
Relating Clusterization Measures and
Software Quality

Béla Csaba∗, Lajos Schrettner†, Árpád Beszédes†, Judit Jász†, Péter Hegedűs† and Tibor Gyimóthy†
∗Department of Set Theory and Mathematical Logic

University of Szeged, Hungary
Email: bcsaba@math.u-szeged.hu
†Department of Software Engineering

University of Szeged, Hungary
Email: {schrettner,beszedes,jasy,hpeter,gyimothy}@inf.u-szeged.hu

Abstract—Empirical studies have shown that dependence clus-
ters are both prevalent in source code and detrimental to many
activities related to software, including maintenance, testing
and comprehension. Based on such observations, it would be
worthwhile to try to give a more precise characterization of the
connection between dependence clusters and software quality.
Such attempts are hindered by a number of difficulties: there
are problems in assessing the quality of software, measuring the
degree of clusterization of software and finding the means to
exhibit the connection (or lack of it) between the two.

In this paper we present our approach to establish a connection
between software quality and clusterization. Software quality
models comprise of low- and high-level quality attributes, in
addition we defined new clusterization metrics that give a
concise characterization of the clusters contained in programs.
Apart from calculating correlation coefficients, we used mutual
information to quantify the relationship beetween clusterization
and quality. Results show that a connection can be demostrated
between the two, and that mutual information combined with
correlation can be a better indicator to conduct deeper exami-
nations in the area.

Keywords-Software quality model, Quality metrics, Depen-
dence cluster, Clusterization metrics, Correlation, Mutual infor-
mation

I. INTRODUCTION

A dependence cluster is a set of program elements that
mutually depend on each other [1]. Their existence in source
code has been getting increasing attention recently because it
has been demonstrated in various maintenance-related contexts
that they may be detrimental to code comprehension, mainte-
nance and evolution, impact analysis, and testing. However, it
has not been investigated systematically yet whether the extent
a system exhibits dependence clusters can be used to predict
quality issues. Software quality evaluation methods usually
rely on classifications such as those provided by the ISO/IEC
9126 standard [2], which provides a framework for quality
models, but does not define the lower level components and the
exact rules of calculation for the high level quality attributes.

The aim of the present research is to verify whether a
connection can be established between the amount of clusters
existing in a program and other measurable quality aspects.
If so, then dependence cluster research should be oriented

towards incorporating cluster information into quality evalua-
tions and ways of avoiding them or reducing their sizes in
programs. In state-of-the-art research, the main vehicle for
revealing dependence clusters has been to use a graphical
representation called Monotone Size Graph (MSG) [3] of a
program. MSGs are drawn by first calculating dependence sets
(the set of dependent elements) for each program element, then
plotting the sizes of these sets in monotonically increasing
order along the horizontal axis (see Figure 1). The MSG is
excellent for expert analysis, but it is not concise enough
for exhibiting any relationship between clusters and software
quality. For this to be possible, we need some kind of metric
that gives us an overall rating of the number and sizes of the
clusters a given software system contains. We call this property
of the system clusterization.

One metric used for clusterization is the “area under the
MSG” (AREA) that has been found to be fairly useful in
practice [3]. It can be demonstrated, however, that it is not
ideal, and there might be other measures that perform better.
For instance, one would intuitively say that the program shown
on the left in Figure 1 exhibits heavier clusterization than the
other, but the AREA metric says the opposite (the values are
38.9% and 40.8%, respectively, see Table I).

li [size: 358] sendmail [size: 863]

Figure 1. MSGs for programs li and sendmail, dependence sets of the
same size are distinguished

In order to give a more precise characterization of the
connection between clusterization and software quality, we

• Propose two alternative clusterization measures in addi-
tion to AREA: “regularity of dependence sets” (REGU)
and “entropy of dependence sets” (ENTR)

• Calculate quality attributes of a set of subject systems
using an existing quality model

• Relate clusterization metrics and quality attributes using
correlation and mutual information analysis [4]

Although the results of the paper are still preliminary, they
suggest that there is still a lot of potential in researching al-
ternative clusterization measures and their verification against
quality models.

The paper is organized as follows. In Section II we overview
previous results that we build our approach on, while the actual
clusterization measurement and evaluation method is presented
in Section III. Section IV presents the results of the empirical
evaluation, after which we conclude the paper.

II. BACKGROUND

A. Related work

The phenomenon of dependence clusters was first described
by Binkley and Harman in 2005 [3] based on program slices
and Program Dependence Graphs [5]. Initially, they were
defined as sets of mutually interdependent statements or, more
practically, maximal sets of statements that all have the same
slices. Later, set coincidence has been substituted with the
approximation of set size equivalence [1]. The notion of
dependence clusters can be generalized to other kinds of
dependence types and different program elements at various
granularity. Furthermore, it seems that dependence clusters are
independent of the programming language and the type of the
system [6], [7], [8]. During the investigations presented in this
paper, we used SEA-based dependence clusters [7].

The current view is that large dependence clusters hinder
many different software engineering activities, exhibiting a
sort of “dependence anti patterns” [9]. Various software en-
gineering areas are influenced as presented in related litera-
ture [6], [1], [10]. A recent research activity is the identifica-
tion of the dependence cluster causes; specifically the identifi-
cation and possible removal of the so-called linchpin program
elements, which are seen as central in terms of dependence
relations, and are often holding together the whole program.
If the linchpin is ignored when following dependences, the
clusters will vanish [11], [1].

Monotone Size Graphs (MSG) and the AREA metric [3]
have been used to characterize dependence clusters and clus-
terization in programs. A related investigation was performed
by Islam et al., who defined alternative descriptions of the
clusterization in form of various graphical representations.
Monotone Cluster-Size Graph (MCG) is a visualization that
shows clusters based on their cluster size rather than their
dependence set size, while Slice/Cluster-Size Graph (SCG) is
a combination of the MSG and MCG [12]. Additional views
have been introduced in [13], where coloring is applied to
represent cluster sizes in the “Heat-map” view and various
other code-based views. These approaches, however, do not
define a single metric that is alternative to AREA for the
investigation of the clusterization.

The international standard on software quality
ISO/IEC 9126 provides a classification of quality attributes

for software systems and very high level aspects of the
measurement of quality [2]. However, these very high level
concepts are not directly measurable in existing systems,
hence a model is required that establishes a connection from
the low level measurable metrics like complexity or level of
coupling. A common property of these models is that they
incorporate the quality aspects of the quality standards, and
they provide aggregation mechanisms to gain the higher level
quality attributes. The most notable existing models are by
Bakota et al. [14], Wagner et al. [15] and by Serebrenik et
al. [16]. In this work, we experimented with the probabilistic
quality model by Bakota et al., however the other approaches
could also be used for this purpose.

B. Software Quality Models

The probabilistic software quality model [14] used in this
paper computes the high level quality characteristics based
on a directed acyclic graph called the Attribute Dependency
Graph – ADG (see Figure 2) – whose nodes correspond
to quality properties that can either be internal (low-level)
represented by sensor nodes in the ADG or external (high-
level) represented by aggregate nodes in the ADG. Internal
quality properties characterize the software product from an
internal (developer) view and are usually estimated by using
source code metrics. External quality properties give a char-
acterization from an external (end user) view and are usually
aggregated in a certain way by using internal and other external
quality properties.

Figure 2. Attribute Dependency Graph (ADG) of the quality model for C.

The aim of the model is to evaluate all the external quality
properties by performing an aggregation along the edges of
the graph. For each node in the ADG a goodness value is
calculated from the [0,1] interval (1 is the best). As the basis
of the qualification, the probabilistic statistical aggregation
algorithm uses a so called benchmark which is a source code
metric repository database of approximately 1 MLOC in size.

III. CLUSTERIZATION VS. SOFTWARE QUALITY

A. Correlation and Mutual Information

The most common way to discover a statistical relationship
between two random variables is using (Pearson) correlation
ρXY , whose value is always in [−1,+1]. Despite its ubiquitous
usage, it can only measure linear relationship between a
pair of variables. Moreover, ρXY = 0, when X and Y are
statistically independent, but zero correlation does not imply
independence.

Another measure of dependence relationship is the entropy-
based mutual information (MI). The entropy of a random
variable X is defined as H(X) = −

∑
x∈X p(x) log2 p(x),

where p(x) is a (discrete) marginal probability distribution of
X . The mutual information of X and Y is

I(X,Y) =
∑
x∈X

∑
y∈Y

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
,

where p(x, y) is the joint probability distribution of X and
Y . Mutual information can be thought of as the reduction of
the uncertainty of one variable given knowledge of the other
variable. Unlike correlation, it can detect general dependence,
not only linear one. It has become a widely used test in
bioinformatics, in neuroscience and other areas of sciences
and engineering recently [4], [17]. The drawback of mutual
information is that usually we do not know the distributions of
the experimental data, and the estimation from finite samples
may be affected by systematic errors.

B. Clusterization Metrics

There is a large number of possible clusterization metrics
that could be defined. For the purpose of the early investigation
reported here, the following three were used:
Area under MSG (AREA): Sum of the sizes of dependence

sets relative to the maximum possible sum.
The apparent weakness of AREA is that it increases if
all dependence sets are increased by the same amount,
although intuitively clusterization should not be different
in such cases.

Regularity of sets (REGU): This metric tries to alleviate the
above effect by counting the number of missing depen-
dence set sizes relative to the number of elements.
The value of REGU is minimal (i. e. zero) if all depen-
dence sets are of different size, and maximal if all sets
are of the same size.

Entropy-based (ENTR): It is calculated using the entropy
formula H(X) with normalization. The probability values
are determined by placing the dependence sets into bins
based on their sizes and substituting the resulting bin
frequencies in p(x).

C. Subject Programs

We collected a set of C programs for analysis that were
chosen from different domains and their sizes varied in a wide
range as shown in Table I. The last column contains the de-
gree of clusterization (No/Large/Enormous) as determined by
visually inspecting the MSGs of the programs, i. e. assessing
the width of the plateaus formed relative to the program size.

The three clusterization metrics were compared based on
how much they agree with our judgement regarding cluster-
ization. It turned out that AREA and ENTR give nearly the
same results (except that low ENTR means high AREA and
vice versa). This is somewhat surprising as their definitions
are quite different. Regarding REGU, its values are quite high
on all programs. It agrees well with the other two metrics on

Table I
SUBJECT PROGRAMS WITH DEGREE OF CLUSTERIZATION

Program Methods AREA ENTR REGU Clusterization
espresso 788 2.5 95.2 87.8 No
tile-forth 301 4.8 95.8 85.7 No
epwic v1 152 7.2 90.3 79.6 No
findutils v4.2.31 608 7.5 82.6 86.8 No
barcode v0.98 58 8.4 84.7 84.5 Large
byacc v1.9 188 8.5 84.7 79.8 Large
gnugo v3.6 3,020 10.2 89.8 90.8 Large
gnubg v0.9.0 1,589 11.0 89.7 79.4 No
flex v2.4.7 148 12.6 92.6 70.3 No
diffutils v2.7 180 15.2 83.3 73.3 No
gnuchess v5.08 258 18.2 86.9 75.2 Large
compress 24 19.1 82.3 75.0 Large
termutils v2 74 19.9 82.0 64.9 Large
userv v0.95 232 20.9 89.0 69.0 No
a2ps v4.14 1,067 25.2 81.6 82.9 Large
interpreter 105 26.5 82.5 80.0 Large
time v1.7 19 31.3 79.2 73.7 Large
ctags v5 516 33.2 61.8 83.1 Large
wdiff v0.5 39 33.8 74.0 74.4 Large
li 358 38.9 83.2 90.5 Large
sendmail v8.14.0 863 40.8 75.6 82.7 Large
bc v1.06 186 42.5 64.3 75.8 Large
ftpd v1.0.29 247 45.4 47.0 89.1 Large
acct v6.3 48 60.7 66.8 70.8 Large
nascar v0.8.0 23 64.1 59.3 69.6 Large
indent v2.2.9 111 71.1 29.9 88.3 Enormous
ed v0.8 120 83.7 30.5 92.5 Enormous
go 383 91.0 18.0 97.7 Enormous
sudoku v1.11 38 92.5 9.0 94.7 Enormous
copia 242 99.9 0.5 99.6 Enormous

Clusterization metric values shown as percentages, ordered by AREA.

the most clustered programs, but could not distinguish the less
clustered programs from each other well.

Table II
RELATING THE AREA CLUSTERIZATION AND QUALITY METRICS FOR

SOME TYPICAL QUALITY METRICS

AREA vs. QM Complexity Function size NLE CBO NOI
Correlation -0.102 0.251 0.284 0.330 -0.481
MI (5 bins) 0.401 0.338 0.343 0.233 0.276
MI (10 bins) 0.451 0.489 0.470 0.479 0.493

NLE: Nesting Level
CBO: Coupling Between Object classes
NOI: Number of Outgoing Invocations

IV. MEASUREMENTS

Applying the quality model introduced earlier we acquired
low- and high-level software quality attributes for the pro-
grams in Table I, these were compared with the clusterization
metrics using correlation and normalized mutual information
Rmin(X,Y) = I(X,Y)/min(H(X),H(Y)) that yields val-
ues in [0, 1].

A. Correlation and AREA

Usually the strength of correlation ρ is determined by the
following approximate ranges: (almost) no correlation for 0 ≤
|ρ| ≤ 0.1; small for 0.1 < |ρ| ≤ 0.3; medium for 0.3 < |ρ| ≤
0.5; and large for 0.5 < |ρ| ≤ 1.

Correlation showed (see first row of Table II) that AREA and
NOI are close to have large correlation, CBO has medium
correlation, Function Size and NLE have correlation close

to being medium. The other quality attributes showed small
correlation with AREA, less than 0.2 each (only Complexity is
shown). Note that only sensor (i. e. low-level) attributes have
at least medium correlation with AREA.

B. Mutual information (MI) and AREA

As mentioned before, small correlation does not mean that
the corresponding variables are statistically independent, only
that linear dependence between the variables is “small”, so we
also used mutual information between AREA and all quality
properties in order to further explore dependencies. Mutual
information I(X,Y) tells us how much we know about Y by
knowing X . A small value means that X and Y are close to
being statistically independent, not only linearly independent.

We determined the probability distribution functions for
entropy calculation by dividing the [0, 1] interval into 5 and 10
equal-length bins, and counting the frequency of data in the
bins (maximum likelihood method). Since the dimensionality
of the properties is 30, it is clear that even more bins would
only give false results. Using 5 bins underestimates, while 10
bins overestimate dependency. For determining the degree of
dependency, approximately the same thresholds can be used
as the ones for correlation (see above).

Table II contains typical mutual information results for a
limited number of quality attributes. We can determine from
the full set of results that nearly all of those quality metrics that
correlated with AREA show a considerable degree of depen-
dence using normalized mutual information. Also, a number
of quality metrics not correlated with AREA exhibit a certain
degree of dependence, including Complexity, Maintainability,
Analyzability, Stability, Changeability and Comprehension.

Since AREA has large entropy while these properties have
smaller entropy, one can conclude that knowing AREA gives
a substantial amount of information on any of the above
properties. This suggests that there is a considerable depen-
dence between AREA and such properties that were missed
by correlation computations. Hence, mutual information could
improve our understanding of the relationship of the quality
properties and AREA, even though the amount of data is
relatively small.

C. Mutual information (MI) and REGU

The mutual information values were also calculated for
REGU and the quality attributes. We cannot present these due
to space constrains, but the numbers suggest that REGU might
be a better predictor for quality than AREA for programs that
are heavily clusterized.

V. CONCLUSIONS

Empirical evidence from earlier reports showed that the de-
gree of clusterization in programs is related to various aspects
of software quality. This paper presented a first step towards
better understanding clusterization by comparing it to quality
model-based attributes. Interestingly, significant correlation
could be identified only with low level metrics, however
mutual information analysis showed a relationship also

with some of the higher level attributes. This result suggests
that the latter method could be used in future studies instead of
simple correlation, but this also imposes a validity issue of the
model itself. This definitely needs to be investigated further,
for which significantly more measurement data are required.

Another interesting observation of the study was that on
average the AREA metric still seems to be a solid indicator of
clusterization, but the finding about the REGU metric for pro-
grams with high clusterization requires further investigation.
It is conceivable that for particular types of programs above
a certain size REGU might be a better clusterization, and
hence, quality indicator than AREA.

REFERENCES

[1] M. Harman, D. Binkley, K. Gallagher, N. Gold, and J. Krinke, “De-
pendence clusters in source code,” ACM Transactions on Programming
Languages and Systems, vol. 32, no. 1, pp. 1–33, Nov. 2009.

[2] ISO/IEC, ISO/IEC 9126. Software Engineering – Product quality.
ISO/IEC, 2001.

[3] D. Binkley and M. Harman, “Locating dependence clusters and depen-
dence pollution,” in Proceedings of the 21st International Conference
on Software Maintenance (ICSM’05), 2005, pp. 177–186.

[4] R. Steuer, J. Kurths, C. Daub, J. Weise, and J. Selbig, “The mutual
information: Detecting and evaluating dependencies between variables,”
Bioinformatics, vol. 18 Suppl.2, pp. S231–S240, 2002.

[5] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages
and Systems, vol. 12, no. 1, pp. 26–61, 1990.

[6] M. Acharya and B. Robinson, “Practical change impact analysis based
on static program slicing for industrial software systems,” in Proceedings
of the 33rd ACM SIGSOFT International Conference on Software
Engineering (ICSE), 2011, pp. 746–765.

[7] L. Schrettner, J. Jász, T. Gergely, Á. Beszédes, and T. Gyimóthy, “Impact
analysis in the presence of dependence clusters using Static Execute
After in WebKit,” in Proceedings of the 12th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM’12), Sep.
2012, pp. 24–33.

[8] Á. Hajnal and I. Forgács, “A demand-driven approach to slicing legacy
COBOL systems,” Journal of Software: Evolution and Process, vol. 24,
no. 1, pp. 67–82, Jan. 2012.

[9] D. Binkley, N. Gold, M. Harman, Z. Li, K. Mahdavi, and J. Wegener,
“Dependence anti patterns,” in 4th International ERCIM Workshop on
Software Evolution and Evolvability (Evol’08), 2008, pp. 25–34.

[10] S. Black, S. Counsell, T. Hall, and D. Bowes, “Fault analysis in OSS
based on program slicing metrics,” in Proceedings of the EUROMICRO
Conference on Software Engineering and Advanced Applications. IEEE
Computer Society, 2009, pp. 3–10.

[11] D. Binkley and M. Harman, “Identifying ‘linchpin vertices’ that cause
large dependence clusters,” in Proceedings of the Ninth IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM’09), 2009, pp. 89–98.

[12] S. S. Islam, J. Krinke, D. Binkley, and M. Harman, “Coherent depen-
dence clusters,” in Proceedings of the 9th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering
(PASTE’10), 2010, pp. 53–60.

[13] S. S. Islam, J. Krinke, and D. Binkley, “Dependence cluster visualiza-
tion,” in Proceedings of the 5th international symposium on Software
visualization (SOFTVIS’10), 2010, pp. 93–102.

[14] T. Bakota, P. Hegedűs, P. Körtvélyesi, R. Ferenc, and T. Gyimóthy,
“A Probabilistic Software Quality Model,” in Proceedings of the 27th
IEEE International Conference on Software Maintenance (ICSM 2011).
Williamsburg, VA, USA: IEEE Computer Society, 2011, pp. 368–377.

[15] S. Wagner, “A bayesian network approach to assess and predict software
quality using activity-based quality models,” Information and Software
Technology, vol. 52, no. 11, pp. 1230–1241, 2010.

[16] A. Serebrenik and M. van den Brand, “Theil index for aggregation
of software metrics values,” in Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’10), 2010, pp. 1–9.

[17] T. M. Cover and J. A. Thomas, Elements of information theory. New
York, NY, USA: Wiley-Interscience, 1991.

