
Relationship between the Effectiveness of
Spectrum-Based Fault Localization and Bug-Fix

Types in JavaScript Programs
Béla Vancsics

Software Engineering Department
University of Szeged

Szeged, Hungary
vancsics@inf.u-szeged.hu

Attila Szatmári
Software Engineering Department

University of Szeged
Szeged, Hungary

szatma@inf.u-szeged.hu

Árpád Beszédes
Software Engineering Department

University of Szeged
Szeged, Hungary

beszedes@inf.u-szeged.hu

Abstract—Spectrum-Based Fault Localization (SBFL) is a well-
understood statistical approach to software fault localization,
and there have been numerous studies performed that tackle its
effectiveness. However, mostly Java and C/C++ programs have
been addressed to date. We performed an empirical study on
SBFL for JavaScript programs using a recent bug benchmark,
BugsJS. In particular, we examined (1) how well some of the
most popular SBFL algorithms, Tarantula, Ochiai and DStar,
can predict the faulty source code elements in these JavaScript
programs, (2) whether there is a significant difference between the
effectiveness of the different SBFL algorithms, and (3) whether
there is any relationship between the bug-fix types and the
performance of SBFL methods. For the latter, we performed
a manual classification of each benchmark bug according to an
existing classification scheme. Results show that the performance
of the SBFL algorithms is similar but there are some notable
differences among them as well, and that certain bug-fix types
can be significantly differentiated from the others (in both
positive and negative direction) based on the fault localization
effectiveness of the investigated algorithms.

Index Terms—Spectrum-Based Fault Localization, JavaScript,
bug classification, testing and debugging.

I. INTRODUCTION

As part of the debugging process, software fault localization
is an important activity in maintenance and evolution. Auto-
mated fault localization methods could help detect as many
bugs as possible with the least effort and resources, hence
given these methods, the efficiency of software development
could increase. Spectrum-Based Fault Localization (SBFL) is
a well-researched and well-understood class of automated fault
localization methods [1], [2], [3], [4], [5]. The basic intuition
behind SBFL is that those code elements (statements, blocks,
functions, etc.) are more suspicious to contain a fault that are
exercised by comparably more failing test cases than passing
ones, while non-suspicious elements are traversed mostly by
passing tests. Suspiciousness can be expressed in different
ways, usually assigning one value to each code element (called
the suspiciousness score), which can then be used to rank the
code elements. When this ranked list is given to the developer
for investigation, it is hoped that the fault will be found near
the beginning of the list, hence providing useful advice.

However, the practical applicability of SBFL methods is
still limited [6], [7], in fact, relatively bad performance in
terms of ranking is one of the main reasons why it is not
widespread [8], [9]. Other studies highlighted different barriers
as well; applicability of theoretical results in practice [10],
little experimental results with real faults [4], validity issues
of empirical research [11], and not meeting practitioner’s
expectations [12]. Also, only a modest number of tools that
employ SBFL techniques have been proposed over the years
that are practically usable in real scenarios (GZoltar [13],
Road2fault [14], iFL [15]).

Among the many possible causes of suboptimal perfor-
mance of SBFL methods is how we understand the behavior of
the algorithms given different types of bugs. In this area, only
a few studies are avaialble [16], [17], [18], [19]. In this work,
we present an empirical study to investigate the relationship
between bug-fix types and fault localization efficiency. We
used the JavaScript bug benchmark BugsJS [20] to compare
how well the SBFL algorithms perform. Despite the fact that
JavaScript is a popular programming language, automated fault
localization in this language is less researched than for Java or
C/C++, for instance. Hence, our work is a novel contribution
in this regard as well.

Our main contributions in this paper are the following:
1) We implemented some of the well-known SBFL al-

gorithms for JavaScript and applied them on the bug
benchmark BugsJS.

2) We performed a categorization of bugs in the benchmark
on function-level.

3) We empirically verified if the different SBFL algorithms
behave significantly differently on the benchmark.

4) We empirically analyzed how the different bug-fix types
relate to the fault localization effectiveness in terms of
SBFL rank.

Results indicate that the performance of the three imple-
mented SBFL algorithms is similar but there are some notable
differences among them as well; Ochiai and DStar are more
accurate than Tarantula, in particular. The other main finding

978-1-7281-5143-4/20 c© 2020 IEEE SANER 2020, London, ON, Canada
Research Papers

Accepted for publication by IEEE. c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

308



is that certain bug-fix types can be significantly separated from
the others (in both positive and negative direction) based on
the effectiveness of the three implemented SBFL algorithms. A
possible implication of our findings is that future research on
SBFL should investigate algorithms that consider specific bug
types. Clearly, the analysis of bug-fix types is only indirectly
relevant (the fix comes after localization), but this work can
be extended to include other bug categorizations as well.

The rest of the paper is organized as follows. In the next
section, we detail the goals of this study proposing two
research questions. In Section III we give an overview of
the overall study design, data preparation, bug labeling and
computing the fault localization ranks. In Section IV, we
examine these ranks and draw conclusions, thus answering
the research questions. Finally, related work (Section V) and
conclusions are offered (Section VI).

II. GOALS AND RESEARCH QUESTIONS

There were a few motivations for this work. First is the
lack of previous research on automated fault localization for
the JavaScript language. There are many fault localization ap-
proaches and their effectiveness has been analyzed by several
publications, but these mainly concentrate on C/C++ and more
recently on Java programs [1], [2], [3], [4], [5]. In spite of the
fact that JavaScript has become an increasingly popular lan-
guage recently1, 2, only a few SBFL-related studies have been
conducted on this language (e.g. [21], [22]). One of the reasons
for this could be a lack of an accepted, validated benchmark
for researchers. Recently, the bug benchmark BugsJS [20] has
been published, so this enabled us to perform an empirical
study of SBFL algorithms on JavaScript programs.

Thus, the goal of our research is to examine the performance
of different SBFL algorithms using BugsJS. In particular, our
goal was to find out if any of the most popular algorithms
(Tarantula [23], Ochiai [24] and DStar [25]) produces better
overall localization efficiency than the others. Furthermore, we
were interested in the different types of bug fixes and if these
affect the algorithms’ fault localization efficiency. Simply by
looking at how these algorithms compute the fault localization
ranks (they look at code coverage details of passed and failed
test cases), one could not easily predict if the bug (and the
corresponding code fix) type could have any significant influ-
ence on the algorithms’ performance. However, if we take into
account that the developers have a tendency to make mistakes
to various extent for different code constructs (more often in
conditional statements than assignment expressions [26], for
instance), a knowledge about how automated SBFL behaves
in different situations could help design more specialized
algorithms that could better serve the programmers.

In this paper, we are looking to answer the following
Research Questions:

RQ1 Is any of Tarantula, Ochiai or DStar significantly different
to the others in terms of fault localization efficiency for
JavaScript bugs?

1http://pypl.github.io/PYPL.html
2https://insights.stackoverflow.com/survey/

RQ2 Are there any bug-fix types on which any of these algo-
rithms perform significantly differently (better or worse)
than the others?

We expect that the answers to these questions could help
researchers and developers to select and improve existing fault
localization algorithms, and could also be beneficial in other
related fields such as automated program repair [27], test
generation [28], and bug prediction [29], among others.

III. STUDY DESIGN AND DATA PREPARATION

A. Overview

Figure 1 contains the overview of our process to obtain
empirical measurement data. We used the BugsJS benchmark
suite [20], which was created to enable bug-related software
engineering research with real, curated JavaScript bugs.3 For
each bug, BugsJS includes several related code revisions and
sets of test cases, and enables individual execution of these
versions. Execution information from related test cases can
be obtained including per-test code coverage and test results.
More information on how we treated the benchmark bugs is
given in Section III-B.

Fig. 1. Experiment overview

For the purposes of the present research, we used three code
revisions (“bug-tags”) for each bug in the benchmark:
● buggy: the parent commit of the revision in which the

bug was fixed,
● fixed contains only the production code changes intro-

duced to fix the bug, applied to the buggy revision, and
● only test-fix contains only the tests introduced in the bug-

fixing commit, applied to the buggy revision.
Using this set of data, three steps were necessary to obtain

the final results for answering our research questions:
1) Bug labeling, in which we calculated the function change

sets between the buggy and fixed revisions for all bugs
and determined the respective bug-fix labels.

2) Coverage measurement and fault localization score cal-
culation, in which we collected coverage data and test
results, and calculated the fault localization rank values
for each source code element (function).

3) Data evaluation.

3https://bugsjs.github.io/

309



Figure 2 shows the overall process of assigning bug-fix
types to the benchmark bugs. Following the preliminary clas-
sification done by the benchmark authors [20], we started
from the bug-fix types of Pan et al. [26]. Starting from the
buggy and fixed code revisions, we used GitHub’s split diff
view to identify the changed code lines and the corresponding
JavaScript functions with the help of the code coverage data.
More information on the labeling process and the labels
themselves are found in Section III-C.

Fig. 2. Bug labeling process

Finally, Figure 3 shows how we calculated the fault local-
ization results for the benchmark bugs. We used the “per-test”
measurement feature of the benchmark that allows computing
function-level code coverage data for each test case separately
along with the test case outcomes. We ran the tests separately
in the two tagged versions for each bug, buggy and only test-
fix. We then compared the test results (pass or fail) of these
two versions. We omitted those tests that failed in both cases,
because these failed tests were most probably not related to the
relevant bugs. The inputs to the SBFL algorithms were these
filtered test results and the function-level code coverage data
of the buggy versions. More details on the fault localization
computation process is provided in Section III-D, while the
procedure for evaluating the algorithms’ fault localization
efficiency is detailed in Section III-E.

Fig. 3. Fault Localization process

B. Bug Dataset

BugsJS is a JavaScript bug dataset which includes 453
reproducible bugs from 10 popular (number of GitHub-stars
≥ 100), mature (number of commits ≥ 200) and active (year
of the latest commit ≥ 2017) Node.js server-side JavaScript
programs from GitHub that adopt the Mocha testing frame-
work [20]. It consists of two other components: a Docker
image that provides a runtime environment, and a bug dataset.
The dataset can be queried through an API. The bugs are
manually validated and cleaned to ensure that the bugs and

their fixes were relevant (fixing commits are actually fixing the
bug described in the issue), isolated (fixing code exclusively
aim at fixing the bug, and no other changes are interleaved
within it), and reproducible (the test cases were manually
extracted that demonstrate each bug).

Although the current version of the BugsJS benchmark
includes most of the functionality required to perform SBFL-
related experiments off-the-shelf, some modifications had to be
made to it. In particular, the “per-test” measurement executed
for all bugs and all test cases is a very slow and space
consuming process (for a big project like Eslint which has
over 10 thousand test cases it took about a day to execute
the “per-test” measurement for one bug). We added a new
implementation of this feature that reduced the execution time
by tenfold. The old implementation would instrument the same
code, and write redundant information into the output files
with every test run, and this was optimized in our version to
process the data jointly for all test cases.

This modification had the consequence that some of the
bugs present in the benchmark could not be used in our
experiments. The reason was that there was a conflict between
the Node.js version of new per-test coverage instrumentation
and the version of buggy projects. In particular, we could use
7 out of 10 projects and 336 out of 453 bugs altogether in
our experiments. Details about this are given in Table I, along
with the average extent of the bugs in terms of code lines.

TABLE I
NUMBER OF BUGS USED IN THE STUDY

Project

B
ow

er

E
sl

in
t

E
xp

re
ss

H
es

si
an

.js

H
ex

o

Pe
nc

ilb
lu

e

Sh
ie

ld
s

BugsJS 3 333 27 9 12 7 4
This study 3 282 25 8 12 3 3

Average number
of tests

0.4K 12.4K 0.7K 0.1K 0.7K 0.4K 0.2K

Average number
of methods

0.8K 1.9K 0.3K 0.1K 0.6K 0.3K 0.6K

Average number
of modif. lines

12 7.2 8.5 12.5 6.8 7 7.1

C. Labeling

There may be various ways for the categorization of soft-
ware bugs, and a lot of approaches have been published in this
topic to day [26], [30], [31] In this research, we followed the
approach to examine how the specific bugs have been fixed
by the developers. This approach is much more robust and
application independent than starting from the bug itself, and
could be done in a relatively straightforward way given a well-
defined classification scheme.

We started from the classification of Pan et al. [26] and,
because it was designed for Java programs, we adapted it to
JavaScript. We used only the highest level categories proposed
in this work, and interpreted their meaning to JavaScript,
which was straightforward in most of the cases. To our
knowledge, there is no related work on labeling JavaScript

310



bug fixes. It was also not known what kinds of software bugs
are the most common, and whether bug-fix types have similar
frequency distributions across multiple systems.

Pan et al. defined the patterns by manually analyzing sev-
eral open source Java projects (ArgoUML, Columba, Eclipse,
JEdit and Scarab), and inspected the bugs and their fixes in
the bug fix revision. Table II shows their final categorization.

TABLE II
CATEGORIES PROPOSED BY PAN ET AL.

Bug fix
patterns

Description

IF If-related: Changes to if conditions in any way.
MC Method call: Changes that include calling a method.
SQ Sequence: Three or four changes in an operation sequence.

LP
Loop: Change either in the loop predicate
or in the scope of the loop statement.

AS
Assignment: The expression on the right hand side changes
but the expression on the left stays the same.

SW Switch: Additional or removal of switch branch
TY Try-related: Additional or removal of a try or a catch block

MD
Method declaration: Addition or removal of a method
declaration, or a change of method declaration

CF Class field: Addition, removal or change of Class fields.

We will now describe the cases that match these patterns:
● The IF category of bug fix patterns from Table II includes

changes made to the if statement. This can mean from
addition of a precondition check to removing an Else
Branch, and also changes made to an if predicate and
adding or removing else or else if branches.

● MC includes cases that are related to method calls. This
pattern matches cases such as change in the number of
parameters, method call with different actual parameter
values and change of method call to a class instance.

● SQ relates to additions or removals of operations in a
field setting sequence or in a sequence of method calls to
an object. This pattern also includes the case when there
is addition or removal of method calls in a short construct
body.

● LP is used whenever there is a change in a loop predicate
or in an expression that modifies the loop variable inside
the scope of the loop statement.

● AS is used for assignment related bug fixes. So, the bug
fix changes the expression on the right hand side but the
left hand side stays the same in both the buggy and the
bug fix versions.

● SW is used whenever an addition or removal happens to
a case in a switch statement.

● TY is used if the bug fix is try-related. This means that
the bug fix adds a try-catch statement to enclose a section
of code or removes a try-catch statement from the code.
It can refer to addition or removal of the catch block as
well.

● The MD pattern refers to the changes of method decla-
rations. MD is intended to be used whenever there is an
addition or removal of a method declaration.

● Label CF is used for the changes made to class fields.
This can be addition or removal and the change of a
class field declaration.

The most common bug fix patterns were IF and MC in
Pan et al. ’s study.

D. Computing Fault Localization Ranks

The details of the Spectrum-Based Fault Localization algo-
rithms we implemented for this work are the following.

1) Coverage and Result Data: To store the program ex-
ecution information, we calculated a coverage matrix (the
program spectrum), whose rows represent the tests (T ), and
columns show the (source) code elements (for example, func-
tions - F ). The matrix has a value of 1 in a given cτ,φ position
if code element φ is covered by test case τ , otherwise this
value is 0. With another data structure (the result vector) the
results of the tests are stored, where 0 means that test τ passed,
otherwise it is 1.

COV =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1,1 . . . c1,a
⋮ ⋱ ⋮

cb,1 . . . cb,a

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, RES =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r1
⋮

rb

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

cτ,φ ∈ {0,1} ∶ τ ∈ T φ ∈ F,
cτ,φ = 1 if φ is covered by τ ,

rτ ∈ {0,1} ∶ τ ∈ T,
rτ = 0 if τ is pass, else 1.

2) Metrics: Given the spectrum above, four basic statistics
(metrics) are calculated for a function φ:

a) φep: number of passing tests covered by φ

b) φef : number of failing tests covered by φ

c) φnp: number of passing tests not covered by φ

d) φnf : number of failing tests not covered by φ

These four values are then used by many formulae [7], [32] to
compute the corresponding suspciousness scores of φ, and thus
providing a ranked list of code elements as the final output.
There have been numerous formulae proposed in literature [1],
[2], [3], [4], [5], but some of the most often used ones are
Tarantula [23], Ochiai [24] and DStar [25], so we implemented
these to be used in our experiments and are given below:

DStar [25] :
φ2ef

φep + (φef + φnf ) − φef
,

Ochiai [24]:
φef√(φef + φnf ) ⋅ (φef + φep)

,

Tarantula [23]:

φef

φef+φnf

φef

φef+φnf
+ φep

φep+φnp

.

311



E. SBFL Algorithm Evaluation Process

To evaluate (and quantify) the effectiveness of SBFL algo-
rithms and the relationship between them and bug-fix types,
we will use the position of the buggy functions in the sus-
piciousness rank order provided by the algorithms. This is
preferable over comparing the suspiciousness scores directly as
the different algorithms produce the scores on different scales
or produce different distributions.

In a simplest form, a bug-rank is the absolute position of
changed (buggy) method in suspiciousness order [33], but
often it is examined in a relative form with respect to the
total number of code elements. This approach makes it more
comparable among different subject programs, however recent
user studies report that developers tend to investigate only the
top 5 or at most the top 10 elements in the recommendation
list provided by localization methods before giving up [8],
[12]. Hence, any improved rank position which is above
these thresholds will probably be less useful, no matter how
much relative improvement we can achieve. The importance
of absolute measures was highlighted by Parnin and Orso
as well [9]. Therefore we divided the rank-scale into five
special segments (in a similar fashion to the approach used by
Zou et al. [34]). We will distinguish between cases where the
code element has a rank equal to 1 (top-1), it is less or equal to
three (top-3), less or equal to five (top-5), less or equal to ten
(top-10), and when it is over ten (other), commonly referred
to as top-N.

Another topic when expressing the efficiency of fault lo-
calization is the handling of ties [35], because in many cases
it can happen that different program elements get assigned
the same suspiciousness scores. There are three commonly
used approaches for comparing rankings when many elements
have the same ranks: (1) average of the ranks: these methods
will get their average rank, (2) minimum rank: the lowest
rank will be assigned to the methods and (3) maximum rank:
the methods take the highest rank value. In this work, we
follow the approach to examine average ranks. Finally, fixing
a bug can affect more code elements (functions, in our case),
and to handle this situation we used the lowest value of the
affected functions’ ranks. In the examined programs, there
were 272 bugs where the patch only affected one function and
64 changes that resulted in changes to two or more functions.

IV. RESULTS

In this section, we will present the results of comparing
the fault localization data based on the described effectiveness
measure, first answering RQ1 (Section IV-A), and then RQ2
(Section IV-B). We will conclude this section with general
discussion of the results and threats to validity.

A. Overall Ranks

Table III shows the average ranks obtained per project and
per algorithm. First, we can observe that the three approaches
typically produced similar results, apart from some outlier
cases, most notably, DStar on the Hexo project. This is not
so surprising as other studies have already found that this

algorithm can produce extreme ranks in some cases [36]. It
can be stated that, overall, Ochiai obtained the best results,
i.e. the lowest average ranks. It is interesting to note that
there were no cases where the average rank of Tarantula was
lower than that of Ochiai, but surprisingly DStar gave worse
results than Ochiai only on Hexo and in all other cases it was
better. Without the outlier, DStar would have been the clear
winner among the three methods. Other works that worked
with these algorithms but on different languages, obtained
similar results [4], [25], [37], [38].

TABLE III
AVERAGE RANKS

Project Tarantula Ochiai DStar

Bower 25.83 19.17 17.50
Shields 5.83 5.83 5.17

Hexo 3.25 3.00 80.88
Hessian.js 4.81 3.88 3.00

Express 8.10 7.94 7.94
Pencilblue 1.83 1.67 1.67

Eslint 20.39 19.90 19.90
All 18.24 17.73 20.47

To verify if there is a statistically significant difference
between the algorithms, we used the Wilcoxon signed rank test
on the fault localization ranks [39]. This is a non-parametric
statistical hypothesis test, which is used to compare two sam-
ples to assess whether their population mean ranks differ. We
applied it to determine whether these two dependent samples
were selected from populations having the same distribution.
In particular, we wanted to know if any of the three algorithms
is significantly better than the others. Significance level was
chosen to be α = 0.05, and we set the null hypothesis (H0)
to be that a fault localization algorithm A is not significantly
better than algorithm B.

Wilcoxon signed rank test gave us a p = 0.00001 value for
the Tarantula-Ochiai pair, so we reject H0 and accept H1,
that is, there is a difference in efficiency between the two
algorithms. Same goes for Tarantula and Dstar, the test gave
us the value of p = 0.00043. For the Ochiai - DStar pair,
the p value was bigger than α (p = 0.70975), therefore H0

was adopted in this case, that is, the two approaches produce
similar results (despite DStar’s some extreme rankings).

The average of the ranks can be easily misleading as high
average rank values can be caused by some extremely bad
values and they can influence the overall results greatly (such
as the case with DStar and Hexo). So, we investigated also
a set of rank positions which we believe are particularily
important. As mentioned earlier, the practical usability of
SBFL depends on the position of the faulty element (in
absolute terms, not in relative), and that developers tend to
investigate only the top 5 or at most the top 10 elements. We
used the top-N ranking scheme in this set of experiments, as
introduced in Section III-E.

312



The top-N values for all the bugs are shown in Table IV.
Overall, almost 30% of bugs have a rank of 1 and 90%
of them have ranks of 10 or less. It can be observed that
Ochiai and DStar continue to produce similar results (and this
is especially true for the top-1, top-3 and top-5 categories).
This also indicates that DStar is not performing as bad as the
average rank showed above, which was due to an outlier.

TABLE IV
TOP-N RANKS

Tar. (%) Ochiai (%) DStar (%)

top-1 96 28.6 101 30.1 100 29.8
top-3 206 61.3 214 63.7 214 63.7
top-5 255 75.9 264 78.6 264 78.6

top-10 300 89.3 306 91.1 303 90.2
other 36 10.7 30 8.9 33 9.8

Figures 4–6 show this data in a slightly different manner.
Here, we did not use the top-N values as defined above, but
their non-accumulating variant. This means that we counted
the cases where a particular bug fell into a non-overlapping
interval of [1], (1,3], (3,5], (5,10] or (10, . . . ]. We see from
Figure 4, for example, that there are 48 bugs that rank between
3 and 5 (right closed) interval based on Tarantula.

Overall, ≈30% of bugs belong to the best [1] category, but
the most elements are found in interval (1,3] (nearly 33%). It
can be observed that each algorithm produces similar results,
however, Ochiai and DStar contain more elements in the seg-
ments [1], (1,3], (3,5] than Tarantula. In addition, Tarantula
assigned most of the elements to the two worst groups: (5,10]:
44 functions, 13.4% and (10, . . . ]: 36 functions, 10.7%. This
information confirms our earlier findings based on average
ranks (Table III) that the results are similar, but Tarantula
slightly lags behind.

Fig. 4. Tarantula ranks

Fig. 5. Ochiai ranks

Fig. 6. DStar ranks

RQ 1: Concluding this research question, we found
that there is no significant difference between the
Ochiai and DStar fault localization algorithms, but
Tarantula is different (slightly worse) than any of the
other two. Both average rankings (Table III) and the
results of the top-N analysis (Table IV and Figures 4–
6) support this conclusion. In terms of the top-N po-
sitions, in about 30% of the cases perfect localization
could be achieved, and in about 90% of the cases the
fault was among the top-10 positions.

B. Ranks of Different Bug-Fix Types

Based on the bug-fix categories discussed in Section III-C,
we assigned labels to each of the JavaScript functions partici-
pating in the investigated bugs. Table V shows the associated
statistics for Tarantula: for each bug category and subject
system, we give the number of functions that got assigned
that category.

Note that the number of labels (412) is greater than the
number of bugs (336). This is because there are several
functions that have multiple tags associated with them. The
three algorithms produced very similar results (hence we give
numbers only for one), with one difference (and it is marked
with ∗ in Table V): in the ESlint project, 75 of the modified

313



functions have AS bug-fix type based on Tarantula, but it is
76 based on Ochiai and DStar. This may occur because it is
not guaranteed that all fault localization algorithms will be
assigned the lowest rank for the same method and this can
cause the labels to differ. This difference also affects aggregate
values, and these are also marked in the table.

The numbers of IF (176) and AS (102 or 103) appear to
be prominent and MC (65) is quite high as well, but there are
also very rare types (e.g. SW - 5 or TY - 1).

TABLE V
OVERALL BUG-FIX TYPE STATISTICS BASED ON TARANTULA

B
ug

-fi
x

ty
pe

B
ow

er

Sh
ie

ld
s

H
ex

o

H
es

si
an

E
xp

re
ss

Pe
nc

ilb
lu

e

E
sl

in
t

To
ta

l

IF 2 0 5 4 12 2 151 176
AS 2 3 9 2 9 2 75∗ 102∗

MD 0 0 0 0 1 0 23 24
LP 0 0 0 0 2 0 6 8
MC 0 0 1 0 3 1 60 65
SQ 0 0 1 3 6 0 19 29
SW 0 0 0 0 1 0 4 5
TY 0 0 0 0 0 0 1 1
CF 0 1 0 0 0 0 1 2

Total 4 4 16 9 34 5 340∗

The goal of the experiments presented in this section was
to find out if there are any bug-fix types for which the SBFL
algorithms’ efficiency is significantly different (either better
or worse) than for the others. Similarly to the overall rank
analysis from the previous section, we counted the number of
bugs belonging to the different top-N categories and separated
them according to the bug-labels. That is, we wanted to see
what kinds of labels were assigned to the lowest ranked (mod-
ified) functions for each bug, and how they were distributed
among the top-N categories. If more than one function was
associated with a bug only the lowest rank (and labels) were
considered, and if there were more than one label associated
with a function then that function was accounted for each
label.

Table VI shows the distribution of the labels obtained for
the three algorithms by category. An element in the table tells
us how many bugs there are where the least-ranked modified
function contains the given bug-fix type and the rank falls
within a given top-N range. For example, there are 115 bugs
where the lowest Tarantula rank is 3 or less and this function
has an IF bug-fix label.

The relative versions of these numbers are provided in
Table VII. Here, we can see what percentage of items with the
specified label are in the top-N category. For example, 65.3%
of least-ranked modified functions with the IF tag have a rank
less or equal to 3. When analyzing the most common labels, it
is interesting to note that IF is slightly better, and AS is slightly
worse than the top-N results in Table IV. Also, the results
of SQ are interesting because the number (and proportion) of

labels in the top-1 category is very low while its other category
is high. Other labels produced low element numbers, so their
general interpretation is less relevant.

As in the previous section, we counted the number of
labels occurring in the non-overlapping rank-ranges as well.
The associated results can be seen in Figures 7–9. The more
common labels (IF and AS) also show that there are nearly as
many labels in [1] interval as labels with a value rank of 2 to
3. In addition, Tarantula is a bit less efficient at finding buggy
functions than Ochiai or DStar. For example, the number of
labels in (1,3] is 131 for Tarantula, 136 for Ochiai and 141
for DStar. We can again see that the occurrence of SQ labels
in the lower ranges is quite low compared to the others, while
IF is the opposite: it has a high proportion of labels in the top
categories and fewer in the worse rank positions.

Fig. 7. Tarantula interval statistics

Figure 7 shows that there are certain bug types which
Tarantula finds easier. Although this can be misleading if there
is not enough data, e.g. on TY Tarantula performs really well,
however, as Table VI shows there is only one bug-fix with this
label.

Fig. 8. Ochiai interval statistics

As we can see in Figures 7, 8 and 9, the labels IF, AS,
MD in the [1] interval have similar results as R=1 (Top 1) in
Figure 4, 5 and 6.

314



Fig. 9. DStar interval statistics

To verify if this data shows any statistically significant
trends, we used Fisher’s exact test. It is a statistical significance
test, which is one of the non-parametric methods and is used
in the analysis of contingency tables [40]. We counted the
number of labels per metrics provided by the three SBFL
algorithms in Table VI, and in order to perform the test, we
created the contingency tables for each (bug-fix types, non-
overlapping interval, algorithm) configuration. A contingency
template is shown in Table VIII, where α is an algorithm, ω
is a bug-fix type and γ is a top-N category. The values in the
table cells indicate different counts of buggy functions:

a: which have label ω and their rank is in the range,
b: whose label set does not contain ω and their rank is in

the range,
c: which have label ω and their rank is not in the range, and
d: which have a set of labels not containing ω and their rank

is not in the range.
For example, when we choose the (Tarantula, top-5, IF)

configuration, a = 142 (top-5 and IF), b = 169 (top-5 and not-
IF), c = 34 (not-top-5 and IF) and d = 67 (non-top-5 and not
IF) in the template from Table VIII, which results in p = 0.037
(see Tables VI and IX).

TABLE VIII
FISHER EXACT TEST (TEMPLATE)

α ω ¬ω
γ a b
¬γ c d

Table IX shows the p values that the labels get in the
different intervals besides the given algorithm for the Fisher’s
exact test. The null hypothesis is that the ratio of belonging
to a top-N range is not higher for one label than for others. If
this value is less than our chosen significance level, 0.05, then
we reject the null hypothesis and we can say that the ratio of
belonging to a range is different (higher or lower) for a given
label than the others, i.e. the proportion of the labels in the
range is different. This test only determines whether there is
a difference in probability, it does not determine its direction.

In Table IX, we highlighted the cases where the difference
was significant according to the test. We can make the follow-
ing observations based on this data. First, in the top-1 category,
SQ is significantly different (worse) with all algorithms (this
type seems to be more difficult to be localized), which we
observed from previous data as well. In the top-5, top-10
and other categories the label IF is significantly different than
the other labels; in top-5 and top-10 they are likely to be
found by the SBFL algorithms. Also, in the other section it is
significantly different in the opposite direction (there are less
labels here). Table VII can be used to determine the direction
of significance: for SQ, the number of elements in the top-
1 category/section is low as opposed to IF where its ratio is
high.

RQ 2: There are two bug-fix types that are signif-
icantly different from the others in terms of how
successful the SBFL algorithms can locate them. Faults
that require modifications of SQ type are less likely to
be successfully localized at very high rank positions
by the algorithms, while faults belonging to the IF
category are ranked higher than other types in the top-
5 and top-10 ranges.

C. Discussion
Our overall findings related to the different SBFL algorithms

on JavaScript are not surprising: they behave in a similar
way, but differences could be observed as well, which are
aligned to previous studies. The fact that Tarantula was one
of the earliest published SBFL methods, which was then
subsequently challenged by a number of other approaches, is
reflected in its worst overall performance (related to RQ1).
Also, DStar produced a bit more hectic behavior (with its
outlier result), which confirms other studies. But excluding
this, it showed the overall best results. We conclude that we
cannot claim a clear winner among these algorithms, similar
to most of earlier studies performed for other languages. We
suggest for future studies of SBFL on JavaScript programs to
continue using multiple approaches, rather than staying with
only one.

It was not among the goals of this paper to analyze the
possible causes of our findings. We did not compare the overall
fault localization effectiveness obtained for JavaScript bugs to
similar results published for other languages, hence this is an
interesting possibility for future work. Furthermore, it is not
currently known why is it harder to localize SQ type bugs
and easier for the IF bugs, as indicated by our findings related
to RQ2. We can speculate that IF type of bug-fixing often
alter the control flow of the program and hence cause different
test cases to be activated which contributes to more diverse
statistics for the four basic metrics in SBFL. On the other
hand, SQ type of bug fixes merely change some sequential
computation and perhaps these are less likely to cause different
test cases to be triggered and behave differently. This area of
research is for future work as well.

315



TABLE VI
NUMBER OF LABELS (PER METRICS)

TOP-1 (#) TOP-3 (#) TOP-5 (#) TOP-10 (#) OTHER (#)

Name

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

IF 57 60 58 115 119 119 142 147 146 164 166 164 12 10 12
AS 29 31 30 58 63 62 73 76 74 87 92 89 15 11 14
CF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MD 7 7 7 17 18 19 19 20 20 21 22 22 3 2 2
MC 24 25 25 40 41 41 46 47 47 58 57 59 7 8 8
SQ 3 3 3 14 14 16 19 20 21 23 24 24 6 5 5
SW 1 1 1 3 3 3 3 4 4 4 4 4 1 1 1
LP 0 0 0 4 4 4 7 7 7 7 7 7 1 1 1
TY 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0

All 122 128 125 253 264 266 311 323 321 366 374 369 46 39 44

TABLE VII
PERCENTS OF LABELS (PER METRICS)

TOP-1 (%) TOP-3 (%) TOP-5 (%) TOP-10 (%) OTHER (%)

Name

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

IF 32.4 34.1 33.0 65.3 67.6 67.6 80.7 83.5 83.0 93.2 94.3 93.2 6.8 5.7 6.8
AS 28.4 30.1 29.1 56.9 61.2 60.2 71.6 73.8 71.8 85.3 89.3 86.4 14.7 10.7 13.6
CF 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
MD 29.2 29.2 29.2 70.8 75.0 79.2 79.2 83.3 83.3 87.5 91.7 91.7 12.5 8.3 8.3
MC 36.9 38.5 38.5 61.5 63.1 63.1 70.8 72.3 72.3 89.2 87.7 87.7 10.8 12.3 12.3
SQ 10.3 10.3 10.3 48.3 48.3 55.2 65.5 69.0 72.4 79.3 82.8 82.8 20.7 17.2 17.2
SW 20.0 20.0 20.0 60.0 60.0 60.0 60.0 80.0 80.0 80.0 80.0 80.0 20.0 20.0 20.0
LP 0.0 0.0 0.0 50.0 50.0 50.0 87.5 87.5 87.5 87.5 87.5 87.5 12.5 12.5 12.5
TY 0.0 0.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

TABLE IX
SIGNIFICANCE IN TOP-N BASED ON FISHER EXACT TEST

top-1 top-3 top-5 top-10 other

Name

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

Ta
ra

nt
ul

a

O
ch

ia
i

D
St

ar

IF 0.326 0.237 0.330 0.406 0.214 0.254 0.037 0.030 0.031 0.017 0.027 0.036 0.017 0.027 0.036
AS 0.804 0.902 0.806 0.157 0.554 0.342 0.291 0.217 0.103 0.206 0.697 0.272 0.206 0.697 0.272
MD 1.000 1.000 1.000 0.516 0.281 0.131 0.809 0.799 0.619 0.741 1.000 1.000 0.741 1.000 1.000
LP 0.112 0.113 0.113 0.471 0.467 0.463 0.686 1.000 0.691 1.000 0.551 0.597 1.000 0.551 0.597
MC 0.183 0.145 0.141 0.780 0.889 0.888 0.348 0.251 0.258 1.000 0.362 0.661 1.000 0.362 0.661
SQ 0.019 0.012 0.019 0.109 0.074 0.316 0.261 0.242 0.489 0.118 0.176 0.218 0.118 0.176 0.218
SW 1.000 1.000 1.000 1.000 1.000 1.000 0.600 1.000 1.000 0.448 0.393 0.432 0.448 0.393 0.432
TY 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CF 0.505 0.519 0.514 1.000 1.000 1.000 0.431 0.389 0.396 0.211 0.180 0.202 0.211 0.180 0.202

D. Threats to Validity

We identified the following possible threats to the validity
of our empirical study, for which we also list our attempts to
mitigate them.

The BugsJS benchmark is relatively new and hence no com-
parison basis is available to previous work using it. However,
given that the bugs are diverse and manually validated by
the benchmark authors, and that it is very similar to other
benchmarks used in related research (e.g., Defects4J [41]), we
have confidence in this dataset. Similarly, the bug labeling

was done in a similar fashion to other bug benchmarks, and
in addition, all authors participated in this manual activity to
counter for personal bias. Some of the bug-fix types had very
few instances, so no strong conclusions should be drawn for
these. However, we used statistical significance test to make
sure that the main findings are not by chance.

We deliberately did not choose only one specific SBFL
algorithm to be used in our experiments, to make sure that
the results are independent of the actual algorithm.

316



V. RELATED WORK

A. Fault Localization

SBFL has a large literature, and there are excellent surveys
that overview the field [1], [2], [3], [4], [5].

Renieris and Reiss [42] presented a method which is based
on the differences between pass and failed test. Jones and
Harrold introduced the Tarantula fault localization metric [23]
and showed that this approach outperforms the method by
Renieris and Reiss on C programs. Abreu et al. used the Ochiai
method in their studies [24], [37]. It was shown that Ochiai
produces better results than Tarantula using the Siemens and
the SIR 4 bug dataset. Wong et al. [25] presented the DStar
technique, which was evaluated in 24 programs and the results
were compared with 38 different techniques. Single-fault and
multi-fault programs were used for assessment.

Pearson et al. [4] evaluated fault localization techniques and
examined them to find whichever technique is the best for
real faults. They used the bug benchmark Defects4J [41] to
evaluate the algorithms.

There are many studies [37], [38], [25], [4] that compare
the results of different fault localization algorithms. Some of
the common conclusions of these studies are that (1) there is
a difference in the efficiency between injected and real bugs,
(2) Ochiai performed better than Tarantula (3), and DStar was
better than Ochiai. The results of our investigation confirmed
the latter two findings.

Regarding the different languages, Lucia et al [19] used
Tarantula and Ochiai techniques to understand how well they
perform on programs written in C as compared to programs
written in Java (they found no significant difference). But,
to our knowledge, SBFL was not investigated earlier for
JavaScript programs.

B. Labeling

Many studies dealt with bug fixes, and they have been
investigated from different aspects. Yin et al. [43] state that
humans are prone to making errors in fixes which lead
to bugs. This study showed that concurrency bugs are the
most difficult ones to fix, and the authors also defined three
patterns: memory bug, concurrency bug and semantic bug.
Osman et al. [44] collected Java projects from GitHub. They
analysed the change histories by linking revisions to bug
fixes. They compared the two versions of the methods, i.e.
the version before the fix and the version after the fix. Due
to the large number of diversity of the analyzed projects,
they decided to include only a few patterns in their study:
a) Missing null checks, b) Missing Invocation, c) Wrong
Name, d) Undue Invocation.

Lucia et al. [19] performed a similar study to ours. They,
however, used C and Java projects. They divided bugs into
several groups based on the bug-fix categories proposed by
Pan et al. [26], and also added new bug categories such as

4https://sir.csc.ncsu.edu/portal/index.php

CH-RET, OTH. They measured the effectiveness of each bug
category by the proportion of bugs localized. They came to the
conclusion that Ochiai could better localize bugs in CH-NCS
(Addition/removal of non-conditional statements) than others.

Hanam et al. [30] and Ocariza et al. [45] classified
JavaScript bugs and investigated their root causes. Hanam et
al. did an empirical study on labeling JavaScript serverside
bugs, and they proposed BugAID, a data mining technique for
discovering common unknown bug patterns. They showed that
language construct changes are closely related to bug patterns.

Martinez et al. [46] proposed another tool for mining
change pattern instances from Git commits, and identifed ten
change patterns, after analyzing the bug benchmark Defects4J.

VI. CONCLUSION

In this paper, we presented an empirical study of Spectrum
Based Fault Localization for JavaScript programs. To our
knowledge, this is the first systematic study of this class
of algorithms for this language, and also the first related
application of the recently published bug benchmark, BugsJS.
We used three traditional SBFL algorithms in our experiments
and found that they produce similar results to each other,
but differences could also be observed that are aligned with
previous studies for other languages.

Another goal of our research was to find out if there were
differences in fault localization effectiveness between different
types of bugs based on the associated bug fixes. We found
that there are certain bug-fix types that seem to be harder
to localize by the current algorithms (for instance, operation
sequence change), while some others are easier than the rest (if
condition related bugs). The analysis of bug-fix types is a first
step and will be extended to include other bug categorizations
that include bug causes as well, and hence contribute more
directly to designing better fault localization algorithms.

Investigating the possible explanations for these phenomena
are among our future work. Once we understand the under-
lying causes of the different behavior of the algorithms on
different bug-fix types (and eventually other bug categories),
we may be able to design improved algorithms in place of
these very general ones we use currently, which would perform
better on multiple types of bugs. Other possible implications
of our research results include useful insights to researchers
working in related fields such as automated program repair,
test generation, and bug prediction.

ACKNOWLEDGMENT

Szatmári was supported by project EFOP-3.6.3-VEKOP-
16-2017-0002, co-funded by the European Social Fund. This
work was partially supported by the EU-funded Hungarian
national grant GINOP-2.3.2-15-2016-00037 titled “Internet of
Living Things,” and by grant TUDFO/47138-1/2019-ITM of
the Ministry for Innovation and Technology, Hungary.

317



REFERENCES

[1] W. Eric Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, pp. 1–1, 08 2016.

[2] P. Parmar and M. Patel, “Software fault localization: A survey,” Inter-
national Journal of Computer Applications, vol. 154, no. 9, 2016.

[3] H. A. de Souza, M. L. Chaim, and F. Kon, “Spectrum-based software
fault localization: A survey of techniques, advances, and challenges,”
ArXiv, vol. abs/1607.04347, 2016.

[4] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the 39th International Conference on Software Engi-
neering. IEEE Press, 2017, pp. 609–620.

[5] P. Agarwal and A. P. Agrawal, “Fault-localization techniques for soft-
ware systems: A literature review,” SIGSOFT Softw. Eng. Notes, vol. 39,
no. 5, pp. 1–8.

[6] F. Keller, L. Grunske, S. Heiden, A. Filieri, A. van Hoorn, and D. Lo,
“A critical evaluation of spectrum-based fault localization techniques on
a large-scale software system,” in 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS). IEEE, 2017, pp.
114–125.

[7] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 4, pp. 31:1–31:40, Oct. 2013.

[8] X. Xia, L. Bao, D. Lo, and S. Li, ““Automated Debugging Considered
Harmful” Considered Harmful: A User Study Revisiting the Useful-
ness of Spectra-Based Fault Localization Techniques with Professionals
Using Real Bugs from Large Systems,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
oct 2016, pp. 267–278.

[9] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis, ser. ISSTA ’11. New York,
NY, USA: ACM, 2011, pp. 199–209.

[10] T.-D. B. Le, F. Thung, and D. Lo, “Theory and Practice, Do They
Match? A Case with Spectrum-Based Fault Localization,” in 2013 IEEE
International Conference on Software Maintenance. IEEE, sep 2013,
pp. 380–383.

[11] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault
locators,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ser. ISSTA 2013. New York, NY, USA:
ACM, 2013, pp. 314–324.

[12] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis - ISSTA 2016. New York,
New York, USA: ACM Press, 2016, pp. 165–176.

[13] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: an eclipse
plug-in for testing and debugging,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2012, pp. 378–381.

[14] H. A. de Souza, D. Mutti, M. L. Chaim, and F. Kon, “Contextualizing
spectrum-based fault localization,” Information and Software Technol-
ogy, vol. 94, pp. 245 – 261, 2018.

[15] G. Balogh, V. Schnepper Lacerda, F. Horváth, and Á. Beszédes, “iFL
for Eclipse—a tool to support interactive fault localization in Eclipse
IDE,” in Proceedings of 12th IEEE International Conference on Software
Testing, Verification and Validation (ICST), 2019.

[16] W. Masri, R. Abou-Assi, M. El-Ghali, and N. Al-Fatairi, “An empirical
study of the factors that reduce the effectiveness of coverage-based
fault localization,” in Proceedings of the 2nd International Workshop on
Defects in Large Software Systems: Held in conjunction with the ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2009). ACM, 2009, pp. 1–5.

[17] B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites for
efficient fault localization,” in Proceedings of the 28th international
conference on Software engineering. ACM, 2006, pp. 82–91.

[18] W. Masri and R. A. Assi, “Prevalence of coincidental correctness and
mitigation of its impact on fault localization,” ACM transactions on
software engineering and methodology (TOSEM), vol. 23, no. 1, p. 8,
2014.

[19] L. Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi, “Extended compre-
hensive study of association measures for fault localization,” J. Softw.
Evol. Process, vol. 26, no. 2, pp. 172–219, Feb. 2014.

[20] P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian, Á. Beszédes,
R. Ferenc, and A. Mesbah, “BugsJS: a benchmark of JavaScript bugs,”
in Proceedings of the 12th IEEE Conference on Software Testing,
Verification and Validation (ICST’19), Apr. 2019, pp. 90–101.

[21] F. S. Ocariza Jr, G. Li, K. Pattabiraman, and A. Mesbah, “Automatic
fault localization for client-side javascript,” Software Testing, Verification
and Reliability, vol. 26, no. 1, pp. 69–88, 2016.

[22] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “An empirical
study of client-side javascript bugs,” in 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement.
IEEE, 2013, pp. 55–64.

[23] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’05. New York, NY, USA: ACM, 2005, pp. 273–282.

[24] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. van Gemund, “A practical
evaluation of spectrum-based fault localization,” Journal of Systems and
Software, vol. 82, no. 11, pp. 1780 – 1792, 2009, sI: TAIC PART 2007
and MUTATION 2007.

[25] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The DStar method for
effective software fault localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, 2014.

[26] K. Pan, S. Kim, and E. J. Whitehead, Jr., “Toward an understanding of
bug fix patterns,” Empirical Softw. Engg., vol. 14, no. 3, pp. 286–315,
Jun. 2009.

[27] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE Transactions on Software Engineering, vol. 45, no. 1, pp.
34–67, Jan 2019.

[28] J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser, “A detailed inves-
tigation of the effectiveness of whole test suite generation,” Empirical
Software Engineering, pp. 1–42, 2016.

[29] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of
bug prediction approaches,” 05 2010, pp. 31–41.

[30] Q. Hanam, F. S. d. M. Brito, and A. Mesbah, “Discovering bug
patterns in JavaScript,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 144–156.

[31] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of bugs
in test code,” in Proceedings of the 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), ser. ICSME ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 101–110.

[32] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics to
improve fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2017. New York, NY, USA: ACM, 2017, pp. 273–283.

[33] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Testing: Academic and Industrial
Conference Practice and Research Techniques-MUTATION (TAICPART-
MUTATION 2007). IEEE, 2007, pp. 89–98.

[34] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, pp. 1–1, 2019.

[35] X. Xu, V. Debroy, W. E. Wong, and D. Guo, “Ties within fault local-
ization rankings: Exposing and addressing the problem,” International
Journal of Software Engineering and Knowledge Engineering, vol. 21,
pp. 803–827, 2011.

[36] B. Vancsics, “NFL: Neighbor-based fault localization technique,” in
2019 IEEE 1st International Workshop on Intelligent Bug Fixing (IBF),
Feb 2019, pp. 17–22.

[37] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, “Spectrum-based
multiple fault localization,” in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’09. IEEE Computer Society, 2009, pp. 88–99.

[38] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based
software diagnosis,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3,
Aug. 2011.

[39] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[40] A. Agresti et al., “A survey of exact inference for contingency tables,”
Statistical science, vol. 7, no. 1, pp. 131–153, 1992.

[41] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, ser. ISSTA 2014. ACM, 2014, pp. 437–440.

318



[42] M. Renieres and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in 18th IEEE International Conference on Automated Software
Engineering, 2003. Proceedings., Oct 2003, pp. 30–39.

[43] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram, “How
do fixes become bugs?” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. New York, NY, USA: ACM,
2011, pp. 26–36.

[44] H. Osman, M. Lungu, and O. Nierstrasz, “Mining frequent bug-fix code
changes,” 2014 Software Evolution Week - IEEE Conference on Software

Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE),
pp. 343–347, 2014.

[45] F. S. Ocariza Jr., K. Pattabiraman, and B. Zorn, “Javascript errors in the
wild: An empirical study,” in 2011 IEEE 22nd International Symposium
on Software Reliability Engineering, Nov 2011, pp. 100–109.

[46] M. Martinez and M. Monperrus, “Coming: A tool for mining change
pattern instances from git commits,” in 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), May 2019, pp. 79–82.

319


