
Data Exchange with the Columbus Schema for C++

Rudolf Ferenc,́Arpád Besźedes
University of Szeged, Hungary

Research Group on Artificial Intelligence
{ferenc,beszedes }@cc.u-szeged.hu

Abstract

To successfully carry out a software maintenance or
reengineering task, a suitably assembled set of tools is re-
quired, which interoperate seaminglessly. To achieve this
goal, an exchange format is needed that can be used to
represent the facts extracted from a software system in a
standardized way; serving as an output of one tool and as
an input for other tools. In this paper we propose a mod-
ular schema for C++, called the Columbus Schema. The
schema has been implemented in the Columbus/CAN front
end framework tool and is already utilized in several us-
ages, one of which is its representation in the GXL form.

Keywords

Tool interoperability, standard exchange format, C++
schema, front end, AST, Columbus/CAN, GXL

1 Introduction

In recent years it became increasingly apparent that in or-
der to successfully perform a real-life software maintenance
or reengineering task, a suitably assembledset of toolsis re-
quired. This is in contrast with a popular belief from prior
times that one integrated tool must be found which suits all
of the needs of a reverse engineering project. However, this
has as a consequence that in order to retain the flexibility of
these tools’ interchange, one must have also aninterchange
formatfor these tools.

Recently, many researchers indeed realized the impor-
tance of such interoperability of tools and a common ex-
change format; and this became an active research topic as
well (e.g. [1, 2], [3], [6] and [12]). However, for the C++
language no such schema has been proposed until now that
is accepted as a standard (or at least reference) description
of C++ for interchange purposes among reverse engineering
tools.

In this article we propose a new C++ schema—called
Columbus—as a candidate for such exchange. The pro-
posed schema satisfies some important requirements of an
exchange format. It reflects the low-level (AST) structure
of the code, as well as higher level semantic information
(e.g. semantics of types). Furthermore, the structure of the
schema and the used standard notation (UML Class Dia-
grams [14]) make its implementation straightforward, and
what is even more important, an API is very simple to issue
as well. Therefore, the Columbus schema is a good can-
didate for exchanging information among tools of various
nature, e.g. a C++ parser front end and code-rewriters, met-
rics tools, documentation tools, and even compilers. This is
already supported by several use cases, where the Colum-
bus schema has been successfully used for data exchange.
The most important of these applications is probably GXL,
an already accepted medium for information interchange in
reengineering [9, 10].

In the following, we present our schema in detail, fol-
lowed by an example. In Section 3 we give details about
the implementation and report our experience in recent use
cases of the schema’s application and finally we conclude
our paper.

2 Columbus Schema for C++

The project team at the University of Szeged (in cooper-
ation with Nokia Research Center and FrontEndART Ltd.
[7]) created a C++ schema for various reengineering and
reverse engineering tasks such as creating UML class di-
agrams and calculating metrics [17]. The ISO/IEC C++
standard of 1998 [11] served as the basis for all design de-
cisions. More precisely, the schema models the “clean”
C++ language syntax (preprocessed source code), it does
not deal with macros and other preprocessor issues.

The Columbus schema is also used as the internal rep-
resentation in the C/C++ extractor module of theColumbus
reverse engineering tool calledCAN[5] (see Section 3). The
schema evolved into its current state in parallel with its im-
plementation and is used also for analysis (e.g. resolving



� ��� �����	��

� ��� ���� � � � � 

� ��� ���� � � 
 � � 
��
� ��� ����	��� � �

� 
��	����
	� ��� � ���	�
���	���	���	�  �� ! � " #�$�� %'&

� � � � (�� ��) )
� � � � *� � ��� �
� � � � +,��� ���

� 
	�	����
�� � � � ���	�
-�! .��	��$,� %'&

� � ��� ����� 

� � ��� (,��� ) �
� � ��� /���� ��� � � 

� � ��� (,��� ) � /���� ��� � � 


� 
	�	����
�� ��� � ���	�
-�0'%���" 1�0'! .	" � ! ��$�� %'&

� 2 ��� ����� �����
� 2 ��� (,��� ) � � ��� � ���
� 2 ��� 3�
	) � � � � � �	�
� 2 ��� 465 
�� ��� ���
� 2 ��� (,��� � 
�� ) � �	�

� 
��	����
�� � � � �����
7'8�%'�	" � 0'%'$�� %'&

� 5 � � ��	� � � 
��
� 5 � � 9�
 2 
�� 
�� � 

� 5 � � ��	� � � 
�� :'�';6
	�<� 
	�

� 
��	����
�� ��� � ���	�
=>0'� %'" �	? $�� %'&

� ) � � (�@��	�
� ) � � +,��) � A	��
���(�@ ���
� ) � � *,� A���
���(�@ ���
� ) � � B�����
� ) � � +,��) � A	��
��C � �
� ) � ��C � �
� ) � � +,��) � A	��
��	*�@���� � C � �
� ) � � +,��) � A	��
��'D ����A'C � �
� ) � � D �	��A'C � �
� ) � � *,@ ��� � C � �
� ) � � EF� @ ��� G	�
� ) � � H�� �����
� ) � � 3������	� 

� ) � � D �	��A�3����	��� 

� ) � � /,�	� �
� ) � � ������C *,4

� 
��	����
�� ��� � ���	�
I�� JLK'! �	M'#	K'��$�� %'&

� ) � � ���	��

� ) � � N�� � �
� ) � � 9�
�A�� ) � 
��
� ) � � *� � � � �
� ) � � O�P � 
	� �
� ) � � ;�� � �	��� 


� 
��	����
	� ��� � ���	�
I>" 0'? .	Q'��-,! .��	��$�� %'&

� ��) � 3,� � 
�� � � � 

� ��) � 3�
	� � �	� � � � �	�

� 
	���	��
	� ��� � �	���
R,��� %'Q'$�� %'&

� � �LS�C � � 
�A	
��
T,U	V�W

� 5 ��� @XS *'� � � ��A
� � � � 
LS�C � � 
�A	
��
� � ��� S	C � � 
	A	
	�
� 
	���'D � � 
LS	C � � 
	A�
��
� 
	����(,��� S�C � � 
	A�
��
� � ������
	� �S *� � � ��A

Y>Z'V�[ \ [ Z']'W	^

� �����6
XS *� � � ��A
_�U�`LW	^

Figure 1. Class diagram of the basepackage

type names and scopes), as well as data exchange.
We present the Columbus C++ schema using UML

Class Diagram notations [14], which has several advan-
tages. Firstly, it uses a standard notation; secondly, at the
same time it is close to implementation level and sufficiently
abstracts the language. Thirdly, the schema can be used as
a basis for an API to such a tool that uses the schema. Ad-
ditionally, an implementation of the schema might define
further semantic constraints in the class diagrams that make
the schema more precise. This could include, for example,
certain cases when an attribute of some base class is not
used by one of its derived classes.

Externally, the model of a software system using this
schema can be stored in various physical formats, includ-
ing GXL [9, 10].

2.1 The structure of the Schema

Because of the high complexity of the C++ language, we
have modularized our schema similarly to the proposal in
the discussion part of our previous work [6]. This opens
up also the possibility for its extension/modification. We
divided the schema into seven packages:

• base:the base package containing the base classes and
data types for the remaining parts of the schema.

• struc: this package models the main program elements
according to their scoping structure, such as objects,
functions and classes.

• type: the classes in this package are used to represent
the types of the elements in thestruc, templandexpr
packages.

• templ: the package covers the representation of tem-
plate parameter and argument lists, and is used by the
strucandtypepackages.

• statm: the package contains classes modelling the
statements.

• expr: the classes in this package represent all kinds of
expressions.

Packagesstatmandexprare not presented in this paper
because of space constraints. However, the schema without
these packages is still a rounded whole, especially for cer-
tain applications where higher-level models are sufficient
(e.g. extracting UML Class Diagrams).

2.2 Thebasepackage

The base package (Figure 1) contains the abstract class
Base, which is the base class of all classes in our schema.
A singly rooted hierarchy has many advantages (e.g. all
classes have a common interface). It has one attribute: the
node identifierid. The second class in this package is called
Positioned. This abstract class extendsBasewith location
(path, line, column, . . . ) andcommentinformation. This
class is the base class of all classes that represent source
code elements, which have a position in the code. The third
classNamedextends the previous one withnameinforma-
tion.

Apart from these classes the package contains dif-
ferent enumerations (AccessibilityKind, StorageClassKind,
ClassKind, etc.) used by the schema.

2.3 struc– the structure package

This package contains classes that model the main pro-
gram elements and their scoping structure, which are or-
ganized aroundMember, the most important child class of
base::Named(see Figure 2). This abstract class is the par-
ent of all kinds of elements, which appear in a scope (we use
the term “member” in a more general way than usual). It has



the propertiesaccessibility(private , protected , . . . ),
storageClass(static , extern , . . . ) andnonISOSpecfor
capturing any non-ISO specifiers from different language
dialects. In addition, member declarations can refer to their
definition.

The first child of theMemberclass is the abstract class
Scope, which is a member as well, because it can be con-
tained by another scope. The composition fromScopeto
Memberenables the class to store other members in an or-
dered way, which is a natural representation of the scope
nesting in the C++ language (i.e. it is acomposite). This
recursive containment along with the other compositions
named“contains” builds the basicskeleton structuretree
of the modelled system.

The Namespaceclass is used to represent C++ names-
paces. In a schema instance there must always exist at least
one namespace object, which is called“global namespace.”
Our schema is basically designed in a project-oriented view
that gives namespace scopes priority over file scopes (both
cannot be represented in an AST at the same time, be-
cause namespaces can be defined across files/compilation
units). However, the original path information is stored in
the schema and the files can be restored from there.

The class namedClass is similar to Namespace, be-
cause both represent scopes. It has the fieldskind (class ,
struct or union ) and if it is abstract and defined or
not. Additionally, it is composed with two classes that rep-
resent the base classes and friends. The first one is the
classBaseSpecifier, which models the inheritance relation-
ship between two classes or between a class and a template
instance. The additional information of accessibility and
virtuality is stored as attributes. The second one is the class
FriendSpecifier, which models the friend relationship be-
tween two classes, between a class and a function, or be-
tween a class and a template instance. In the case of mod-
elling these two relationships among classes and template
classes/functions, these classes are also composed with tem-
plate argument lists that represent the actual template ar-
guments used for the instantiation of the referred template.
E.g. in the case of deriving classA from the template class
C, which is nested in template classB, the base specifier will
contain the argument lists<int> and<D,char> :
class A : public B<int>::C<D,char> .

The classesFunction, Object, Typedefand Parameter
are very similar, so they will be described together. Basi-
cally, these are the language elements that have a type. Our
schema represents this with aggregations with theTypeRep
class from thetypepackage (see Section 2.4 for more on
this). All these classes have some custom attributes that
are needed for storing special information like functionkind
(constructor, destructor, etc.) or if the object is abitfield or
not. In the case of functions there are additional associa-
tions: throwsmodels the eventual exception specifications

defined by the function, whilehasBodyand hasLabelare
used to model the body (block scope with statements) and
the jump labels of the function. The schema makes no dif-
ference in representing class attributes and local variables
(these are allObject-s). Typedefs are special because they
are not “real members” in the usual sense (just type aliases),
but syntactically they look almost exactly the same as ob-
jects. Note, that the classParameteris not a member (it is
derived from the classbase::Named). Instead of being con-
tained by a scope, it can be a child of a function, object (if
it is a pointer to a function), typedef (type alias of a pointer
to a function) or another parameter (if the parameter is a
pointer to a function).

The Using and NamespaceAliasclasses are special as
well, because they have a position in the code, but neither
is a real member. TheUsing class refers to a namespace
whose symbols can be used from the point of definition, or
a single namespace member or a base class member that
can be used with e.g. a modified accessibility. TheNames-
paceAliasclass refers to a namespace and defines a new
name (alias) for it.

Similarly to scopes, theEnumerationclass is a compos-
ite, which stores an arbitrary number ofEnumerator-s.

Our schema makes no difference in representing the two
kinds of templates of C++ (class- and function-templates)
by separating the template representation (the template pa-
rameters) from the actual template object, similarly to the
type representation. This template representation is called
ParameterListand is located in thetemplpackage (see Sec-
tion 2.5). The two template classes areClassTempland
FunctionTempl, which represent class templates and func-
tion templates, respectively.

Template specializations (classesClassTemplSpecand
FunctionTemplSpec) are handled in a similar way as tem-
plates: they are composed with theArgumentListclass from
the templpackage, which is representing the template spe-
cialization arguments. In addition, the template specializa-
tion is referring to the template, which is being specialized.

Template instances can also be considered as mem-
bers, although they do not have an exact position (they
are not present in the source code directly but are gener-
ated by the front end). Similarly to the template specializa-
tions, theTemplInstanceclass is composed with the class
templ::ArgumentList, and it is referring to the template it is
being instantiated from.

2.4 Thetypepackage

The type representations (classTypeRep) are stored com-
pletely separated from the language elements, which are us-
ing them (e.g. functions or objects, see Section 2.3). This
opens the possibility for storing each type only once, and
referring to them from multiple nodes (see Figure 3).



���
���

���
	�

����
����
����
�	


���
����
���
���
����
����
�����
��	

����
� �
!�	
��
"
����
����
�����
	

�
��
�
�

����
� ��
!�	
��
"
���#
����
�����
	

�
�
�
�
	

�
��

�

�$��
�%�"
��&	
���'�
���

�
�
�
�
	

�
�



�()
��	
'����

�* 
��(�
��
+#�
��	�
'

���
	�

��,�
%�	�
���
��	�
���	�



����
	��
�-.
�����
����"
��.
��	
��- 
����
�����
�#�	�



���
-��
��%
���
����
����
�����
	

����
/�%�
���-.
���%�
���
���#
����
�����
	

����
&	��
�	��
���#
����
�����
	

����
0�1
2���
���#
���#
����
�����
	

�
�
�
�
��

�

�
�
�
�
��

�
�
	
�
�
�

�
�
�
�
��

�
�
	
�
�
��
�
	
�

���
��
���
����
����34
��.
��
���
����
����
3���
�	


���
���
��'�
����
����
���
+#�
���
��'�
����
����
����
�	


�	��
	�&+
� + 
2��
�4�
+��
��	
'

546�
7"8�
6�9

�
�
�
	
�
�
�
�
	

�
�
�
	
�
�
�
�
	
�
��
�
�

����
0���
�2��
��)
����
����
�����
	

�
�

�
�
	
�	



:�;�
<�=�
6

�
�
�
	
�
	
�

���
	�

��> 
��	�
'���
�	�


�
�
��
�

��!
���
�?�
��@)
��(4
����
�

����
����
!���
�

����
����
�����
	

���
��!�
���

AB
�
�
C��
&	�
��'�
���

�
�
�	
�
�

�
��
�
�
�
	
�
�
�

�
��
�
�
�
	
�
�
��
�
	
�

���(4
2���
� ��


�
�
	
�	

�
��
�

C��
�?�
3�2�
��
��2

C���
�?�
3�2�
��
��2

C���
��/#
�����
()��
����
D��
�

C��
��/#
�����
(��
����
D���
�

�
	
�
�
��
�
�
��
�
�
	

���(4
2���
� �


�
�
�
	
�
��
��
�

C��
��E
�'�%�
(���
	�D
���

C��
���
�'�
%�(�
��	
�D
���

C���
��E
�'�%�
(���
	�D�
���

�	�
���
	��
����
�

�	��
���	
����
����

�	�
���	
����
����

�2�
���
����
�F��
�

�2�
���
����
�F��
�G

H�II
G

C���
���#
��
�
3

G

J
� ��
�
���
���

�

���
	���
�	��

G

J
� ��
�
���
���

�

���
	���
�	��

G

J
���
	���
�	�

G

J
���
	���
�	��

G
J

���
	���
�	��

G

J
� ��
�
���
���

�

���
	���
�	��

����
���
��K.
L7"
6�M

�	��
���
	��
����
�

�1�
2��
��N 
O=�
96�
P�P�
Q<�
R

G

H�II
G

C���
��� 
�!- 
���%�
�

G
H�I
IG

C��
��&	�
��- 
���%
�

�3�2�
���
� ��

�
	
 
	
�

J H�II
G
���

����
����

���!
���
�?�
��* 
��(�
���
2��
��

��)
� �

C���
�?�
3�2
��
��2

J

J

�C��
��SE
�

G

J

C���
��D
���
���

���
�(
�� ��

�
�
�
	
�

����
�(
�� !

�
�
"

C��
�?�
3�2�
��
��2

����
���
��
����
���34
��.
��
���
����
����
3���
�	


���
-.�
��%�
���
����
����
�����
	

!
�
�
	
�
�
	
�
��
�	



�

�
	
�
�
�
�
	
�
��
�	



����
���
��T
<�P�
QUQ<�
R�6�
M

G

J
C��
���#
���
��+ 
2���
��!
���� G

J
C���
��,�
����
	
�
+ 2�
���
�!���
�

G

J
� ��
�
���
���

�

C��
��.
�'�
%�(�
��	
�D�
��

G

J
� ��
�
���
���

�

C���
��E
�'�%�
()��
	�D�
���


���
��$�
����
,��
��(


���
��$
����
,��
��(

'����
	���
,��
���	�

��
C��2

'����
	���
,��
���	�

��
C��2

'����
	���
,��
���	�

���
C��2

��)
� �

F
ig

ur
e

2.
C

la
ss

di
ag

ra
m

of
th

e
st

ru
c

pa
ck

ag
e



���������
	�� ����

����������	��

���������	��
�����

�� 	�� 
� 	� � 
�� ����� 	�� 
� 	� � 
�� ����

����������
 � ���������������

��������� �� � � �� � � ����

�  ��� �����

��� ��� � 	� � � �

� 
�� � ��� � � � �

� 	��
��� 	� �� � ���

� � � �

��� ��� � 	� � � �
� 
�� � ������� ��

��� ��� � 	� � � �

�� 	�� 
� 	� � 
�� ����� 	�� 
� 	� � 
�� ����

����� ��

������������ � �

� � � �������� �

� 
�� � ��� � � ���� �  ��


�� � � ��
 � �� ��� ������

��� ��� � 	� � � �

��� ��� � 	� � � �

� 
�� � ������� � � � � � � � �
��� ��� � 	� � � �

� 	�
� ���

�

 

! 	������"

�

 

! 	������"

# � � �� �� � �
��� � � �$ ��

�% � ��� ��� ��� � ����� 	��

�

� � � �

� ��� � � �& �! ' $ "

# � � $ �
� ��� � � �$ ��

Figure 3. Class diagram of the typepackage

The type representation classTypeRepis composed of
small parts that we callTypeFormer-s. These can be sim-
ple type formers like arrays (TypeFormerArr) and point-
ers/references (TypeFormerPtr); or type references (Type-
FormerType), which can refer to simple (built-in) types
(classSimpleType) or some other elements that represent
types, like classes or typedefs. TheTypeFormerFuncis a
special type former, which is present if we are representing
the types of functions or parts of a more complex type rep-
resentation containing pointers to functions. It refers to the
type representations of the function’s parameters and its re-
turn type. Eventual const-volatile qualifiers that belong to a
type are represented by an attribute in theTypeRepclass.

The order of the type formers captures how the type is
built up semantically. For example, the declaration
int *array[SIZE] is represented with thisTypeRep:
(1) array of (2) pointers to (3)int -s.

Note, that this type representation allows an arbitrary
number of recursions in representing the types of e.g. pa-
rameters that are pointers to functions that have parameters
that are in turn pointers to functions.

2.5 templ– the template package

There are two special language elements that class and
function templates and template specializations have: the
template parameter list (represented with the classParam-
eterList) and the template argument list (represented with
the classArgumentList); see Figure 4. Both are composites,
which storeParameter-s andArgument-s, respectively.

In C++ there are three kinds of template parameters: the
“usual” type name, the non-type (e.g. value) and another

template. The type name parameter is represented with the
classParameterType, which can possibly refer to a type rep-
resentation as its default value. The non-type parameters are
modelled with the classParameterNonType, which repre-
sents its type the same way as, e.g., the function parameters.
It can have a default value, so it may refer to the correspond-
ing expression. Finally, the parameter that is another tem-
plate is represented with the classParameterTempl, which
simply stores its template parameter list with a recursion: it
is composed with theParameterListclass. Additionally, it
can have a default value, so it may refer to the appropriate
ClassTemplor FunctionTemplclass.

Every template parameter has its corresponding template
argument when the template is instantiated: the classArgu-
mentTyperepresents a reference to a concrete type repre-
sentation for the type parameter. Similarly, theArgument-
NonTypeclass refers to a concrete expression and theAr-
gumentTemplclass refers to the concrete class or function
template.

2.6 Example schema instance

We illustrate the use of our schema through an example
instance of it. We use a slightly simplified version of the
example in [6] (see Figure 5). The AST for the example is
given in Figure 6. We use an Object Diagram-like notation,
where the object instances of the schema’s classes are rep-
resented and the links that connect them clearly show the
instances of various association and aggregation relations.
The ordered associations are represented by numbering the
links. We have simplified the diagram for clarity by omit-



� ������ �����

�	��
 ����� ��


�	��� ������� ��� ������������ ���� ������� �� �������! �	��� ������� ��� �������

�	��� ������ ��� "�# $��

%

&�' ' %
()*+�, - .�/0 ,���,�0

()�* .!/0 ,!��,!0

* 1 2 345 5 6� �$�$�������� 

%

&�' ' %

2 , - ,�2 * .�7�+	, - .�,!890:

* 1 2 345 5 ;�<���=�� # �����������! 

%

&�' ' %

2 ,- ,!2 * .�7!+�,- .�,!890:

()*�>�)!2 )!8�, 1 ,�2 ?@ * 1

A�� B�<�����!� "�# $�� C 
 D�E����F��

A�� B�<�������� ������AG� B�<������� ������������A�� B�<������� �������� 

2 ,- ,!2 * .�7.�,!890:

2 ,- ,�2 * .�7.�,!890:

()* .!/0 ,���,�0

4 7�H 1 )!@ H *

%I
� 72 J�,�2 ,�J�

% I
� 7�2 J�,�2 ,�J�

4 7�H 1 )!@ H *

K )�* ,�5 5 L�������M

,N0�2 5 5 O	P�Q�
 ��RR�S T�F

%

&�' ' %
( )�*+�, - U�)!: 3 , ( )�* U�)�: 3 ,

1 /0 ,�5 5 ��������V���

K)�* ,!5 5 �	T�R�S � S T�F��M

Figure 4. Class diagram of the templpackage

ting attributes, such as line numbers, which are not neces-
sary for the description.

The schema uses integers as unique identifiers for nodes,
so the key of the topmost node is “1.” The class of each
node is given to the right of the key number; for example,
the class of node 1 isstruc::Namespace. The schema uses a
nameattribute in some nodes to give the name of the source
item being represented; for example, the name attribute of
node 1 is“global namespace.”

We will use the example to explain how the template
class, the types, the object and function in it are represented
in the AST according to the Columbus schema.

The template classArray is represented by node 11. It
contains a template parameter list (node 12), which has two
children (the order is shown on the connecting edges) that
represent the two template parameters. The first one is a
type nameT that it is referred from two other nodes. The
second one is the non-type parameter (value)Size, which
has a type. This type is represented byTypeRepnode 18.

The template classArray has two children (ordered): ob-
ject arr (node 15) and functionget (node 16). The type of
objectarr is represented byTypeRepnode 20.

The facts that functionget is virtual and const are stored
as attribute fields in node 16. The function has one param-
eter with the nameidx (node 17). The type of this node is
the same as the type of template parameterSize, so it refers
to the sameTypeRep18. We will present the type represen-
tation of functionget in detail (node 24).

TheTypeRep24 contains aTypeFormerFuncnode (25),
which refers to theTypeRepof the function’s return type
(node 26) and theTypeRepof the parameteridx (node 18).
The return type representation (node 26) stores the const-
ness of the return type and contains two type formers for

the type itself. The first one is a pointer (reference) for-
mer (TypeFormerPtr27), which means that the return type
is a reference to a node that represents a type. The second
type former is aTypeFormerType(node 28), which refers to
template parameter 13. So the overall meaning of the type
representation is: a reference to template parameterT.

3 Implementation experiences

We will provide a two-fold application of the Columbus
schema in our implementation. Firstly—as already men-
tioned in the Introduction—in parallel to the schema a re-
verse engineering tool also called Columbus [5] has been
developed. Its C/C++ extractor module uses the schema as
its internal representation. Because the schema description
is in form of UML Class Diagrams the implementation of
the extractor is rather close to the schema. This opens also a
possibility to issue a schema-conforming API for accessing
the internal representation. The second application is that
the final result of the extraction can be presented according
to the schema in various formats, such as GXL.

The Columbus tool implements ageneral frameworkfor
combining a number of reverse engineering tasks and pro-
vides a common interface for them. It supports project han-
dling, data extraction, data representation, data storage, fil-
tering and visualization. Extractors for different program-
ming languages can be integrated into the Columbus frame-
work using aplug-in API. The current version has a C/C++
extractor and a Java extractor is under development. The
Columbus tool is available on the web, and it is free for sci-
entific and educational purposes [7].

During extraction Columbus produces separate internal
representations for each precompiled compilation unit and



1 template <class T, int Size>
2 class Array {
3 T arr[Size];
4 public:
5 virtual const T& get(int idx) const;
6 };

The example implements a generic array, which expects two parameters
(the type of the stored elements and the size of the array) and has a
public functionget.

Figure 5. Example

��� � � � ��� �	� 
	�	������ ����� � �� ���	�	��������� � �

� ��� � ����� � � ���� ����� � ��� ��� 	���	�	�
 �����!� "�# $ %

� &�� � �����	� � � ����� ����	� ��� ���� �
 	���'�!� (

) � � �	� ��� � ��� ���	� ���� � �
* �  	+!� ,- ./ 0�-

�	�	� � � � 1 2	� � 34� �	� � ��������
 �����5� 647 7 89

� :�� � � � 1	2	� � ;=< > �2 �
 	����!� 8	7 7
�2 2 �� � � <	� � � � ��� �2 * ��� � ? �	� �

2 �� � ��  	�'� � �

� @�� � � � 1	2	� � A1 	2 � � � 
 	����!� B�%	-
2 �� � � C���� � � � � �!� 2 ? * 3��� � �
� � C4� � � 1	��� � � � 1	�
�2 2 �� � � <	� � � � ��� �2 * ��1<� � 2

2 � � ���  	�=� ) �


 �� ���	� �������


	�	� ���� ������

� ) � � ���=�� � � ����� ����� � �� D	� � �


	�	������ ����� � �	� D	� � �

2 � � ���  ��� ) �2 �� � ���  	�=� � �


	�	� ���	� ������� � E�� � � � 1	2	� � ���� �����	� ��
 	���=�!��# F�G

2 �� � ���  �=� � �


 �� ���	�	�������

) ��� � �	�	�� � ���	�	�������

2 � � ���  ��� � �

) E� � �	�	��� � ���	�	��A�� ���� ��� �
* �  	+!� � �	H �� �� 2 �

) :�� � �	� ��� � ��� � ��A�� ����� A�1 	2

) @�� � �� ��� � ���	�	������
2 �� 	� � C��� �	� � � �5� 2 ? * 3��� � �


 ��	���	� 1�  	���	� �������

)	I � � �	� ��� � ���	� ��A��� ����� ���	� �

2 �� � ��  	�=� � � 2 �� � ��  �=� ) �

)J � � �	�	��� � ���	�	������� I � � �	�	��� � ���	�	������

� �	H �� � ������	�	�

� � H �� � ���	���	�	�

�	� � � � 1 2	� � �����=�� �	�	2 �
 	���=�!� B�K L�M�8K	0�8N!%,O�8	P%

2 �� � ���  ��� � �

� Q�� � �� ��� � ���	�	��A�� ����� ��	�	� )	) � � �	� ��� � ���	� ��A��� ����� ���	� �

2 � � ���  ��� � �

) � � � �	�	��� � ��	�	��A��� ���� R4� �

2 � � ���  ��� � � 2 � � ��  	�=� ) �

) &�� �	S	�� � � T�S	�	� �� � � � 

� �	H �� � ���	���	�	�

U U U

Figure 6. AST for the example



the linker plug-in merges these units into a unified AST.
During linking duplicated elements, such as declarations in
header files, are removed. After linking the extracted data
can be exported into various formats. Some of these for-
mats are simple reports (e.g. HTML), while others conform
to the Columbus schema. One format is CPPML, our XML
format specially designed for the schema. The most impor-
tant one is however, the GXL output [9, 10], which realizes
the Columbus schema as an XML-based graph description
of the presented UML Class Diagrams.

Successful interchange of the data created by the Colum-
bus tool according to the Columbus schema has been
achieved in several usages. The first application was by
Nokia Research Center in Nokia’s proprietary UML design
environmentTDE [18]. TheMaisaproject of the Helsinki
University for recognizing simple standard Design Patterns
[8] in C++ programs also successfully utilized the output
created by Columbus [4]. Another example of the schema’s
use is in a FAMOOS project with the Crocodile metrics tool
[17]. One of the most important applications is probably
the currently ongoing work on exchange between Columbus
and the GUPRO tool, which uses GXL as its input format
[3]. Another example of a successful interchange is with
therigi graph visualizer tool [13, 16].

4 Conclusion

This work was motivated by the observation that suc-
cessful data exchange is crucial among reverse engineer-
ing tools. This requires a commonformat, which is ap-
plicable in various reverse engineering tools, such as front
ends and metrics tools. A standard (or at least reference)
schema must be found. In this paper we propose an ex-
change schema for the C++ language, called the Columbus
Schema.

The Columbus schema is modular, thus providing addi-
tional flexibility for its extension/modification. It captures
the (preprocessed) C++ language at low details (AST) and
also contains higher-level elements. The description of the
schema is given using UML Class Diagrams, which enables
its simple implementation and easy physical representation
(e.g. using GXL).

The schema is implemented in a reverse engineering
framework tool Columbus and we also provide our experi-
ences with this application of the schema, as well as several
exchange examples with other tools.

In the near future we plan to validate the Columbus
schema further by applying it in new tool interoperability
usages, such as the interchange withRational Rose[15].
We also plan to make available an Application Program-
ming Interface according to the Columbus schema, which
could be used to access the internal representation of the
extracted C++ system by the Columbus tool. Apart from

this, we wish to publish the details of thestatmandexpr
packages.

References

[1] Bell Canada Inc., Montŕeal, Canada.DATRIX – Abstract
Semantic Graph reference manual, Version 1.2, Jan. 2000.

[2] The DATRIX homepage.
http://www.iro.umontreal.ca/labs/gelo/datrix

[3] J. Ebert, R. Gimnich, H. H. Stasch, and A. Winter. GUPRO
– Generische Umgebung zum Programmverstehen, 1998.

[4] R. Ferenc, J. Gustafsson, L. Müller, and J. Paakki. Recog-
nizing Design Patterns in C++ programs with the integration
of Columbus and Maisa. InProceedings of SPLST 2001,
pages 58–70. University of Szeged, June 2001.

[5] R. Ferenc, F. Magyar,́A. Besźedes,Á. Kiss, and M. Tarki-
ainen. Columbus – Tool for Reverse Engineering Large Ob-
ject Oriented Software Systems. InProceedings of SPLST
2001, pages 16–27. University of Szeged, June 2001.

[6] R. Ferenc, S. E. Sim, R. C. Holt, R. Koschke, and
T. Gyimóthy. Towards a Standard Schema for C/C++. In
Proceedings of WCRE 2001, pages 49–58. IEEE Computer
Society, Oct. 2001.

[7] Homepage of FrontEndART Ltd.
http://www.frontendart.com

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns : Elements of Reusable Object-Oriented Software.
Addison-Wesley Pub Co, 1995.

[9] The GXL homepage.
http://www.gupro.de/GXL

[10] R. Holt, A. Winter, and A. Scḧurr. GXL: Towards a Standard
Exchange Format. InWCRE 2000, pages 162–171, Nov.
2000.

[11] International Standards Organization.Programming lan-
guages — C++, ISO/IEC 14882:1998(E), 1998.

[12] E. Mamas and K. Kontogiannis. Towards Portable Source
Code Representations using XML. InProceedings of WCRE
2000, pages 172–182, Nov. 2000.

[13] H. A. Müller, K. Wong, and S. R. Tilley. Understanding
software systems using reverse engineering technology. In
Proceedings of the 62nd Congress of L’Association Cana-
dienne Francaise pour l’Avancement des Sciences (ACFAS),
1994.

[14] Object Management Group Inc.OMG Unified Modeling
Language Specification, Version 1.3, 1999.

[15] The Rational Rose web site.
http://www.rational.com/products/rose

[16] The Rigi web site.
http://www.rigi.csc.uvic.ca

[17] C. Riva, M. Przybilski, and K. Koskimies. Environment for
Software Assessment. InWorkshop on Object-Oriented Ar-
chitectural Evolution, ECOOP’99, 1999.

[18] A. Taivalsaari and S. Vaaraniemi. TDE: Supporting Ge-
ografically Distributed Software Design with Shared, Col-
laborative Workspaces. InProceedings of CAiSE’97, LNCS
1250, pages 389–408. Springer Verlag, 1997.


