
Improving Spectrum Based Fault Localization For 
Python Programs Using Weighted Code Elements

Qusay Idrees Sarhan and Arpad Beszedes
{sarhan, beszedes}@inf.u-szeged.hu

Department of Software Engineering, University of Szeged.

How Does Our Approach Work?

Objective

Conclusion

Code Example

We present an approach for improving

Spectrum-Based Fault Localization (SBFL) by

integrating static and dynamic information

about code elements. This is achieved by

giving more importance to code elements that

include mathematical operators and those that

appear in failed tests. The intuition is that these

elements are more likely to have bugs than

others.

The Tarantula formula (Equation 1) was applied

to the execution information in Table I to

compute the suspiciousness score of each

statement as presented in Table II. However,

after applying our proposed approach denoted

with *, the faulty statement got a higher rank

based on (Equation 2) and it will be examined

before most of the other statements.

After extracting the Abstract Syntax Trees (AST),

we walk through them and collect only the

mathematical statements that appeared in failed

test cases (i.e., when ef>0). Then, we give them

more importance by using (Equation 2), and

finally, we rank all the code elements.

We improve the effectiveness of SBFL by

involving static information (i.e., types of code

elements) in the SBFL process for Python

programs. Presently, we considered one type of

statement: mathematical statements. Based on

the positive results of this approach, we believe

that it could be explored more in the future,

such as by experimenting with other statement

types and other ways for the weighting.

Final_Score = Initial_Score + Max_Initial_Score (2)

𝑇𝑎𝑟𝑎𝑛𝑡𝑢𝑙𝑎 =

𝑒𝑓
𝑒𝑓 + 𝑛𝑓

𝑒𝑓
𝑒𝑓 + 𝑛𝑓

+ 
𝑒𝑝

𝑒𝑝 + 𝑛𝑝

(1)

Equation 2 ensures that the mathematical

statements will be examined before other types

by adding the highest score (Max_Initial_Score)

in the ranking list to each mathematical

statement's base score (Initial_Score).


