Column Generation, Dantzig-Wolfe, Branch-Price-and-Cut

Marco Lübbecke · OR Group · RWTH Aachen University, Germany

@mluebbecke

Prerequisites

- \rightarrow you already know
- modeling with integer variables
- basic facts about polyhedra
- how the simplex algorithm works
- a bit about linear programming duality
- have seen some cutting planes and know what they are good for
- know the branch-and-bound algorithm

Goals of this Unit

- ▶ introduce you to the column generation and branch-and-price algorithms
- with the aim of expanding your modeling (!) capabilities
- which may result in stronger formulations for specially structured problems
- ▶ to ultimately help you solving such problems faster

The Cutting Stock Problem

image source: commons.wikimedia.org, Leeco Steel - Antonio Rosset

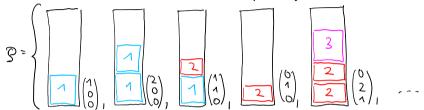
The Cutting Stock Problem: Kantorovich (1939, 1960)

m rolls of length $L \in \mathbb{Z}_+$, n orders of length $\ell_i \in \mathbb{Z}_+$, and demand $d_i \in \mathbb{Z}_+$, $i \in [n] := \{1, \dots, n\}$

a minimum number of rolls has to be cut into orders; from each order i we need d_i pieces in total

$$\begin{array}{ll} \min & \sum_{j=1} y_j & \text{$/\!\!/} \text{ minimize number of used rolls} \\ \text{s. t.} & \sum_{j=1}^m x_{ij} = d_i & i \in [n] & \text{$/\!\!/} \text{ every order has to be cut sufficiently often} \\ & \sum_{j=1}^n \ell_i x_{ij} \leq L & j \in [n] & \text{$/\!\!/} \text{ do not exceed rolls' lengths} \\ & x_{ij} \leq d_i y_j & i \in [n], \ j \in [m] & \text{$/\!\!/} \text{ we can only cut rolls that we use} \\ & x_{ij} \in \mathbb{Z}_+ & i \in [n], \ j \in [m] & \text{$/\!\!/} \text{ how often to cut order i from roll j} \\ & y_j \in \{0,1\} & j \in [m] & \text{$/\!\!/} \text{ whether or not to use roll j} \\ \end{array}$$

how do solutions look like? how can we possibly cut one roll



 \triangleright the set \mathcal{P} of (encodings of) all feasible cutting patterns is

$$\mathcal{P} = \left\{ \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{Z}_+^n \mid \sum_{i=1}^n \ell_i a_i \le L \right\}$$

▶ for each $p \in \mathcal{P}$, denote by $a_{ip} \in \mathbb{Z}_+$ how often order i is cut in pattern p

- ▶ for each $p \in \mathcal{P}$, denote by $a_{ip} \in \mathbb{Z}_+$ how often order i is cut in pattern p
- build a model on these observations, based on entire configurations

$$\lambda_p \in \mathbb{Z}_+ \quad p \in \mathcal{P} \quad ext{ // how often to cut pattern } p?$$

- ▶ for each $p \in \mathcal{P}$, denote by $a_{ip} \in \mathbb{Z}_+$ how often order i is cut in pattern p
- build a model on these observations, based on entire configurations

s.t.
$$\sum_{p\in\mathcal{P}}a_{ip}\lambda_p=d_i$$
 $i\in[n]$ // cover all demands
$$\lambda_p\in\mathbb{Z}_+$$
 // $p\in\mathcal{P}$ // how often to cut pattern p ?

- ▶ for each $p \in \mathcal{P}$, denote by $a_{ip} \in \mathbb{Z}_+$ how often order i is cut in pattern p
- build a model on these observations, based on entire configurations

$$\begin{array}{ll} \min & \sum_{p\in\mathcal{P}}\lambda_p & \text{ // minimimize number of patterns used} \\ \text{s.t.} & \sum_{p\in\mathcal{P}}a_{ip}\lambda_p=d_i & i\in[n] & \text{ // cover all demands} \\ & \lambda_p\in\mathbb{Z}_+ & p\in\mathcal{P} & \text{ // how often to cut pattern }p? \end{array}$$

this is an integer program with maany variables

// in contrast to Kantorovich's formulation, this model does not precisely specify which rolls to actually use

Why would we care about different Models?

image source: twitter.com, @MurrietaPD

Overview

- 1 Column Generation
- 2 Dantzig-Wolfe Reformulation
- 3 Branch-Price-and-Cut
- 4 Dual View

▶ we want to solve a linear program, the *master problem* (MP)

$$z_{ ext{MP}}^* = \min \quad \sum_{j \in J} c_j \lambda_j$$
 s.t. $\sum_{j \in J} \mathbf{a}_j \lambda_j \geq \mathbf{b}$ $\lambda_j \geq 0 \qquad \forall j \in J$

ightharpoonup typically, |J| super huge

b but we solve a linear program, the *restricted master problem* (RMP), with $J' \subseteq J$

$$z^*_{\mathrm{RMP}} = \min \quad \sum_{j \in J'} c_j \lambda_j$$
 s.t. $\sum_{j \in J'} \mathbf{a}_j \lambda_j \geq \mathbf{b}$ $\lambda_j \geq 0 \qquad \forall j \in J'$

• typically, |J| super huge, |J'| small

but we solve a linear program, the restricted master problem (RMP), with $J' \subset J$

$$z^*_{\mathrm{RMP}} = \min \quad \sum_{j \in J'} c_j \lambda_j$$
 s.t. $\sum_{j \in J'} \mathbf{a}_j \lambda_j \geq \mathbf{b} \quad [\pi]$ $\lambda_j \geq 0 \qquad \forall j \in J'$

- ightharpoonup typically, |J| super huge, |J'| small
- \triangleright use e.g., simplex method to obtain optimal primal λ and optimal dual π for RMP

but we solve a linear program, the restricted master problem (RMP), with $J' \subset J$

$$z^*_{\mathrm{RMP}} = \min \quad \sum_{j \in J'} c_j \lambda_j$$
 s.t. $\sum_{j \in J'} \mathbf{a}_j \lambda_j \geq \mathbf{b} \quad [\pi]$ $\lambda_j \geq 0 \qquad \forall j \in J'$

- ightharpoonup typically, |J| super huge, |J'| small
- \triangleright use e.g., simplex method to obtain optimal primal λ and optimal dual π for RMP
- is λ an optimal solution to the MP as well? // maybe we are lucky!

but we solve a linear program, the restricted master problem (RMP), with $J' \subset J$

$$egin{aligned} z^*_{\mathrm{RMP}} &= \min & \sum_{j \in J'} c_j \lambda_j \ & ext{s.t.} & \sum_{j \in J'} \mathbf{a}_j \lambda_j \geq \mathbf{b} & [oldsymbol{\pi}] \ & \lambda_j \geq 0 & orall j \in J' \end{aligned}$$

- ightharpoonup typically, |J| super huge, |J'| small
- \triangleright use e.g., simplex method to obtain optimal primal λ and optimal dual π for RMP
- is λ an optimal solution to the MP as well? // maybe we are lucky!
- sufficient optimality condition: non-negative reduced cost $\bar{c}_j = c_j \pi^t \mathbf{a}_j \geq 0, \forall j \in J$

Naïve Idea for an Algorithm: Explicit Pricing

checking the reduced cost (to identify a promising variable, if any) is called *pricing*

algorithm column generation with explicit pricing

```
input: restricted master problem RMP with an initial set J' \subseteq J of variables;
output: optimal solution \lambda to the master problem MP;
```

repeat

```
solve RMP to optimality, obtain \lambda and \pi;
compute all \bar{c}_i = c_i - \pi^t \mathbf{a}_i, j \in J; // computationally prohibitive
if there is a variable \lambda_{i^*} with \bar{c}_{i^*} < 0 then
  J' \leftarrow J' \cup \{j^*\};
```


until all variables λ_i , $i \in J$, have $\bar{c}_i > 0$;

Better Idea: Implicit Pricing

▶ instead: solve an auxiliary optimization problem, the pricing problem

$$z = \min\{\bar{c}_j \mid j \in J\}$$

- \rightarrow if z < 0, we set $J' \leftarrow J' \cup \arg\min_{j \in J} \{\bar{c}_j\}$ and re-optimize the restricted master problem
- \rightarrow otherwise, i.e., $z \geq 0$, there is no $j \in J$ with $\bar{c}_j < 0$ and we proved that we solved the master problem to optimality

The Column Generation Algorithm

algorithm column generation

Example: Cutting Stock: Restricted Master Problem

solve LP relaxation of Gilmore & Gomory formulation

$$\min \qquad \sum_{p\in\mathcal{P}'} \lambda_p$$

$$\text{s.t.} \quad \sum_{p\in\mathcal{P}'} a_{ip}\lambda_p = d_i \quad [\pi_i] \quad i\in[n] \quad \textit{i'} \text{ one dual variable per order/demand}$$

$$\lambda_p \geq 0 \qquad \qquad p\in\mathcal{P}'$$

with
$$\mathcal{P}'\subseteq\mathcal{P}=\{(a_1,\ldots,a_n)^t\in\mathbb{Z}_+^n\mid \sum_{i=1}^n\ell_ia_i\leq L\}$$
 a subset of variables

 \rightarrow obtain optimal primal λ and optimal dual $\pi^t = (\pi_1, \dots, \pi_n)$ # solving a linear program, we always obtain both, optimal primal and optimal dual solutions

Example: Cutting Stock: Reduced Cost

- ightharpoonup optimal dual $\pi^t = (\pi_1, \dots, \pi_n)$
- reduced cost of λ_p // that formula again! it must be important...

$$\bar{c}_p = 1 - (\pi_1, \dots, \pi_n) \cdot \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{np} \end{pmatrix}$$

for all feasible cutting patterns $p \in \mathcal{P}$

again: explicit enumeration of all patterns is totally out of the question // it does not seem that we are making good progress

ightharpoonup implicit enumeration: solve auxiliary optimization problem over $\mathcal P$

$$z = \min_{p \in \mathcal{P}} \bar{c}_p = \min_{p \in \mathcal{P}} 1 - (\pi_1, \dots, \pi_n) \cdot \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{np} \end{pmatrix}$$

ightharpoonup implicit enumeration: solve auxiliary optimization problem over $\mathcal P$

$$z = \min_{p \in \mathcal{P}} \ \bar{c}_p = \min_{p \in \mathcal{P}} \ 1 - (\pi_1, \dots, \pi_n) \cdot \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{np} \end{pmatrix}$$

$$= \min \quad 1 - \sum_{i=1}^n \pi_i x_i$$

$$\text{s.t.} \qquad \sum_{i=1}^n \ell_i x_i \le L$$

$$x_i \in \mathbb{Z}_+ \quad i \in [n]$$

ightharpoonup implicit enumeration: solve auxiliary optimization problem over $\mathcal P$

$$z = \min_{p \in \mathcal{P}} \ \bar{c}_p = \min_{p \in \mathcal{P}} \ 1 - (\pi_1, \dots, \pi_n) \cdot \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{np} \end{pmatrix}$$

$$= 1 - \max_{i=1}^n \pi_i x_i$$
s.t.
$$\sum_{i=1}^n \ell_i x_i \le L$$

$$x_i \in \mathbb{Z}_+ \quad i \in [n]$$

which is a knapsack problem!

• two cases for the minimum reduced cost $z = \min_{p \in \mathcal{P}} \bar{c}_p$:

1.
$$z < 0$$

pricing variable values $(x_i)_{i \in [n]}$ encode a feasible pattern $p^* = (a_{ip^*})_{i \in [n]}$

$$\mathcal{P}' \leftarrow \mathcal{P}' \cup \{p^*\}$$
; repeat solving the RMP.

2.
$$z \ge 0$$

proves that there is no negative reduced cost (master variable that corresponds to a) feasible pattern

$$\min \sum_{p \in \mathcal{P}'} \lambda_p$$

$$\text{s.t.} \sum_{p \in \mathcal{P}'} a_{1p} \lambda_p = d_1$$

$$\vdots$$

$$\sum_{p \in \mathcal{P}'} a_{np} \lambda_p = d_n$$

$$\lambda_p = d_n$$

$$\geq 0 \qquad p \in \mathcal{P}$$

$$\begin{array}{lll} & \sum\limits_{p\in\mathcal{P}'}\lambda_p \ + & 1\\ \lambda_{p^*} \\ & \text{s.t.} & \sum\limits_{p\in\mathcal{P}'}a_{1p}\lambda_p \ + & a_{1p^*}\lambda_{p^*} \\ & & \vdots \\ & \sum\limits_{p\in\mathcal{P}'}a_{np}\lambda_p \ + & a_{np^*}\lambda_{p^*} \\ & & \lambda_p \ , & \lambda_{p^*} \end{array} \qquad = \ d_1$$

- this dynamic addition of variables is called column generation
- column generation is an algorithm to solve linear programs

Why should this work?

Motivation for Column Generation I

- in a basic solution to the master problem, at most $m \ll |J|$ variables are non-zero
- empirically, run time of simplex method linearly depends on no. m of rows
- possibly, many variables are never part of the basis

Motivation for Column Generation II

- the "pattern based" model can be stronger than the "assignment based" model
- theory helps us proving this (via Dantzig-Wolfe reformulation)
- the "pattern based" model is not symmetric

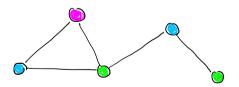
Another Example: Vertex Coloring

Data

G = (V, E) undirected graph

Goal

color all vertices such that adjacent vertices receive different colors, minimizing the number of used colors



$$x_{ic} \in \{0,1\}$$
 $i \in V, c \in C$ // color i with c ?

$$\text{s.t.} \qquad \sum_{c \in C} x_{ic} = 1 \qquad \qquad i \in V \qquad \qquad \textit{\# color each vertex}$$

$$x_{ic} \in \{0,1\}$$
 $i \in V, c \in C$ // color i with c ?

s.t.
$$\sum_{c \in C} x_{ic} = 1 \qquad i \in V \qquad \text{$///$ color each vertex}$$

$$x_{ic} + x_{jc} \le 1 \qquad ij \in E, \ c \in C \qquad \text{$///$ avoid conflicts}$$

$$x_{ic} \in \{0,1\} \quad i \in V, \ c \in C \qquad \text{$///$ color i with c?}$$

$$\begin{aligned} \text{s.t.} & \sum_{c \in C} x_{ic} = 1 & i \in V & \text{ $/\!\!/} \text{ color each vertex} \\ & x_{ic} + x_{jc} \leq 1 & ij \in E, \ c \in C & \text{ $/\!\!/} \text{ avoid conflicts} \\ & x_{ic} \leq y_c & i \in V, \ c \in C & \text{ $/\!\!/} \text{ couple x and y} \\ & x_{ic} \in \{0,1\} & i \in V, \ c \in C & \text{ $/\!\!/} \text{ color } i \text{ with } c? \\ & y_c \in \{0,1\} & c \in C & \text{ $/\!\!/} \text{ do we use color } c? \end{aligned}$$

notation: C set of available colors

$$\chi(G) = \min \quad \sum_{c \in C} y_c \qquad \text{$/$minimize number of used colors}$$

$$\text{s.t.} \quad \sum_{c \in C} x_{ic} = 1 \qquad i \in V \qquad \text{$/$color each vertex}$$

$$x_{ic} + x_{jc} \leq 1 \qquad ij \in E, \ c \in C \qquad \text{$/$avoid conflicts}$$

$$x_{ic} \leq y_c \qquad i \in V, \ c \in C \qquad \text{$/$couple x and y}$$

$$x_{ic} \in \{0,1\} \quad i \in V, \ c \in C \qquad \text{$/$color i with c?}$$

$$y_c \in \{0,1\} \quad c \in C \qquad \text{$/$$do we use color c?}$$

 \blacktriangleright $\chi(G)$ is called the *chromatic number of G*.

Vertex Coloring: Master Problem

- ▶ observation: each color class forms an *independent set* in *G*
- ightharpoonup denote by $\mathcal P$ the set of (encodings of) all independent sets in G
- $ightharpoonup a_{ip} \in \{0,1\}$ denotes whether vertex i is contained in independent set p

$$\lambda_p \in \{0,1\} \quad p \in \mathcal{P} \quad \mbox{$/$} \mbox{do we use independent set p?}$$

- ► The LP relaxation gives a master problem
- solve it by column generation
- \rightarrow dual variables $\pi^t = (\pi_1, \dots, \pi_{|V|})$, one per vertex

Vertex Coloring: Master Problem

- observation: each color class forms an *independent set* in G
- denote by \mathcal{P} the set of (encodings of) all independent sets in G
- $ightharpoonup a_{ip} \in \{0,1\}$ denotes whether vertex i is contained in independent set p

s.t.
$$\sum_{p\in\mathcal{P}}a_{ip}\lambda_p=1$$
 $i\in V$ // every vertex must be covered
$$\lambda_p\in\{0,1\}\quad p\in\mathcal{P}$$
 // do we use independent set p ?

- ► The LP relaxation gives a master problem
- solve it by column generation
- \rightarrow dual variables $\pi^t = (\pi_1, \dots, \pi_{|V|})$, one per vertex

Vertex Coloring: Master Problem

- booservation: each color class forms an *independent set* in *G*
- ightharpoonup denote by $\mathcal P$ the set of (encodings of) all independent sets in G
- $ightharpoonup a_{ip} \in \{0,1\}$ denotes whether vertex i is contained in independent set p

$$\begin{array}{ll} \min & \sum_{p\in\mathcal{P}}\lambda_p & \textit{ // minimimize no. of sets used} \\ \text{s.t.} & \sum_{p\in\mathcal{P}}a_{ip}\lambda_p=1 & i\in V & \textit{ // every vertex must be covered} \\ & \lambda_p\in\{0,1\} & p\in\mathcal{P} & \textit{ // do we use independent set }p? \end{array}$$

- ▶ The LP relaxation gives a master problem
- solve it by column generation
- \rightarrow dual variables $\pi^t = (\pi_1, \dots, \pi_{|V|})$, one per vertex

Do you know it?

how does the pricing problem look like?

Vertex Coloring: Pricing Problem

▶ the pricing problem looks like

$$\bar{c}^* = \min_{p \in \mathcal{P}} \ \bar{c}_p = \min_{p \in \mathcal{P}} \ 1 - (\pi_1, \dots, \pi_{|V|}) \cdot \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{|V|p} \end{pmatrix}$$

Vertex Coloring: Pricing Problem

the pricing problem looks like

$$\bar{c}^* = \min_{p \in \mathcal{P}} \ \bar{c}_p = \min_{p \in \mathcal{P}} \ 1 - (\pi_1, \dots, \pi_{|V|}) \cdot \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{|V|p} \end{pmatrix}$$

$$= \min \quad 1 - \sum_{i \in V} \pi_i x_i$$

$$\text{s.t.} \qquad x_i + x_j \le 1 \qquad ij \in E$$

$$x_i \in \{0, 1\} \quad i \in V \ .$$

Vertex Coloring: Pricing Problem

the pricing problem looks like

$$\begin{split} \bar{c}^* &= \min_{p \in \mathcal{P}} \ \bar{c}_p = \min_{p \in \mathcal{P}} \ 1 - (\pi_1, \dots, \pi_{|V|}) \cdot \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{|V|p} \end{pmatrix} \\ &= 1 - \max_{i \in V} \underbrace{\sum_{i \in V} \pi_i x_i}_{s.t.} \\ \text{s.t.} \qquad x_i + x_j \leq 1 \qquad ij \in E \\ x_i \in \{0, 1\} \quad i \in V \ . \end{split}$$

which is a maximum weight independent set problem!

