
CIASYS - Change Impact Analysis at System Level

Gabriella Tóth, Csaba Nagy, Judit Jász and Árpád Beszédes
University of Szeged

Department of Software Engineering
Árpád tér 2. H-6720 Szeged, Hungary

{gtoth,ncsaba,jasy,beszedes}@inf.u-szeged.hu

Lajos Jenő Fülöp
FrontEndART Ltd.

Zászló utca 3. I/5. H-6722 Szeged, Hungary
flajos@frontendart.com

Abstract—The research field of change impact analysis
plays an important role in software engineering theory and
practice nowadays. Not only because it has many scientific
challenges, but it has many industrial applications too (e. g.,
cost estimation, test optimization), and the current techniques
are still not ready to fulfill the requirements of industry.
Typically, the current solutions lack a whole-system view and
give either precise results with high computation costs or
less precise results with fast algorithms. For these reasons,
they are not applicable to large industrial systems where
both scalability and precision are very important. In this
paper, we present a project whose main goal is to develop
an innovative change impact analysis software-suit based on
recent scientific results and modern technologies. The suite
will use hybrid analysis techniques to benefit from all the
advantages of static and dynamic analyses. In addition, it
will be able to determine the dependencies at system level of
software systems with heterogeneous architecture. The software
is being developed by FrontEndART Ltd. while the theoretical
and technological background is provided by the Department of
Software Engineering at the University of Szeged. The project is
funded by the Economic Development Operational Programme,
New Hungary Development Plan.

Keywords-change impact analysis, static analysis, dynamic
analysis, hybrid analysis, system-level dependencies

I. INTRODUCTION

The main goal of impact analysis is to reveal which
other systems or parts of a software system are influenced
by some selected parts of a given system. This is usually
closely related to software change impact analysis [1] which
is defined as identifying the potential consequences of a
change, or estimating what needs to be modified to accom-
plish a change. These consequences of a change are usually
associated with the risks of a modification in the software.
Impact analysis is important for many different purposes,
including estimating the cost of development, the cost of a
bugfix, the stability of the system, or locating the potential
bugs in the system.

There is a number of reasons why an existing system
has to be changed. For example, fixing defects, introducing
new features, preparing the system for a new environment or
the improvement of internal quality. All these changes have
potential risk factors because of unexpected side-effects,
errors or mistakes. To avoid these risks, the developers

estimate the potential consequences of the change (e.g.
which parts of the source code must be rewritten or retested)
and implement the changes only after their estimation. Due
to the risks mentioned above, the cost of a software change is
usually very high, which indicates the importance of change
impact analysis. This is especially the case for those systems
that are already in operation. For live systems, the cost of
a bugfix (including development cost, business loss, etc.)
might be as much as one hundred times more than a fix of
a bug which is discovered in the development phase of the
product.

The most important application fields of impact analysis
include estimating the cost of a change and decreasing these
costs, analyzing the impact of a change to discover the
potential bugs or errors, and optimizing software testing
especially in terms of resources and efforts. Taking the latter
as an example, after modifying the system it needs to be
retested (regression and confirmation testing). However, it
is important to note that testing a whole system is usually
expensive and sometimes not even affordable after each
change (sometimes a full test is even more expensive than
the development itself). In such cases, it is useful to identify
which test cases are required to be rerun in order to test
exactly those parts of the system that are influenced by
the change (selective testing). Identifying these parts of the
system requires impact analysis.

Experience shows that developers usually perform impact
analysis in an ad hoc manner, “manually”. Thus, developers
rely only on their skills and experience resulting in the
fact that when there is a change request, it is evaluated
by an expert who estimates the potential consequences and
makes decisions accordingly. The experience and the skills
of an expert are very important, but manual work always
includes potential mistakes. Moreover, it is very expensive
too. Consequently, a tool that is able to (partly) automate the
process of impact analysis is very useful in different phases
of software development.

In this paper, we give a brief overview of a project co-
financed by the European Union through the New Hungary
Development Plan, which implements new impact analysis
techniques and validates them, thus enhancing the state-of-
the-art in this field. The project is carried out in an industrial



context to develop an innovative impact analysis software-
suite.

II. STATE OF THE ART

Automated impact analysis methods based on source
code employ the analysis of the relations between differ-
ent software components (modules, procedures, statements,
variables, etc.). With precise analysis, the relations between
the lower levels of a system (e.g the relations between
statements and data) can be computed. This kind of program
analysis is often referred to as program slicing. However,
this affects the cost of computations and the complexity
of impact analysis. On the other hand, the analysis of
higher level dependencies (e.g. the dependencies between
procedures) are less precise, but faster.

There are static and dynamic approaches too. Static
methods are applicable to the systems without executing
them. Thus, one can observe the effect on all the potential
executions of a system with one analysis, while with dy-
namic analysis one can observe only specific executions of
the system. Hence, dynamic analysis is usually more precise
than static analysis, even if multiple executions of the system
are taken into account. Experience shows that the current
static techniques do not scale well for the impact analysis of
large industrial systems. One explanation is the imprecision
caused by the modern dynamic languages (polymorphism,
reflection). In such cases, one potential solution is to use
hybrid techniques, where the imprecise results of static
analysis are improved with the precise results of dynamic
analysis.

Hybrid and higher level methods are potential solutions
for the weaknesses of static analysis and dynamic analysis.
However, these methods are not yet elaborated in sufficient
detail.

Another challenge for these methods is that if a technique
needs to be applied for large systems safely (so, it does not
omit any important dependency), it must be able to analyze
the system as a whole. However, large modern systems are
heterogeneous and their architecture is built up of many
subsystems using different technologies. For instance, it is
common to use relational databases and access the database
by using SQL instructions embedded in the source code.

On the global market, only a few companies provide
complete solutions for impact analysis. As an innovative
and motivated research area, some of the companies are
closely related to universities. For instance, Axivion as a
spin-off of the University of Stuttgart [2] provides software
development services within the Bauhaus project, including
code quality management. Absint [3] provides static pro-
gram analysis solutions for embedded systems. A prominent
company in the fault detection area is Coverity [4] with
their best known product Coverity Prevent. Other companies
are Fortify Software [5], Klocwork [6] and Parasoft [7]
providing solutions for software security assurance too.

Grammatech’s CodeSurfer [8] is one of the leading tools
in the slicing area. Finally, Scientific Toolworks’s [9] Un-
derstand tool is also notable in the field of impact analysis.

Currently, there is no available tool which is able to
provide services and features like those planned to be the
outcome of this project. University prototypes are available
however, for example Chianti [10] which is an impact anal-
ysis tool running in Eclipse environment for Java programs.
Similarly, JRipples [11] also runs in Eclipse environment and
assists developers in identifying components to be inspected
during change analysis. These tools are based on static
analysis only, and their applicability is limited for large
systems.

III. THE PROJECT

A. General data

The project is co-financed by the European Union and
the partner support of the Hungarian Regional Development
Fund under the “Support of enterprise innovation” tender of
the Economic Development Operational Programme, New
Hungary Development Plan.

The name of the project is “Development of an impact
analysis software package which improves the cost estima-
tion of changes in large heterogeneous architecture software
and improves efficiency of testing,” the identifier is GOP-
1.3.1-07/1-2008-0013.

The total budget of the project is 233 500 EUR, and the
amount of funding is 116 750 EUR (50%).

The duration of the project is two years from 1st October,
2008 by 30th June, 2010.

As an outcome of this project, an impact analysis software
package will be developed. This software package consists
of five main components: an evaluation environment; a
static, a dynamic, a hybrid, and a system-level impact
analysis tool.

B. Participants of the project

The participants of the project are FrontEndART Ltd. –
a spin-off company of University of Szeged –, the Depart-
ment of Software Engineering at University of Szeged, and
subcontractors for different subtasks.

FrontEndART Ltd. plays an important role in source code
based software quality analysis in Hungary and globally as
well. The best known product of the company is a software
quality assurance framework (SourceInventory) based on the
Columbus technology. This technology approaches source
code quality from many different aspects: metrics, violations
of coding conventions, and code duplications, for instance.
All the information is extracted from the source code and
uploaded into a database which makes the extracted data
available for further automatic processing.

FrontEndART Ltd. co-ordinates the project and the de-
velopment of its main outcome, the product itself. The
Department of Software Engineering, University of Szeged

2



provides the theoretical and technological background; it
conducts research, investigates new techniques, and im-
proves on previously published approaches.

C. Main tasks of the project

Figure 1 illustrates the main tasks of the project. First we
set up an evaluation environment to test and evaluate our
methods. Then, we implement static and dynamic techniques
that will be combined in a hybrid analysis system. This
system will be able to analyze the dependencies of large
systems at system level.

1) Evaluation environment: The first step of the project
is to set up an evaluation environment. It is important to
evaluate the implemented methods and to measure their
effectiveness and efficiency. This environment is a set of
open source software focusing on products with available
source code of different versions, and provided with suitable
test environments.

2) Static impact analysis software: After setting up an
evaluation environment, we start developing a static impact
analysis software. This software implements new techniques
besides evaluating and improving the state-of-the-art meth-
ods in the field of static analysis. For instance, the university
partner improves its method with heuristics to find SEA
(Static Execute After) relations [12], [13], [14] effectively
and precisely. According to this relation, one procedure of
a system depends on another procedure, if it (or its part)
is executed after the other procedure. This relation between
the different program elements (e.g. procedures) can be de-
termined with static analysis without executing the analyzed
software. The algorithm which calculates these dependencies
scales well for large systems, and it is adaptable to a given
environment by using different heuristics.

3) Dynamic impact analysis software: The next step is
the implementation of a dynamic analysis tool. We improve
the Java dynamic slicing method and the DFC (Dynamic
Function Coupling) method that were previously published
by the university partner [15], [16]. DFC is based on
the analysis of the function call chains captured from the
execution traces of the program where the pairs of functions
which are regularly “close” to each other are considered
as having an effect on each other. This method is also
implemented for the Java and C++ languages.

4) Hybrid impact analysis software: The next step is to
develop a hybrid impact analysis tool that combines the
advantages and eliminates the disadvantages of the static
and dynamic impact analysis tools. First, the undiscovered
impacts retrieved by the static methods can be completed
with the support of dynamic methods (e.g. the dependencies
appearing in program run caused by reflection). On the
other hand, the false or less significant impacts discovered
by the static methods can be filtered out by taking into
account the results of dynamic methods. In addition to
the implementation of the tool, we give a statistical model

to determine the number of required program executions
in order to calculate as many potential dependencies in a
program as possible with reasonable accuracy.

5) System-level impact analysis software: The previous
methods can only be applied to given modules of a sys-
tem. Hence, these techniques compute dependencies only
between the different elements of the analyzed module, and
they are not able to compute the dependencies between the
different modules of the full system. We implement methods
to compute dependencies in large systems by using databases
where dependencies arise through database access, such
as the dependencies between columns, tables, procedures,
stored procedures, etc. Besides, the software will be able
to recover the dependencies between the components of
distributed systems and service-oriented architectures.

6) Evaluation: There are a number of different ways to
evaluate impact analysis techniques. We evaluate them by
using our evaluation environment. We compare the different
techniques in terms of applicability, scalability, and effi-
ciency. In addition, we set up typical use cases (scenarios)
for cost estimation and testing, then we examine which
method should be used in which specific cases.

D. Expected outcomes

The motivation of this project is that despite the increasing
demand for impact analysis tools in the software industry
the existing techniques are not yet sufficiently mature. Many
commercial solutions or prototypes developed for research
purposes cannot be effectively used in real environments or
for large-scale systems due to the known limitations of static
and dynamic analysis techniques.

The main design goal is that the tools developed –
compared to existing solutions – be efficiently applicable
to large scale industrial systems, namely to be scalable and
precise enough at the same time.

We also expect the new software to compute dependencies
between the components of distributed and service-oriented
systems.

For database-intensive systems, it will be able to deter-
mine the dependencies between database components (e.g.
columns, tables, stored procedures), and between these ele-
ments and other system components (e.g. classes, methods
or functions).

IV. STATUS OF THE PROJECT AND FUTURE WORK

After setting up the evaluation environment, we devel-
oped the static impact analysis software and enhanced the
previously published methods to compute SEA relations
[12], [13] with different heuristics [14]. We implemented
the methods for Java and C++ programming languages. The
enhancement of the method using the heuristics enables
more precise results in the sense that it removes certain
dependencies, which can be proven to be false. This decision
is based on the investigation of what kind of data is used

3



Figure 1. Main tasks of the project.

by the individual procedures: if it only reads data then it
cannot induce data dependency, and similarly, if it does not
read any data it cannot depend on others.

The evaluation of the tools developed will be done on
different levels. First, the basic dependency computation
components will be thoroughly tested using the already
available evaluation benchmark. Second, the overall working
of the system including high level use cases will be vali-
dated using the specially developed user interfaces. These
interfaces include the integration into the SourceInventory
framework of the company and the integration into different
development environments as well.

Currently, the development of the dynamic impact anal-
ysis software is in progress in parallel to the subtasks of
the system-level impact analysis. The university partner has
already published results in this area [15], [16], but the
improvement of the current methods is still in progress.

As future work, we need to develop the software for
hybrid and for system-level impact analysis in order to
be able to evaluate and compare the results of different
techniques.

ACKNOWLEDGEMENTS

This research was supported by the New Hungary De-
velopment Plan, Economic Development Operational Pro-
gramme, grant id: GOP-1.3.1-07/1-2008-0013.

REFERENCES

[1] R. S. Arnold, Software Change Impact Analysis. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1996.

[2] “Axivion GmbH,”
http://www.axivion.com/.

[3] “AbsInt Angewandte Informatik GmbH,”
http://www.absint.com/.

[4] “Coverity, Inc.”
http://www.coverity.com/.

[5] “Fortify Software Inc.”
http://www.fortify.com/.

[6] “Klocwork Inc.”
http://www.klocwork.com/.

[7] “Parasoft Corporation,”
http://www.parasoft.com/.

[8] “GrammaTech’s CodeSurfer,”
http://www.grammatech.com/products/codesurfer.

[9] “Scientific Toolworks, Inc.”
http://www.scitools.com/.

[10] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley,
“Chianti: a tool for change impact analysis of java programs,”
in OOPSLA ’04: Proceedings of the 19th annual ACM SIG-
PLAN conference on Object-oriented programming, systems,
languages, and applications. New York, NY, USA: ACM,
2004, pp. 432–448.

[11] “JRipples tool for Incremental Change,”
http://jripples.sourceforge.net/.

[12] Á. Beszédes, T. Gergely, J. Jász, G. Tóth, T. Gyimóthy,
and V. Rajlich, “Computation of static execute after relation
with applications to software maintenance,” in Proceedings
of the 2007 IEEE International Conference on Software
Maintenance (ICSM’07). IEEE Computer Society, Oct. 2007,
pp. 295–304.

[13] J. Jász, Á. Beszédes, T. Gyimóthy, and V. Rajlich, “Static
execute after/before as a replacement of traditional software
dependencies,” in Proceedings of the 2008 IEEE International
Conference on Software Maintenance (ICSM’08). IEEE
Computer Society, Oct. 2008, pp. 137–146.

[14] J. Jász, “Static execute after algorithms as alternatives for
impact analysis,” Peryodica Politechnica, Budapest, 2009,
Accepted paper.

[15] A. Szegedi and T. Gyimothy, “Dynamic slicing of java
bytecode programs,” in SCAM ’05: Proceedings of the Fifth
IEEE International Workshop on Source Code Analysis and
Manipulation. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 35–44.

[16] A. Beszedes, T. Gergely, S. Farago, T. Gyimothy, and F. Fis-
cher, “The dynamic function coupling metric and its use
in software evolution,” in CSMR ’07: Proceedings of the
11th European Conference on Software Maintenance and
Reengineering. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 103–112.

4


