solution
for automatic dynamic patch validation.
Bug localization. BUGSJS contains pointers to the natural
language bug descriptions/discussions for several hundreds of
bugs. Devising NLP-based techniques for formulating natural
language queries that describe the observed bugs available in
BUGSJS is just one sample use case. Also, other approaches to
fault localization such as Spectrum-Based Fault Localization
can benefit from readily available sets of test cases, detailed
code coverage information, test case outcomes and bug posi-
tions. We chose this use case as a preliminary example of use
of our dataset, which we explain next.

IV. SAMPLE USE CASE: FAULT LOCALIZATION

We used BUGSJS to support an ongoing experimentation
on fault localization (FL) [2], a well-established research area
that can largely benefit from a dataset of catalogued bugs. To
evaluate FL algorithms, we need validated bugs, their fixes,
as well as tests to demonstrate the existence of bugs. In our
use case, we considered Spectrum-Based Fault Localization
(SBFL), a popular FL technique which captures run-time in-
formation, such as detailed code coverage, in order to monitor
the dynamic behaviour of the software. Then, by associating
the test case outcomes with appropriate dynamic information,

https://bugsjs.github.io/


we can identify the potentially faulty code fragments in the
program.

One widely-used program spectra in SBFL is the one which
is based on the covered/uncovered statements and methods
during test execution. To successfully apply this technique,
we require: (i) test coverage information, (ii) tests results, and
(iii) modified source code (e.g., statements or methods that
were modified during the fixing).

BUGSJS’s API provides easy access to all such information.
High coverage and non-extreme test-method ratio are also
important for the efficiency of FL algorithms. The dataset
contains an average of 9327 tests, 1562 methods, 8941 LOC,
and features 96% method-level coverage and ≈37:6 test-
method ratio.

BugsJS

Changed
methods

FL ranks

Running testsBuggy version    
with test changes

Fixed version
without test changes

Getting changes

FL evaluation

Organization

Pertest 
coverage

Test results

Fig. 2: Fault localization process

The overall FL process using BUGSJS is shown in Figure 2.
First, the per-test command retrieves which methods are
covered by a test, which provides an overview of the full,
method-level coverage of the subject program. Second, the
test command executes all tests and saves the results. The
difference between the buggy and the fixed version determines
which files were changed by a fix-commit, that is, the location
of the bug in the source code.

A common approach in FL is to provide a ranking score to
order program entities (e.g., methods) based on their likeliness
to be buggy. The ranking score is typically a function of four
values for a given method m, all of which can be easily
obtained from BUGSJS:

a) mep: number of passing tests covered by m
b) mef : number of failing tests covered by m
c) mnp: number of passing tests not covered by m
d) mnf : number of failing tests not covered by m

In this work, we used Tarantula [11], a popular ranking
score defined as follows:

Tarantula(m) =

mef

mef+mnf

mef

mef+mnf
+

mep

mep+mnp

A. Preliminary results: bug-fix patterns and ranks

We applied SBFL with Tarantula technique to the subject
program Hessian.js, which includes nine (9) bugs.

As part of the analysis and classification of BUGSJS
bugs [4], we categorized them based on recurring bug-fix
patterns proposed by Pan et al. [12]. By comparing the results
of this categorization and the ranking scores of the fixing
methods provided by Tarantula, we expect to gather insights
on how different types of bugs can be successfully localized.

TABLE III: Hessian.js bug-fix patterns and Tarantula ranks

Bug # Rank Method Pattern(s) [12]

5 1 lib/v2/encoder.js:(anonymous 3)
2 2 lib/v2/decoder.js:(anonymous 15) IF-RMV
9 2 lib/v1/decoder.js:(anonymous 20) SQ-RMO
3 3 lib/v1/encoder.js:(anonymous 21) IF-APCJ
8 3 lib/utils.js:(anonymous 3) IF-CC
6 4,5 ib/v2/decoder.js:(anonymous 11) IF-APC
4 7 lib/v1/encoder.js:(anonymous 18) IF-CC
7 7 lib/v1/encoder.js:(anonymous 19) CF-CHG
1 7,5 lib/v2/encoder.js:(anonymous 11) MC-DNP, SQ-AMO
1 7,5 lib/v2/encoder.js:(anonymous 12) MC-DNP, SQ-RMO
6 8 lib/v1/decoder.js:(anonymous 20) IF-APC
2 9 lib/v1/decoder.js:(anonymous 20) IF-CC
1 41,5 lib/v2/encoder.js:Encoder CF-ADD
5 56,5 lib/v2/encoder.js:(anonymous 4) IF-APC

For all nine bugs from the Hessian.js project, we deter-
mined, using the Tarantula score, the ranks for each method
affected by the bug-fixes, then we assigned bug-fix patterns to
these methods. Table III lists the bug ID in BUGSJS, the rank
obtained from the Tarantula score, the corresponding methods
in the bug-fix and the associated bug-fix patterns.

The first method (lib/v2/encoder.js:(anonymous_3))
does not have any patterns assigned because the
fix only contains an assert statement which is not
among the patterns proposed by Pan et al. [12].
We can observe that two methods falling within
the IF-CC pattern (lib/utils.js:(anonymous_3),
lib/v1/encoder.js:(anonymous_18)) have generally
better ranks. In these cases, the fix involved adding or
modifying existing IF conditions. The only exception is
lib/v1/decoder.js:(anonymous_20), where the fix only
involved removing a condition. The ranks of fixes falling
within the IF-APC(J) pattern are rather different, whereas the
occurrence of other patters is not significant. Thus, further
experiments with more bug information (for instance, those
of the other projects available in BUGSJS) are required to
draw conclusions about the correlation between bug patterns
and fault localization techniques.

B. Preliminary results: ranking of methods

The previous section presented all bugs from the
Hessian.js project. Additionally, let us consider Bug-2 of
this project1, which contains 175 tests, 95 methods, 1040 LOC,
the method-level coverage is around 98% and the test-method
ratio is ≈35:19. These statistics (i.e., non-trivial number of
tests and code elements with balanced ratio) enable a more
reliable application of our fault localization technique.

The bug-fixing commit changed nine (9) lines of JavaScript
code. Based on the location of these changes, we can pre-
cisely identify the modified methods (as BUGSJS’s cov-
erage data contain information about the starting LOC of
each method). In this case, the bug-fixing commit involves

1https://github.com/BugsJS/hessian.js/releases/tag/Bug-2-fix

https://github.com/BugsJS/hessian.js/releases/tag/Bug-2-fix


TABLE IV: Hessian.js Bug-2 changes and scores

Method mef mep mnf mnp Tarantula Rank

anonymous_15 1 6 1 167 0.93514 2
anonymous_20 1 23 1 150 0.78995 9

two methods: lib/v1/decoder.js:(anonymous_20) and
lib/v2/decoder.js:(anonymous_15). Table IV reports
the four metrics required to compute Tarantula values and
the final scores for each of these methods. Results are
ranked according to increasing Tarantula scores, hence show-
ing which method is more likely to be buggy. In our example,
anonymous_20 is ranked ninth and anonymous_15 is ranked
second in the order of all methods. Since the bug-fixing com-
mit involves multiple methods, the lowest rank associated with
all changed methods determines which is the rank of the bug.
In this case, it will be two, that is the rank of anonymous_15.
Since the identified buggy element also included fixes to an
if-construct, this is aligned with our observation from the
previous section.

C. An additional observation

Unfortunately, we observed that programs can also include
failing tests that are not related to the investigated bug.
The unrelated tests can interfere with the evaluation of FL
algorithms, as such they they must be filtered out. One possible
way to do it is by comparing the test results of the buggy
and fixed versions: tests that fail in both cases are irrelevant
to the examined bug. For example, Hessian.js contains six
(6) such tests, on average.

V. CONCLUSIONS AND FUTURE WORK

In this abstract paper we have sketched our on-going work
on the BUGSJS benchmark which has the ultimate purpose of
representing a consolidated resource available to researchers
in the areas of software analysis and testing for JavaScript.
We have also reported an example of possible experiment in
fault localization for JavaScript using BUGSJS.

We hope our framework can foster further research in this
domain, and that can be used to conduct highly-reproducible
empirical studies in various areas such as regression testing,
bug prediction, and fault localization.

As part of our ongoing and future work, we plan to include
more subjects (and corresponding bugs) to the benchmark.
Also, we plan to implement easier filtering of such irrelevant
test cases, so as to reduce the false positive ration when
performing experiments in fault localization. Our long-term
goal is to also include client-side JavaScript web applications
in BUGSJS. Furthermore, we are planning to develop an ab-
straction layer to allow easier extensibility of our infrastructure
to other JavaScript testing frameworks.

REFERENCES

[1] S. Alimadadi, A. Mesbah, and K. Pattabiraman,
“Understanding asynchronous interactions in full-stack
JavaScript,” in Proc. of 38th International Conference
on Software Engineering (ICSE), 2016.

[2] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A
survey on software fault localization,” IEEE Transactions
on Software Engineering, vol. 42, no. 8, 2016.

[3] F. S. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mes-
bah, “A Study of Causes and Consequences of Client-
Side JavaScript Bugs,” IEEE Transactions on Software
Engineering, vol. 43, no. 2, pp. 128–144, Feb 2017.

[4] P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian,
Árpád Beszédes, R. Ferenc, and A. Mesbah, “BugJS: A
benchmark of javascript bugs,” in Proceedings of 12th
IEEE International Conference on Software Testing,
Verification and Validation (ICST), 2019. [Online].
Available: https://bugsjs.github.io/paper/ICST19.pdf

[5] H. Do, S. Elbaum, and G. Rothermel, “Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact,” Empirical Softw.
Engg., vol. 10, no. 4, pp. 405–435, Oct. 2005.

[6] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A
database of existing faults to enable controlled testing
studies for Java programs,” in Proc. of 2014 International
Symposium on Software Testing and Analysis, 2014.

[7] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun,
P. Devanbu, S. Forrest, and W. Weimer, “The ManyBugs
and IntroClass benchmarks for automated repair of C
programs,” IEEE Transactions on Software Engineering
(TSE), vol. 41, no. 12, pp. 1236–1256, December 2015.

[8] N. Dmeiri, D. A. Tomassi, Y. Wang, A. Bhowmick,
Y.-C. Liu, P. Devanbu, B. Vasilescu, and C. Rubio-
Gonzalez, “BugSwarm: Mining and Continuously Grow-
ing a Dataset of Reproducible Failures and Fixes,” in
Proc. of 41st International Conference on Software En-
gineering (ICSE), 2019.

[9] G. Fraser and A. Arcuri, “Sound empirical evidence in
software testing,” in Proc. of 34th International Confer-
ence on Software Engineering (ICSE), 2012.

[10] A. Gkortzis, D. Mitropoulos, and D. Spinellis, “Vuli-
nOSS: A dataset of security vulnerabilities in open-
source systems,” in Proc. of 15th International Confer-
ence on Mining Software Repositories, 2018.

[11] J. A. Jones and M. J. Harrold, “Empirical evaluation of
the tarantula automatic fault-localization technique,” in
Proceedings of the 20th IEEE/ACM International Con-
ference on Automated Software Engineering, ser. ASE
’05, 2005, pp. 273–282.

[12] K. Pan, S. Kim, and E. J. Whitehead, “Toward an
understanding of bug fix patterns,” Empirical Software
Engineering, vol. 14, no. 3, pp. 286–315, Jun 2009.

https://bugsjs.github.io/paper/ICST19.pdf

