
Columbus { Tool for Reverse Engineering Large

Object Oriented Software Systems

Rudolf Ferenc1, Ferenc Magyar1, �Arp�ad Besz�edes1, �Akos Kiss1, and

Mikko Tarkiainen2

1 Research Group on Arti�cial Intelligence, University of Szeged & HAS

Aradi V�ertanuk tere 1., H-6720 Szeged, Hungary, +36 62 544145

fferenc,magyar,beszedes,akissg@cc.u-szeged.hu

2 Nokia Research Center, P.O.Box 407

00045 Nokia Group, Finland, +358 9 43766464

mikko.t.tarkiainen@nokia.com

Abstract. One of the most critical issues in large-scale software devel-

opment and maintenance is the rapidly growing size and complexity of

the software systems. As a result of this rapid growth there is a need

to understand the relationships between the di�erent parts of a large

system. In this paper we present a reverse engineering framework called

Columbus that is able to analyze large C/C++ projects. Columbus sup-

ports project handling, data extraction, -representation, -storage and

-export. EÆcient �ltering methods can be used to produce comprehen-

sible diagrams from the extracted information. The exible architecture

of the Columbus system (based on plug-ins) makes it a really versatile

and an easily extendible tool for reverse engineering.

Key Words

reverse engineering, source code parsing, large-scale software systems, UML,

Class Model, C/C++, templates, call graph.

1 INTRODUCTION

One of the most critical issues in large-scale software development and main-

tenance is the rapidly growing size and complexity of the software systems. As

a result of this rapid growth there is a need to understand the relationships

between the di�erent parts of a large system [1] [2]. The substantial amount of

existing legacy code and/or high number of the participants in code development

also necessitates the use of tools for reverse engineering [14]. Reverse engineering

is \the process of analyzing a subject system to (a) identify the system's com-

ponents and their interrelationships and (b) create representations of a system

in another form at a higher level of abstraction" [4].

In this paper we present a reverse engineering framework called Columbus

[5], which has been developed in a cooperation between the Research Group

on Arti�cial Intelligence in Szeged and the Software Technology Laboratory of

the Nokia Research Center. Columbus is able to analyze large C/C++ projects

and to extract their UML Class Model [12] and call graph. It supports project

handling, data extraction, data representation and data storage. Furthermore,

eÆcient �ltering methods can be used to produce comprehensible (clear-cut) dia-

grams from the extracted information. The exible architecture of the Columbus

system (based on plug-ins) makes it a really versatile and an easily extendible

tool for reverse engineering.

The Software Technology Laboratory of the Nokia Research Center has de-

veloped a software product called TED
1 (Telecom Design Environment EDitor)

for supporting geographically distributed, location-transparent collaboration of

software designers and developers [18] [20]. TED supports UML modelling, there-

fore it was straightforward to export the diagrams created with Columbus into

the TED repository.

In [2] four main assesment criteria (analysis, representation, editing/browsing

and general capabilities) have been introduced to compare di�erent reverse engi-

neering tools. In the following we briey investigate the Columbus system using

these criteria.

Analysis: This category examines the abilities of the source code parser.

{ Parsable source languages : Columbus currently handles the C and C++

languages, but it can be easily extended to handle other languages as well.

An important special capability of the parser is the handling of templates

and their instantiation at source level (see Section 3).
{ Project de�nition types/ease of project de�nition: Columbus represents the

projects logically in a project-tree with an arbitrary number of subfolders. It

is able to handle huge projects, importing MS Visual C++ projects. Handling

of several languages in the same project and �ne-grained property settings

are also possible.
{ Incremental parsing : Columbus is capable for incremental parsing on project-

level (i.e. only the modi�ed �les will be re-parsed), which feature is especially

useful when extracting from large projects. It uses the precompiled headers

technique for speeding-up the extraction.
{ Fault tolerant parser : The parser is fault-tolerant. It has the ability to parse

incomplete and syntactically incorrect source code.
{ Parse speed : The parser is fast (e.g. it parses 3 million lines of code in about

4 minutes on a PII-400 machine).

Representation: Representations can be divided into textual and graphical

reports. Columbus supports both with its built-in diagram viewer and exporter

plug-ins.

{ Speed of generation: Textual reports (e.g. HTML) and the diagrams inside

Columbus are created in seconds. The graphical reports take a longer (but

acceptable) time mainly due to the COM interface, which is used for the

communication between Columbus and the target application (e.g. TED,

Rational Rose [15]).

1 Formerly called TDE (Telecom Design Environment)

{ Filters, scopes, grouping : Filtering is especially useful when extracting large

projects. Columbus o�ers a three-stage �ltering mechanism: �ltering by input

�les, �ltering according to scopes and �ltering using class dependencies. In

addition, classes can be individually selected/deselected on the displayed

class diagram.

{ Sorting : The HTML report generated by Columbus is highly structured (rep-

resented in tree-views according to scopes or inheritance).

{ Layout algorithms : An algorithm is used, which gives priority to inheritance

dependencies [10].

{ View editable: Because Columbus's main task is to extract and �lter infor-

mation, the possibility of editing is passed to the target application (e.g.

TED).

Editing/browsing:

{ Integrated text editor/browser : Columbus has a built-in text editor for view-

ing/editing the input �les and a class browser in a form of a tree-view.

{ External editor/browser : Columbus supports OLE technology, thus it can

use any editor, which is an OLE server.

General capabilities:

{ Toolset extensibility : Columbus is easily extendible due to its plug-in archi-

tecture. New language extractors and representation/output formats can be

easily added to the system using the plug-in API.

{ Storing capabilities : During the analysis Columbus stores the extracted in-

formation for every source �le in a separate binary �le.

{ Output capabilities : After the extraction process the extracted data can be

exported into various formats (TDE Mermaid, TED, Rose, MS Jet, HTML,

ASCII).

In the next section we will describe the subject system in detail. One of

the most important modules of Columbus is the C/C++ analyzer, which is

described in Section 3. In Section 4 we show how Columbus helps in creating

comprehensible diagrams. Section 5 presents experiments made with our tool,

while Section 6 discusses some tools with similar objectives. Finally, in Section

7 we draw some conclusions and outline further work.

2 COLUMBUS

In this section we will describe the subject system in detail. Figure 1 shows a

typical snapshot of a Columbus session.

The main motivation for developing the Columbus system was to create

such a tool, which implements a general framework for combining a number

of reverse engineering tasks and to provide a common interface for them. Thus,

Columbus is a framework, which supports project handling, data extraction, data

representation, data storage, �ltering and visualization. All these basic tasks of

the reverse engineering process for the speci�c needs are accomplished by using

the appropriate modules (plug-ins) of the system. Some of these plug-ins are

Fig. 1. The User Interface of Columbus is very similar to IDEs

present as basic parts of Columbus, while the system can be extended for other

reverse engineering requirements as well. This way we get a really versatile and

an easily extendible tool for reverse engineering.

2.1 Overview of the Columbus System

The basic operation of Columbus is performed by the use of three types of plug-

ins (in form of MS Windows DLLs). These are the following:

{ Extractor plug-ins (currently an extractor for C/C++) { The task of an

extractor plug-in is to properly analyze a given input source �le and to

create a �le, which contains the extracted information.

{ Linker plug-ins { The task of a linker plug-in is to build up (in the memory)

the complete merged internal representation of the project. This process is

carried out based on the �les created by the extractor plug-in. This plug-in

is responsible also for �ltering the merged data in order to produce a more

clear-cut internal representation for exporting.

{ Exporter plug-ins { The task of an exporter plug-in is to export the internal

representation built up and �ltered by the linker plug-in into a given output

format. (The currently available exporters are for: TDE Mermaid 2.2, TED

1.0, Rational Rose, Microsoft Jet Database, HTML, XML and ASCII.)

Beside the delivered plug-ins the user can easily write and add his/her own

new plug-in DLLs to the Columbus system using the plug-in API.

2.2 Columbus Projects

The extraction process is based on a Columbus project. A project stores the

input �les (and their settings: precompiled header, preprocessing, output di-

rectories, message level, etc.) displayed in a tree-view, which represents a real

software-system. The project can simultaneously contain source �les of di�er-

ent programming languages. Non-source code �les can be added to the project

as well (e.g. documents, spreadsheets), which are displayed by Columbus using

OLE technology.

2.3 The Extraction Process

The complete extraction process in Columbus can be seen in Figure 2.

Fig. 2. The extraction process

The whole process is very similar to compiler systems. The �rst stage of

the extraction process is the data extraction. Columbus takes the input �les

one by one and passes them to the appropriate extractor, which creates the

corresponding internal representation �les.

In the second stage the linker plug-in is automatically invoked in order to

link (merge together) the internal representation �les in the memory.

In the third stage after selecting the desired export format the exporting is

performed. The exporting is usually based on a �ltered internal representation.

Filtering is discussed in detail in Section 4.

All stages of the extraction process can be inuenced by setting various plug-

in speci�c options. An important advantage of the Columbus system is that it

can incrementally perform all of the above described steps, i.e. if the partial

results of the certain stages are available and the input of the stage has not been

changed, the partial results will not be recreated.

3 CAN { THE C/C++ ANALYZER

The parsing of the input source codes is performed by the C/C++ extractor

plug-in of Columbus, which invokes a separate program called CAN (C++

ANalyzer). CAN is a command-line (console) application for analyzing C/C++

sources. This allows that it can be integrated into the user's make�les and other

con�guration �les by which it facilitates its automated execution in parallel with

the software build process.

Basically, CAN accepts one complete translation unit at a time (a prepro-

cessed source �le). However, for �les that are not preprocessed a preprocessor

will be invoked. The actual results of CAN are the internal representation �les,

which are the binary saves of the internal representations built up by CAN during

extraction.

One of the greatest asset of CAN is probably the handling of templates and

their instantiation at source level, which is accomplished using a two-pass tech-

nique for analysis. This way a separate analyzer belongs to both passes, which

recognize di�erent things from their inputs. As the task of the �rst pass is only

to recognize the language constructs in connection with the templates, the ana-

lyzer of this pass ignores everything else (like a \fuzzy" parser). The �rst pass

will be described in more detail in Section 3.1. The second pass performs the

complete analysis of the source code and creates its internal representation. So

the analyzer of this pass is a complete C++ analyzer. The language description

of C++ implemented in the analyzer covers the ISO/IEC C++ standard of 1998

[13]. Furthermore, this grammar is extended by the Microsoft extensions used

in Microsoft Visual C++ 6.0.

The information collected by CAN comprises the UML Class Model includ-

ing C++ templates (de�nitions, specializations and instantiations) and the call

graph. CAN supports the precompiled headers technique as well that is widely

used by compiler systems in order to decrease compilation time. This technique

is eÆcient especially in case of large projects. The parser is fault-tolerant (it

has the ability to parse incomplete, syntactically incorrect source code), which

means that it can continue the analysis from the next parsable statement after

the error.

3.1 Handling of Templates

It has been already mentioned earlier that CAN carries out the analysis of the

input in two passes. The task of the �rst pass is to prepare the original input

(and to create a temporary �le) for the second pass by removing every template

(de�nition and use) from it and in the same time generating the used template

instantiations at source code level. This means, that the second pass is given

such a code, which contains only ordinary classes.

One reason for using the above-described technique is that it is rather diÆcult

for the second pass to analyze template de�nitions because within the de�nition

the formal template parameters behave as regular types or variables and in

case of complex structures this causes diÆculties to the parser. This means that

the kind of symbols created based on formal parameters (e.g. type, function,

variable) cannot be determined and this can cause ambiguities in the parser.

The other reason is that if once the template instantiations are created, it can

be extremely useful for the user to see at source code level what will in fact be

instantiated in case of individual template uses.

The basic technique will be presented on a small example shown below. Sup-

pose that the input �le for CAN contains the following code:

template <class T>

class A {

T a;

};

char c;

A<int> var;

This code is processed by the �rst pass. During this operation every infor-

mation is stored in connection with the templates and a �le is created whose

contents is shown below:

class _CTC20B70D45F2;

char c;

class _CTC20B70D45F2 {

int a;

};

_CTC20B70D45F2 var;

The �rst pass is divided into two phases. In the �rst phase (1) the template

de�nitions are removed and (2) every template use (instance) is replaced by a

newly generated identi�er2 (which probably does not occur in the user's code).

In the second phase the template instantiation is carried out. As it can be seen

two things will be created out of the A<int> template use: (1) the forward

2 The generated name is a valid C++ identi�er. The �rst six characters are �xed

(CTC20) and it stands for CAN Template Code Version 2.0. The other eight char-

acters comprise in fact a 4-byte hexadecimal number that unambiguously identi�es

the instantiation, which it refers to.

declaration of the instantiated class (from the template A with the argument

int) at the place of the original de�nition of the template and (2) the de�nition

of the same instantiated class at the nearest point of instantiation (which is { as

seen from the usage point { the last valid line of the innermost open namespace

scope). In the example above this is the line, which immediately precedes the

declaration of the var variable. The forward declaration of the instantiated class

is needed because the use of the template can be in a namespace other than the

template de�nition.

In the instantiated class (or function) the formal template parameters are

replaced by the actual arguments taking into consideration the possible default

arguments. The above discussed instantiation will be created only if the given

template has not been instantiated yet with the given arguments in the \visible"

scope.

The newly generated identi�ers will be of course replaced with the original

templated names in the output.

4 PRODUCING COMPREHENSIBLE DIAGRAMS

The reverse engineered code can produce huge amount of extracted data, which

is hard to visualize in a way that o�ers useful information for the user (the user

is interested only in parts of the whole system at a time). Di�erent �ltering

methods in Columbus can help solving this problem.

There are four options for �ltering:

{ Filtering by input source �les : only classes that come from the given input

�les can be selected.
{ Filtering according to scopes. Classes or namespaces can be selected individ-

ually in a tree-view browser.
{ Filtering using class dependencies (e.g. aggregation, inheritance), with which

the given relations can be selected. An interesting and useful feature is Di-

agram Completing with which we can control the possible elements brought

in by the relations transitively controlling this way the completeness of the

class diagram (e.g. using this option we can select all derived classes of a

given class).
{ Filtering \by hand": The classes can be individually selected/deselected on

the displayed class diagram customizing it this way.

We demonstrate the �ltering on a class diagram created with Columbus by

extracting the information from our symbol-table implementation code, which

is used by CAN. The full class diagram is shown in Figure 3. After applying

the default �lter the classes from the standard libraries and the structs, unions

and template instances are deselected. On the so �ltered class diagram some

remaining classes were removed \by hand" that are not strictly part of the

symbol-table. The resulting diagram (which corresponds to the framed area in

the full diagram) is shown in Figure 4.

For layout ing the resulting diagrams an algorithm is used, which gives priority

to inheritance relation [10].

Fig. 3. Full class diagram

Fig. 4. Filtered class diagram

5 EXPERIMENTS

In this section we demonstrate Columbus's extraction capabilities. The experi-

ments were performed on di�erent C++ projects listed below:

{ Proj.1 : Part of an earlier version of TED5. This project was used to demon-

strate Columbus's capabilities for handling sophisticated templates (part of

the Standard Template Library [13]).

{ Proj.2 : IBM Jikes compiler [7]. Using this project we investigated Colum-

bus's capabilities for handling sophisticated class hierarchies.

{ Proj.3 : An earlier version of Columbus. This project utilizes the MFC library

by Microsoft. This project was used to demonstrate Columbus's capabilities

for using precompiled headers (and also for handling sophisticated class hi-

erarchies).

{ Proj.4 : A project that implements a graphical library5. This is a large C++

project that consist of 226 source �les (about 25 million lines of code) and

contains only regular classes. Using this project we investigated Columbus's

capabilities for handling real-size, huge projects.

The following table contains the size information of the projects:

Project infos Proj.1 Proj.2 Proj.3 Proj.4

No. of �les 6 42 8 226

Size (bytes) 5 135 707 17 108 706 22 801 351 200 275 782

LOC6 407 448 1 474 765 3 236 641 24 847 279

5 Proj.1 and Proj.4 were ensured by the Nokia Research Center
6 LOC: Lines of Code { all �les are preprocessed

All tests were performed on an Intel PII-400 machine equipped with 256MB

RAM running Windows NT 4.0.

The next table shows the measurement results of the extraction. It contains

the extraction time, the extraction time using precompiled headers (only Proj.3

was set up to support this feature) and the memory consumption. We can see

that the use of precompiled headers can signi�cantly reduce the extraction time.

We can observe that the extraction time and the memory consumption are linear

with the size of the input sources. Due to this fact Columbus is able to handle

large projects.

Extraction Proj.1 Proj.2 Proj.3 Proj.4

Extraction time7 00:02:20 00:04:17 00:04:43 00:56:59

using precomp. headers - - 00:01:39 -

Memory consumption 15 344 K 18 652 K 22 064 K 112 808 K

The table below shows the number of extracted items from the test projects.

Statistics Proj.1 Proj.2 Proj.3 Proj.4

Classes 1 298 293 1 633 1 307

Namespaces 61 1 1 1

Functions 8 882 12 984 12 207 57 605

Attributes 3 644 1 808 7 194 7 222

Inheritance relations 533 61 425 168

Aggregation relations 222 136 476 480

Association relations 89 493 259 671

Friend relations 48 6 64 41

6 RELATED WORK

In this section we present some tools that have similar objectives as Columbus.

We will primarily look at their reverse engineering capabilities.

SNiFF+ [17]: SNiFF+ is more than a reverse engineering tool. It is an open,

extensible and scalable program developing environment for C/C++ primarily

and for other programming languages (e.g. Java, Fortran) as well. It is available

on several platforms and can be easily integrated with version control tools. The

reverse engineering part of the tool is based on a fuzzy parser, which is very fast

and fault tolerant but in some cases not precise enough (e.g. it silently ignores

complex template structures like the STL without any warnings). It produces

various diagrams to help program comprehension (e.g. class hierarchy, call graph)

but it does not support UML.

WithClass 99 [21]: WithClass 99 is primarily a UML forward engineer-

ing tool, but it contains modules to support reverse engineering tasks as well.

Similarly to Columbus it is an extensible tool and can be used together with

7 Time format: hh:mm:ss.

some developing environments (e.g. Visual Studio 97). The parser of the sys-

tem is able to analyze C/C++ source code but it has diÆculties with complex

template de�nitions and handling of namespaces.

Rational Rose 98 [15]: Rational Rose 98 is also primarily a UML forward

engineering/modelling tool but it has reverse engineering support for several

languages, primarily for C/C++. Similarly to Columbus it uses a separate parser

module called Rose C++ Analyzer. It has an intelligent error recovery, which

can �x simpler errors during parsing, but it has problems with namespaces and

complex templates.

Together/C++ [19]: Together/C++ is a reverse- and UML forward engi-

neering tool in the same time. It can manage source codes and the correspond-

ing diagrams simultaneously and to update diagrams and sources incrementally.

However, its parser is slow and does not support real-size, large inputs.

7 CONCLUSION AND FURTHER WORK

In this paper we presented the functionalities of the Columbus toolset with

respect to its reverse engineering capabilities.

Columbus supports several reverse engineering tasks (e.g. project handling,

data extraction and data representation/visualization with �ltering and export-

ing options). The current version is able to analyze C/C++ projects but due to

its exible architecture it is easy to extend it with other languages as well.

The main features of Columbus can be summarized as follows:

{ E�ective project handling (capability for importing MS Visual C++ projects,

integration into the user's project).
{ Powerful C/C++ extraction (fast, fault-tolerant parsing, handling of com-

plex templates, visualizing \hidden" template instances).
{ Direct access to the extracted information (via its API).
{ Creation of comprehensible diagrams (�lters, layout).

{ Easy-to-use user interface (very similar to IDEs).
{ Extensibility (plug-in architecture, user plug-ins via its plug-in API).
{ Various output formats (Mermaid, TED, Rose, MS Jet, html, XML, ASCII).

In the future we will extend the system for other source languages (e.g.

Java) and more output (export-) formats. Further improvements are under de-

velopment as well, which may be useful for better code understanding (e.g.

dependency-graph [6][3][8]). In the future we plan to enhance Columbus so that it

supports architectural reconstruction of software systems [1] (recognizing design-

patterns [9], component interaction, structural information).

References

1. Armstrong, M. N., Trudeau, C. Evaluating Architectural Extractors. In Fifth

Working Conference on Reverse Engineering. Oct. 12-14, 1998. Honolulu,

Hawaii, USA. 30-39.

2. Bellay, B. and Gall, H. An Evaluation of Reverse Engineering Tool Capabilities.

In Software Maintenance: Research and Practice. 10. 1998, 305-331.

3. Besz�edes, �A., Gergely, T., Szab�o, Zs. M., Csirik, J. and Gyim�othy, T. Dynamic

Slicing Method for Maintenance of Large C Programs. In Proc. 5th European

Conference on Software Maintenance and Reengineering (CSMR 2001). Lisbon,

Portugal, March 14-16, 2001. 105-113.

4. Chikofsky, E. J. and Cross II, J. H. Reverse engineering and design recovery:

A taxonomy. IEEE Software 7, 1. Jan. 1990. 13-17.

5. Columbus Setup and User's Guide. Version 2.5, c1998-2000 Nokia Research

Center.

6. Gyim�othy, T., Besz�edes, �A., and Forg�acs, I. An EÆcient Relevant Slicing

Method for Debugging. In Proc. 7th European Software Engineering Confer-

ence (ESEC). Toulouse, France. Sept. 1999. LNCS 1687. 303-321.

7. IBM Jikes Project.

http://OSS.Software.IBM.Com/developerworks/opensource/jikes

8. Jackson, D. and Rollins, E. J. A new model of program dependences for re-

verse engineering. In Proceedings of the second ACM SIGSOFT symposium

on Foundations of software engineering. 1994. 2-10.

9. Keller, R. K., Schauer, R., Robitaille, S. and Pag�e, P. Pattern-Based Reverse-

Engineering of Design Components. 1999. ICSE '99, Los Angeles CA, USA.

226-235.

10. M�arton, G. GraphLayout 1.0: Layout algorithms for software diagrams. c1998

Nokia Research Center.

11. M�uller, H. Understanding Software Systems Using Reverse Engineering Tech-

nologies: Research and Practice. In Proc. of the 18th Int. Conf. on Software

Engineering. Mar. 1996. Software release v5.4.4.

12. OMG Uni�ed Modeling Language Speci�cation. Version 1.3, c1999 Object

Management Group, Inc.

13. Programming languages { C++. ISO/IEC 14882:1998(E).

14. Quilici, A. Reverse engineering of legacy systems: a path toward success. Pro-

ceedings of the 17th international conference on Software engineering. 1995.

333-336.

15. Rational Rose. http://www.rational.com/products/rose

16. Riva, C., Przybilski M. and Koskimies, K. Environment for Software Assess-

ment. In Workshop on Object-Oriented Architectural Evolution, 13th Euro-

pean Conference on Object-Oriented Programming (ECOOP '99). June 15,

1999. Lisbon, Portugal.

17. SNiFF+. http://www.windriver.com/products/html/sni�.html

18. Taivalsaari, A. and Vaaraniemi, S. TDE: Supporting Geogra�cally Distributed

Software Design with Shared, Collaborative Workspaces. In CAiSE'97 Confer-

ence Proceedings, LNCS 1250. Springer Verlag, 1997. 389-408.

19. Together/C++. http://www.togethersoft.com

20. User's Guide to Tde EDitor { TED. Version 1.0, c1999 Nokia Research Cen-

ter. 4.10.1999.

21. WithClass 99. http://www.microgold.com

