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Prerequisites

→ you already know

� modeling with integer variables
� basic facts about polyhedra
� how the simplex algorithm works
� a bit about linear programming duality
� have seen some cutting planes and know what they are good for
� know the branch-and-bound algorithm



Goals of this Unit

� introduce you to the column generation and branch-and-price algorithms
� with the aim of expanding your modeling (!) capabilities
� which may result in stronger formulations for specially structured problems
� to ultimately help you solving such problems faster



The Cutting Stock Problem

image source: commons.wikimedia.org, Leeco Steel - Antonio Rosset
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The Cutting Stock Problem: Kantorovich (1939, 1960)

m rolls of length L ∈ Z+, n orders of length �i ∈ Z+,
and demand di ∈ Z+, i ∈ [n] := {1, . . . , n}

a minimum number of rolls has to be
cut into orders; from each order i we
need di pieces in total

min

m�

j=1

yj // minimize number of used rolls

s. t.

m�

j=1

xij = di i ∈ [n] // every order has to be cut sufficiently often

n�

i=1

�ixij ≤ L j ∈ [m] // do not exceed rolls’ lengths

xij ≤ diyj i ∈ [n], j ∈ [m] // we can only cut rolls that we use

xij ∈ Z+ i ∈ [n], j ∈ [m] // how often to cut order i from roll j

yj ∈ {0, 1} j ∈ [m] // whether or not to use roll j
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The Cutting Stock Problem: Gilmore & Gomory (1961)

� how do solutions look like? how can we possibly cut one roll

� the set P of (encodings of) all feasible cutting patterns is

P =







a1
...
an


 ∈ Zn

+ |
n�

i=1

�iai ≤ L





� for each p ∈ P, denote by aip ∈ Z+ how often order i is cut in pattern p
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The Cutting Stock Problem: Gilmore & Gomory (1961)

� for each p ∈ P, denote by aip ∈ Z+ how often order i is cut in pattern p

� build a model on these observations, based on entire configurations

λp ∈ Z+ p ∈ P // how often to cut pattern p?
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The Cutting Stock Problem: Gilmore & Gomory (1961)

� for each p ∈ P, denote by aip ∈ Z+ how often order i is cut in pattern p

� build a model on these observations, based on entire configurations

s.t.
�

p∈P
aipλp = di i ∈ [n] // cover all demands

λp ∈ Z+ p ∈ P // how often to cut pattern p?
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The Cutting Stock Problem: Gilmore & Gomory (1961)

� for each p ∈ P, denote by aip ∈ Z+ how often order i is cut in pattern p

� build a model on these observations, based on entire configurations

min
�

p∈P
λp // minimimize number of patterns used

s.t.
�

p∈P
aipλp = di i ∈ [n] // cover all demands

λp ∈ Z+ p ∈ P // how often to cut pattern p?

� this is an integer program with maany variables

// in contrast to Kantorovich’s formulation, this model does not precisely specify which rolls to actually use
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Why would we care about different Models?

image source: twitter.com, @MurrietaPD

@mluebbecke · CO@Work 2020 · Column Generation, Dantzig-Wolfe Reformulation , Branch-Price-and-Cut · 8/86



Overview

1 Column Generation

2 Dantzig-Wolfe Reformulation

3 Branch-Price-and-Cut

4 Dual View



Column Generation to solve a Linear Program

� we want to solve a linear program, the master problem (MP)

z∗MP = min
�

j∈J

cjλj

s.t.
�

j∈J

ajλj ≥ b

λj ≥ 0 ∀j ∈ J

� typically, |J | super huge

@mluebbecke · CO@Work 2020 · Column Generation, Dantzig-Wolfe Reformulation , Branch-Price-and-Cut · 10/86



Column Generation to solve a Linear Program

� but we solve a linear program, the restricted master problem (RMP), with J � ⊆ J

z∗RMP = min
�

j∈J �

cjλj

s.t.
�

j∈J �

ajλj ≥ b

λj ≥ 0 ∀j ∈ J �

� typically, |J | super huge, |J �| small
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Column Generation to solve a Linear Program

� but we solve a linear program, the restricted master problem (RMP), with J � ⊆ J

z∗RMP = min
�

j∈J �

cjλj

s.t.
�

j∈J �

ajλj ≥ b [π]

λj ≥ 0 ∀j ∈ J �

� typically, |J | super huge, |J �| small
� use e.g., simplex method to obtain optimal primal λ and optimal dual π for RMP
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Column Generation to solve a Linear Program

� but we solve a linear program, the restricted master problem (RMP), with J � ⊆ J

z∗RMP = min
�

j∈J �

cjλj

s.t.
�

j∈J �

ajλj ≥ b [π]

λj ≥ 0 ∀j ∈ J �

� typically, |J | super huge, |J �| small
� use e.g., simplex method to obtain optimal primal λ and optimal dual π for RMP
� is λ an optimal solution to the MP as well? // maybe we are lucky!
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Column Generation to solve a Linear Program

� but we solve a linear program, the restricted master problem (RMP), with J � ⊆ J

z∗RMP = min
�

j∈J �

cjλj

s.t.
�

j∈J �

ajλj ≥ b [π]

λj ≥ 0 ∀j ∈ J �

� typically, |J | super huge, |J �| small
� use e.g., simplex method to obtain optimal primal λ and optimal dual π for RMP
� is λ an optimal solution to the MP as well? // maybe we are lucky!

� sufficient optimality condition: non-negative reduced cost c̄j = cj − πtaj ≥ 0, ∀j ∈ J
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Naı̈ve Idea for an Algorithm: Explicit Pricing

� checking the reduced cost (to identify a promising variable, if any) is called pricing

algorithm column generation with explicit pricing

input: restricted master problem RMP with an initial set J � ⊆ J of variables;
output: optimal solution λ to the master problem MP;
repeat

solve RMP to optimality, obtain λ and π;
compute all c̄j = cj − πtaj , j ∈ J ; // computationally prohibitive
if there is a variable λj∗ with c̄j∗ < 0 then

J � ← J � ∪ {j∗};

until all variables λj , j ∈ J , have c̄j ≥ 0;
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Better Idea: Implicit Pricing

� instead: solve an auxiliary optimization problem, the pricing problem

z = min{c̄j | j ∈ J}

→ if z < 0, we set J � ← J � ∪ argminj∈J{c̄j}
and re-optimize the restricted master problem

→ otherwise, i.e., z ≥ 0, there is no j ∈ J with c̄j < 0
and we proved that we solved the master problem to optimality
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The Column Generation Algorithm

algorithm column generation

input: restricted master problem RMP with an initial set J � ⊆ J of variables;
output: optimal solution λ to the master problem MP;
repeat

solve RMP to optimality, obtain λ and π;
solve z = min{c̄j | j ∈ J};
if z < 0 then

J � ← J � ∪ {j∗} with c̄j∗ = z; // add variable λj∗ to RMP

until z ≥ 0;
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Example: Cutting Stock: Restricted Master Problem

� solve LP relaxation of Gilmore & Gomory formulation

min
�

p∈P�

λp

s.t.
�

p∈P�

aipλp = di [πi] i ∈ [n] // one dual variable per order/demand

λp ≥ 0 p ∈ P �

with P � ⊆ P = {(a1, . . . , an)t ∈ Zn
+ | �n

i=1 �iai ≤ L} a subset of variables

→ obtain optimal primal λ and optimal dual πt = (π1, . . . ,πn)
// solving a linear program, we always obtain both, optimal primal and optimal dual solutions
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Example: Cutting Stock: Reduced Cost

� optimal dual πt = (π1, . . . ,πn)

� reduced cost of λp // that formula again! it must be important. . .

c̄p = 1− (π1, . . . ,πn) ·




a1p
a2p
...

anp




for all feasible cutting patterns p ∈ P

� again: explicit enumeration of all patterns is totally out of the question
// it does not seem that we are making good progress
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Example: Cutting Stock: Pricing Problem

� implicit enumeration: solve auxiliary optimization problem over P

z = min
p∈P

c̄p = min
p∈P

1− (π1, . . . ,πn) ·




a1p
a2p
...

anp



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Example: Cutting Stock: Pricing Problem

� implicit enumeration: solve auxiliary optimization problem over P

z = min
p∈P

c̄p = min
p∈P

1− (π1, . . . ,πn) ·




a1p
a2p
...

anp




= min 1−
n�

i=1

πixi

s.t.
n�

i=1

�ixi ≤ L

xi ∈ Z+ i ∈ [n]
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Example: Cutting Stock: Pricing Problem

� implicit enumeration: solve auxiliary optimization problem over P

z = min
p∈P

c̄p = min
p∈P

1− (π1, . . . ,πn) ·




a1p
a2p
...

anp




= 1− max

n�

i=1

πixi

s.t.
n�

i=1

�ixi ≤ L

xi ∈ Z+ i ∈ [n]

� which is a knapsack problem!

@mluebbecke · CO@Work 2020 · Column Generation, Dantzig-Wolfe Reformulation , Branch-Price-and-Cut · 16/86



Example: Cutting Stock: Pricing Problem

� two cases for the minimum reduced cost z = minp∈P c̄p:

1. z < 0

pricing variable values (xi)i∈[n] encode a feasible pattern p∗ = (aip∗)i∈[n]

P � ← P � ∪ {p∗}; repeat solving the RMP.

2. z ≥ 0

proves that there is no negative reduced cost
(master variable that corresponds to a) feasible pattern
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Example: Cutting Stock: Adding the Priced Variables to the RMP

min
�

p∈P�

λp

s.t.
�

p∈P�

a1pλp = d1

...
�

p∈P�

anpλp = dn

λp ≥ 0 p ∈ P �
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Example: Cutting Stock: Adding the Priced Variables to the RMP

min
�

p∈P�

λp + 1λp∗

s.t.
�

p∈P�

a1pλp + a1p∗λp∗ = d1

...
�

p∈P�

anpλp + anp∗λp∗ = dn

λp , λp∗ ≥ 0 p ∈ P �

coefficients aip obtained from pricing problem solution xi
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Example: Cutting Stock: Adding the Priced Variables to the RMP

min
�

p∈P�

λp + 1λp∗ + 1λp∗∗

s.t.
�

p∈P�

a1pλp + a1p∗λp∗ + a1p∗∗λp∗∗ = d1

...
�

p∈P�

anpλp + anp∗λp∗ + anp∗∗λp∗∗ = dn

λp , λp∗ , λp∗∗ ≥ 0 p ∈ P �

coefficients aip obtained from pricing problem solution xi
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Example: Cutting Stock: Adding the Priced Variables to the RMP

min
�

p∈P�

λp + 1λp∗ + 1λp∗∗ + . . .

s.t.
�

p∈P�

a1pλp + a1p∗λp∗ + a1p∗∗λp∗∗ + . . . = d1

...
�

p∈P�

anpλp + anp∗λp∗ + anp∗∗λp∗∗ + . . . = dn

λp , λp∗ , λp∗∗ + . . . ≥ 0 p ∈ P �

� this dynamic addition of variables is called column generation

� column generation is an algorithm to solve linear programs

coefficients aip obtained from pricing problem solution xi
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Why should this work?

Motivation for Column Generation I
� in a basic solution to the master problem, at most m � |J | variables are non-zero
� empirically, run time of simplex method linearly depends on no. m of rows

→ possibly, many variables are never part of the basis

Motivation for Column Generation II
� the “pattern based” model can be stronger than the “assignment based” model
� theory helps us proving this (via Dantzig-Wolfe reformulation)
� the “pattern based” model is not symmetric
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Another Example: Vertex Coloring

Data
G = (V,E) undirected graph

Goal
color all vertices such that adjacent vertices receive different colors, minimizing the
number of used colors
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Vertex Coloring: Textbook Model

� notation: C set of available colors
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Vertex Coloring: Textbook Model

� notation: C set of available colors

xic ∈ {0, 1} i ∈ V, c ∈ C // color i with c?
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Vertex Coloring: Textbook Model

� notation: C set of available colors

s.t.
�

c∈C

xic = 1 i ∈ V // color each vertex

xic ∈ {0, 1} i ∈ V, c ∈ C // color i with c?
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Vertex Coloring: Textbook Model

� notation: C set of available colors

s.t.
�

c∈C

xic = 1 i ∈ V // color each vertex

xic + xjc ≤ 1 ij ∈ E, c ∈ C // avoid conflicts

xic ∈ {0, 1} i ∈ V, c ∈ C // color i with c?
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Vertex Coloring: Textbook Model

� notation: C set of available colors

s.t.
�

c∈C

xic = 1 i ∈ V // color each vertex

xic + xjc ≤ 1 ij ∈ E, c ∈ C // avoid conflicts

xic ≤ yc i ∈ V, c ∈ C // couple x and y

xic ∈ {0, 1} i ∈ V, c ∈ C // color i with c?

yc ∈ {0, 1} c ∈ C // do we use color c?
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Vertex Coloring: Textbook Model

� notation: C set of available colors

χ(G) = min
�

c∈C

yc // minimize number of used colors

s.t.
�

c∈C

xic = 1 i ∈ V // color each vertex

xic + xjc ≤ 1 ij ∈ E, c ∈ C // avoid conflicts

xic ≤ yc i ∈ V, c ∈ C // couple x and y

xic ∈ {0, 1} i ∈ V, c ∈ C // color i with c?

yc ∈ {0, 1} c ∈ C // do we use color c?

� χ(G) is called the chromatic number of G.
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Vertex Coloring: Master Problem

� observation: each color class forms an independent set in G

� denote by P the set of (encodings of) all independent sets in G

� aip ∈ {0, 1} denotes whether vertex i is contained in independent set p

λp ∈ {0, 1} p ∈ P // do we use independent set p?

� The LP relaxation gives a master problem
� solve it by column generation
→ dual variables πt = (π1, . . . ,π|V |), one per vertex
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Vertex Coloring: Master Problem

� observation: each color class forms an independent set in G

� denote by P the set of (encodings of) all independent sets in G

� aip ∈ {0, 1} denotes whether vertex i is contained in independent set p

s.t.
�

p∈P
aipλp = 1 i ∈ V // every vertex must be covered

λp ∈ {0, 1} p ∈ P // do we use independent set p?

� The LP relaxation gives a master problem
� solve it by column generation
→ dual variables πt = (π1, . . . ,π|V |), one per vertex
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Vertex Coloring: Master Problem

� observation: each color class forms an independent set in G

� denote by P the set of (encodings of) all independent sets in G

� aip ∈ {0, 1} denotes whether vertex i is contained in independent set p

min
�

p∈P
λp // minimimize no. of sets used

s.t.
�

p∈P
aipλp = 1 i ∈ V // every vertex must be covered

λp ∈ {0, 1} p ∈ P // do we use independent set p?

� The LP relaxation gives a master problem
� solve it by column generation
→ dual variables πt = (π1, . . . ,π|V |), one per vertex

@mluebbecke · CO@Work 2020 · Column Generation, Dantzig-Wolfe Reformulation , Branch-Price-and-Cut · 22/86



Do you know it?

� how does the pricing problem look like?
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Vertex Coloring: Pricing Problem

� the pricing problem looks like

c̄∗ = min
p∈P

c̄p = min
p∈P

1− (π1, . . . ,π|V |) ·




a1p
a2p
...

a|V |p



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Vertex Coloring: Pricing Problem

� the pricing problem looks like

c̄∗ = min
p∈P

c̄p = min
p∈P

1− (π1, . . . ,π|V |) ·




a1p
a2p
...

a|V |p




= min 1−
�

i∈V

πixi

s.t. xi + xj ≤ 1 ij ∈ E

xi ∈ {0, 1} i ∈ V .
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Vertex Coloring: Pricing Problem

� the pricing problem looks like

c̄∗ = min
p∈P

c̄p = min
p∈P

1− (π1, . . . ,π|V |) ·




a1p
a2p
...

a|V |p




= 1− max
�

i∈V

πixi

s.t. xi + xj ≤ 1 ij ∈ E

xi ∈ {0, 1} i ∈ V .

� which is a maximum weight independent set problem!
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