
Software Quality Model and Framework with
Applications in Industrial Context

Lajos Schrettner
InfoPólus 2009 Ltd.

Gutenberg u. 14.
H-6722 Szeged, Hungary
schrettner@infopolus.hu

Lajos Jenő Fülöp
DEAK Plc.

Dugonincs tér 13.
H-6720 Szeged, Hungary
flajos@inf.u-szeged.hu

Árpád Beszédes, Ákos Kiss, Tibor Gyimóthy
University of Szeged

Department of Software Engineering
Árpád tér 2, H-6720 Szeged, Hungary

{beszedes,akiss,gyimi}@inf.u-szeged.hu

Abstract—Software Quality Assurance involves all stages of
the software life cycle including development, operation and
evolution as well. Low level measurements (product and process
metrics) are used to predict and control higher level quality
attributes. There exists a large body of proposed metrics, but
their interpretation and the way of connecting them to actual
quality management goals is still a challenge. In this work,
we present our approach for modelling, collecting, storing and
evaluating such software measurements, which can deal with all
types of metrics collected at any stage of the life cycle. The
approach is based on the Goal Question Metric paradigm, and
its novelty lies in a unified representation of the metrics and the
questions that evaluate them. It allows the definition of various
complex questions involving different types of metrics, while the
supporting framework enables the automatic collection of the
metrics and the calculation of the answers to the questions.
We demonstrate the applicability of the approach in three
industrial case studies: two instances at local software companies
with different quality assurance goals, and an application to
a large open source system with a question related to testing
and complexity, which demonstrates the complex use of different
metrics to achieve a higher level quality goal.

Index Terms—Software quality assurance, Metrics, Goal Ques-
tion Metric, Quality model, Modelling, Data persistence.

I. INTRODUCTION

Measurement is an essential constituent of any software
quality assurance activity [1]. Without measuring different
properties of the product and process it is impossible to
assess quality issues, and prepare for their mitigation either
in form of prevention, refactoring or any other kind of risk
management. There is a significant body of work published
about what kind of measurements and specific metrics should
be used for this purpose, e.g. see [2]. These metrics are
properties of the system or the process that can be expressed
numerically. Also, there are different recommendations about
how quality should be defined in the first place for a specific
project and goal (e.g. see the ISO 9126 standard). In other
words, what are those higher level quality attributes that should
be managed (specified, tested and maintained). Finally, there
are different standards about the overall quality assurance of
software processes [3], [4].

This work is based on the Goal Question Metric (GQM)
paradigm [5] in the sense that we suggest a method for
combining metrics and questions in a unified model to bridge

the gap between high level goals and low level metrics. The
key idea of this paradigm is that a measurement must be
defined in a top-down fashion. A bottom-up approach has
several drawbacks because there are many characteristics in
software, but selecting the important ones is not straightfor-
ward without well defined top-level goals. The paper makes
two contributions.

First, we implemented the approach in a framework that
supports the modeling, collecting, storing and evaluating soft-
ware measurements, which can deal with all types of metrics
collected at any stage of the life cycle. The model and its
representation allows the definition of various complex ques-
tions involving different types of metrics, while the supporting
framework enables the automatic collection of the metrics and
the calculation of the answers to the questions. The novelty
of the approach is the combined use of metrics and questions.
Second, we present details about three industrial applications
for which a monitoring environment has been set up using the
model and quality framework.

There are some similar works ([6], [7], etc.) but none of
them provided all the features we deemed important: (1) build
on the basis of the GQM paradigm, (2) define models for data
storage, (3) store and manage the questions together with the
data and metrics, (4) should be extendible with regard to data
uploading and model extension.

The paper is organized as follows. Section II describes the
concepts and design decisions that led to the development of
the Unified Quality Monitoring framework. In Section III, we
give some details about the implementation of the framework,
while Section IV is dedicated to details and experiences with
the applications. Finally, we conclude in Section V.

II. SOFTWARE DEVELOPMENT LIFE CYCLE MONITORING
APPROACH

Principles of a possible solution: Based on the above we
define high level concepts that describe the principles and key
requirements of a possible solution. This concept is depicted
in Figure 1.

The left hand side of the figure shows the concepts of
measurement based on GQM. The right hand side of the figure
shows the modelling concepts for the structural elements and
relationships of the software under investigation. An important



detail in the GQM paradigm is that when the GQM model
is defined, then the appropriate data collection techniques and
tools have to be developed.We call this kind of tools adapters,
as can be seen in Figure 1.

Figure 1. High level concepts for a GQM- and model-based software
measurement solution

An important part of this figure is the View, which is located
in the middle, between the Model and the Metrics. View defines
the viewpoint of the model from three aspects: measured phase
(eg. design, implementation), measured artifact (eg. design
documents, source code), and measured subject. The latter
deals with the categorization of the measured metrics: product
(eg. lines of code) and process (eg. average time to fix a bug).

The interpretation and the need for a viewpoint are usually
specific to a certain project. For example, in the case of
Measured Phase it is possible to measure phases such as
operation and maintenance that are parallel to each other, i.e.
may be carried out at the same time. Therefore, the viewpoints
have to be selected first, then the metrics should be determined,
taking into account the viewpoints.

Data model: We developed a model based on the principles
above. The most important part of the developed model,
which we call library, contains the common general elements
of the whole model. Among the elements there are general
items from which specific measurable entities can be derived,
items from which specific metrics can be derived, and top
level elements that are required in every application (such as
identifying the system under observation, and the versions
of the system). The library is defined via a static UML
diagram, but due to space constraints its details cannot be
presented here. We defined a reference process to extend and
customize the library to suit the needs of a specific field or
application. The reference process consists of four steps: (1)
defining the structure of the measurement, (2) identifying the
measured elements, (3) defining software quality metrics, and
(4) determining constraints for the new measurement. The
process does not deal with the high level quality attributes,
because the extension process is general, while goals and
questions are domain-dependent or project specific. While the
questions should determine the type of metrics to use, the
library can be seen as a set of possible metrics at our disposal.

III. IMPLEMENTATION

Based on the principles defined in the previous section we
developed the Unified Quality Monitoring (UQM) application.
The UQM application integrates the collection of quality data,
high level query management and reporting features. It has

been implemented on top of our Model Based Persistence
Server (MBPS) framework, which is capable of supporting
clients that benefit from viewing their persistent data as a
collection of nodes (and connections) instead of as records
of a relational database. Its main distinguishing feature is that
besides serving as a vehicle for model-based data storage, it
supports the integration of queries into the models. Our MBPS
framework provides the basic data abstraction and persistence
infrastructure on which the higher level quality monitoring
functions are built.

The UQM application is still under development, but it
has already been used with success in several academic and
industrial projects. Quality data accumulates in the model
instance by the use of special client components, called
adapters (Figure 2). Adapters are data transformation devices
that collect data from various sources, restructure them as
dictated by the model, then forward the resulting elements
to the persistence server. There are a predefined set of adapter
types that are prepared to be able to collect data from sources
that have been encountered so far in different projects. Adapter
types and supporting classes are arranged in an inheritance
hierarchy, so new adapter types can be included into the system
relatively easily if the need arises.

In a particular installation of the UQM application, those
adapters that are determined to be necessary for the operation
of the system have to be instantiated. Most adapters require
that parameters be provided at instantiation time to be able to
connect to their data source. Instantiated adapters can be set up
to operate under the supervision of a scheduler that activates
them at preconfigured moments, or they can be activated
manually.

Figure 2. UQM architecture

Data collected through adapters accumulates in the persis-
tent storage, in the current model instance, where it can be
queried from. Queries are stored next to the model, and can
have parameters that should be filled in before execution. The
parameters together with the constraints that are described
inside the queries determine a subset of the nodes and con-
nections of the model instance. This way they are similar to



relational queries, except that they produce a subgraph, not
a series of records. Queries can encode a limited number of
aggregation functions (e.g. count, sum, average), and it is also
possible to attach custom post-processing Java code to them.
The results of an executed query can be viewed textually in
the simplest case, or they can appear on a diagram if the
output type of the query is one of those for which diagrams are
predefined. The current set of diagrams consists of several two
and three-dimensional bar charts, timelines and other reports.

There are three views in the unified user interface of the
system, two for administrative tasks (Adapter management,
Question manipulation) and another one for the end users,
i.e. the experts who would like to monitor the quality of the
observed system(s).

IV. APPLICATION EXPERIENCES

In the following three subsections we present experiences
with three industrial applications.

A. Code Complexity and Regression Testing in WebKit

WebKit is an actively developed open source web browser
engine [8] consisting of about 1.8 million lines of C/C++ code
with a regression test suite consisting of about 20000 test cases
that are run after every commit to the WebKit source code
repository. In principle, the layout regression tests must pass
before any patches can land in the repository, but unfortunately
this requirement is often violated. Developers often skip the
full testing process before the commits, because regression
testing is a complex task that requires a lot of time and other
resources.

We have set up a quality monitoring environment in which
data acquisiton is triggered after each commit and formulated
research questions that we would like to answer using our
quality framework. Specifically, we have set up a measurement
environment in which we are able to:

• Analyze the source code of any revision of the project
and compute a set of code metrics for that revision.

• Instrument the code and measure procedure level code
coverage during regression testing.

• Extract Passed/Failed outcome information from the re-
gression test suite.

Using the Unified Quality Monitoring approach, we gather
data from the development and the regression test phases of
the WebKit life cycle. Two adapters need to be instantiated
for WebKit, one for the development phase, and another one
for the testing phase. The primary goal of our research in
connection to WebKit is centered around investigating the
connection between complex methods and regression errors.

Here, we deal with research problems that occur in the im-
plementation and testing phases of the software development
life cycle, therefore we specialized the necessary components
of the library model (see Section II) to accomodate the data
gathered from WebKit. GQM [5] introduces a summary table
format which we also use in this paper. Table I summarizes a
GQM triplet in connection with WebKit.

Goal Purpose Investigating the connection between complex
methods and regression errors.

Issue What is the most common cause of regression
errors

Object in the system under development?
Viewpoint Software quality assurance

Question Q1 Is it true that in a revision the most complex
methods of the system are responsible for (some
of the) regression errors

Metrics M1 Complexity of methods (e.g. McCabe, NOI, NII)
M2 Set of modified methods between two revisions
M3 Set of methods that were covered during regres-

sion testing of a revision
M4 Regression test outcomes in a revision

Table I
GOAL: RELATE COMPLEX METHODS AND REGRESSION ERRORS

The answer for the question included in Table I is given by
the UQM application as a diagram where 3 values are assigned
to each revision in the given interval: (1) number of complex
methods, (2) number of methods that caused a test case to fail,
and (3) number of elements in the intersection of the set of
complex methods and the set of failing methods.

Preliminary results show that there is indeed a connection
between complex methods and regression errors. Using our
framework, we collected data from 26 revisions. We found
that the ratio of complex methods among the ones that cause
any test case to fail is consistently higher than the ratio
of complex methods among all methods. Depending on the
definition of “complex”, complex methods occur 2 to 5 times
more frequently among failing methods. For example, if we
regard a method “complex” if its NII (Number of Incoming
Invocations) metric is greater or equal to 10, then 3% of all
methods are complex, but 15% of them take part in executions
that lead to a test case to fail. For technical reasons, the number
of revisions we took into account were somewhat limited, and
coverage information was not available for all revisions, but
the flexibility of the UQM application and more specifically
the way the answer is calculated enables us to continue this
promising line of research. We would like to continue to work
on these and other (eg. impact analysis) issues, but they are
out of the scope of this paper, as the aim was to demonstrate
the use of the UQM application.

B. Usability Testing in the DEAK Project

In this case study we chose one of the joint projects with
our industrial partner DEAK [9]. The project is about usability
testing of large and complex web applications in the domain of
library administration. Usability information is collected from
deployed systems, therefore we developed a specific model
(ie. a specific measurement) for this project, which models
the operation phase of the software development life cycle.

Some of the major goals of the DEAK project are to
improve the less usable parts of the systems, and determine the
unnecessary and confusing parts. We worked on developing
automatic methods and questionnaires, for which purpose our
quality framework is perfectly suitable. To facilitate the above,
the systems are extended with capabilities to record the user
interactions and store them in specific database tables. The



Goal Purpose Improve
Issue the less usable part of
Object the systems
Viewpoint from the users viewpoint

Question Q1 What functionalities require the longest execution
time?

Metrics M1 Recursive time
M2 Existing time

Question Q2 Which functionalities are the most difficult to use?
Metrics M3 Number of errors

M4 Number of steps
M5 Number of help use

Table II
GOAL: IMPROVE THE LESS USABLE PARTS OF THE SYSTEMS

Goal Purpose Characterizing
Issue the response delays
Object in the observed safety critical system (e.g. teller

machine)
Viewpoint for the executive manager (of a bank).

Question Q1 Were there any slowdowns during the last 2
weeks?

Metrics M1 Processes (and related process steps)
M2 ClearTime, ExistingTime

Table III
GOAL: CHARACTERIZING DELAYS IN A SAFETY CRITICAL SYSTEM.

data from these database tables are then transferred by a
specialized adapter to the UQM application.

In the following, we give two example questions in this
domain, presented in GQM tabular form. The questions in
Table II are typical usability testing questions, and they
illustrate the connection between metrics and questions well.

The filled questionnaires and the automatic answers of the
framework gave similar results. This way the most problematic
parts (e.g. window resizing, saving search forms, etc.) of the
investigated library applications had been discovered, and then
fixed by developers.

C. Quality Platform of an Industrial Consortium

A large-scale cooperation among local software companies
and the University of Szeged resulted in a project whose
aim is to develop a common platform for software quality
assurance with related models, methodologies and tools. The
companies of the InfoPólus consortium [10] are interested in
the platform in order to reduce their software quality assurance
costs. This particular UQM application uses multiple sources,
while question vary in their scope: some are related to only
a single measurement, but there are ones that are based on
several measurements. The initial development of both the
quality model and the framework were heavily influenced by
collaborating with the partners of the InfoPólus consortium.

There are a lot of different areas involved in this big project
including code quality assurance, test efficiency measurement,
data migration, safety critical systems operation monitoring,
and others. For the purpose of illustrating the model in this
paper, we selected the latter, which we characterize with the
question in Table III. Here ClearTime is interpreted as the
measured completition time of certain phases of the operation
of a teller machine (Recognition of inserted card, waiting time
for PIN number, etc.), while ExistingTime is interpreted as

the maximum allowed completition time for the same phases.
When executed, the question above produces a diagram show-
ing the number of occasions each phase of operation took
longer than it was allowed to in the last two weeks.

V. CONCLUSIONS

We presented an approach to aid software quality manage-
ment by modelling and tooling. We think that our approach
provides a common basis for any task related to measure-
ment in software quality assurance since it can serve as an
infrastructure for any kind of metrics and, following the GQM
paradigm, evaluation of the metrics for specific purposes.

The present article showed only a portion of the models
and tools that we are constantly developing in the scope of
our R&D activities. We gave some details about our solution,
both on conceptual and implementation level, and gave three
concrete examples of the application in very diverse contexts.

We will make some parts of the core model publicly
available so that other researchers and practitioners could also
benefit from it. In the future, we plan different activities
regarding the development of the approach and its publica-
tion. We plan to publish the details of our model (library)
and further details about the industrial applications. We will
develop further questions, data collection and visualization
tools as we move forward with our projects, so we intend to
publish details about these as well. Finally, according to GQM,
“Learning process: GQM models need always refinement and
adaptation...”, hence we will constantly focus on the evolution
of our models to keep their usefulness on a maximum level.

ACKNOWLEDGEMENT

The authors would like to thank György Hegedűs for his
help with the WebKit case study. This research was supported,
in part, by the Hungarian national grants OTKA K-73688,
GOP-1.2.1-08-2009-0005 and GOP-1.1.2-07/1-2008-0007.

REFERENCES

[1] T. DeMarco, Controlling software projects: management, measurement
& estimation, ser. Yourdon Press computing series. Yourdon Press,
1982.

[2] L. M. Laird and M. C. Brennan, Software Measurement and Estimation:
A Practical Approach. Wiley-Interscience, 2006.

[3] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI Guidlines for Process
Integration and Product Improvement. Addison-Wesley Longman
Publishing Co., Inc., 2003.

[4] Systems and software engineering – Software life cycle processes,
ISO/IEC 12207:2008 ed., International Standards Organization, 2008.

[5] V. R. Basili, G. Caldiera, and H. D. Rombach, “The Goal Question
Metric Approach,” in Encyclopedia of Software Engineering. Wiley,
1994.

[6] Christian Hein and Tom Ritter and Michael Wagner, “Model-driven tool
integration with modelbus,” in Workshop Future Trends of Model-Driven
Development, 2009.

[7] F. Deissenboeck, L. Heinemann, M. Herrmannsdoerfer, K. Lochmann,
and S. Wagner, “The quamoco tool chain for quality modeling and
assessment,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011, pp. 1007–1009.

[8] “The WebKit homepage.” [Online]. Available: http://www.webkit.org/
[9] “The DEAK homepage.” [Online]. Available:

http://www.gop.deakszeged.hu/language/en
[10] “The InfoPólus homepage.” [Online]. Available:

http://www.infopolus.hu/index.php?lang=en


