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TUM = Total Unimodular Matrices



Linear algebra

» Determinant of matrix A: det(A)

» It is a scalar value that can be computed from the elements of a square matrix and
encodes certain properties of the linear transformation described by the matrix.

» Geometrically, it is the signed volume of the n-dimensional parallelepiped spanned by
the column or row vectors of the matrix.

» The determinant is positive or negative according to whether the linear transformation
preserves or reverses the orientation of a real vector space.



Linear algebra
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TUM

» Definition. A square matrix U is unimodular if det(U) = £1

» Definition. A matrix M € R™*" is called totally unimodular if every square non-singular
submatrix of M is unimodular.

Put it differently: all submatrix U of M has det(U) € {0,1, —1}.



TUM - properties: For any TUM matrix M...

s all elements of M are either 0 or 1 or —1.
» —M and M7 is also TU

» Theorem: [M I]is also TU

Proof (incomplete)
Lete; = (0,0,...1,0,...,0)T. We are going to show that M’ = [M e;] is TU.

Choose a k x k submatrix U from M’ (k rows and k columns).

— if the last column and the ith row is included then det(U) = +1 det(M*), where M*
is a submatrix of M

—if the ith row is not included then det(U) = 0.

— if the last column is not included, then U is a submatrix of M, which is TUM. ]



TUM - integer solution of LP

Theorem. Let M € R"*" (where m < n) be full row-rank and totally unimodular. Let
b € Z™and c € R".
Then the LP:

min c’x

subject to: Mx =Db
x>0

has integer x* € Z" solution.

This is important result as we can use any LP solver to get integer solution.
Time of solving LP: polynomial, whereas soéving ILP: exponential.



TUM
Proof. An optimal solution of an LP is a possible basis (extreme point of the polyhedron
P = {Mx = b,x > 0}). We are going to show that these extreme points are integers.
A vector x is called possible basis if
e Mx = b,x > 0 which means that x is feasible.

¢ x has at most m non-zero elements.
Let B(x) C {1,...,n} be those indices which correspond to the non-zero elements
of x.

¢ The submatrix A of M which is selected by the indicies B(x) is non-singular, i.e.,
det(A) # 0. In this case the system of linear equations AX = b can be solved, where
X is a sub-vector of x which is selected by B(x).
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TUM

(repeated from the previous slide):

¢ The submatrix A of M which is selected by the indicies B(x) is non-singular, i.e.,
det(A) # 0. In this case the system of linear equations AX = b can be solved, where
X is a sub-vector of x which is selected by B(x).

Apply Cramer’s rule:
% = det(Az-)
' det(A)’
where matrix A; is obtained by changing the ith column in A into b.
We know that b is integer.
det(A) = +£1 for sure since matrix A is non-singular and it is a sub-matrix of M.
det(A;) needs to be integer.
= X; is integer too = x* is integer. ]
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Graphs and TUMs

Let G = (V, E) be a directed graph.

Let B the incidence matrix of G.

B has dimension |V| x |E| and by definition

—1 ifnodeiis the tail of edge j,
bij=41 ifnodeiis the head of edge j,

0 otherwise.

Example.



Example

@

€43

U4

Directed graph G(V, E)

Incidence matrix

€14 €21 €24 €32 €43
v | —1 1 0 0 0
(%)) 0 -1 1 0 0
U3 0 0 0 -1 1
U4 1 0 -1 1 -1
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Graphs and TUMs

» Theorem. Matrix B is TU.
= Proof. By induction.
e Assume that the theorem holds for all sub-matrices of B of size (k — 1) x (k—1).
¢ Take a sub-matrix U of size k x k.
¢ There are 3 possibilities.
1) U has all-zero column. = det(U) = 0.

2) U has a column which contains a non-zero element.
det(U) = £1 - det(U*), where U* is a sub-matrix of size (k — 1) x (k—1).
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Graphs and TUMs

3) All columns of U has 2 non-zero elements.
Within a column, one of them is +1 and the other one is —1.
Hence, the sums of the columns are all equal to 0.

In this case, the rows of the matrix are linearly dependent.
= det(U) = 0.
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Graphs and TUMs

= Sufficient conditions: Let A = [a;;] be a matrix such that
i) a;; € {+1,-1,0} foralli,j.

ii) Each column contains at most two nonzero coefficients,

iw <2 (jetn]).

iii) The set M of rows can be partitioned into (Mj, M) such that each column j
containing two nonzero coefficients satisfies

>, aij— ) aij=0.

ieM; ieMy

Then A is totally unimodular.
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Bipartite graphs and TUMs

» Theorem. Let G be a bipartite graph and B its unsigned incidence matrix.
Then B* is TU.

» Proof. Each column of Bt contains exactly two nonzero components, a 1 for some
v € Vy,and a 1 for some w € V5.

Therefore, the sufficient criterion of the above theorem applies for the choice M; = V,
My =V,
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TUM - example 01

» Shortest path in directed graph G (from s to t)

» decision variable

{1 if edge (i,]) is part of the shortest path,
xl']' =

0 otherwise.

s LP modell:

subject to

15



-1 ifi=s,
(Bx); =<¢1 ifi =t

0 otherwise.

Matrix B is the incidence matrix of G.
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TUM - example 01

= Another notation:

min17x
subjectto Bx = (—1,0,0,...,0,1)T
x > 0.

= We do not need to prove that x;; € {0,1} as it gets automatically fulfilled.
17



TUM - example 02
» Maximal pairing in bipartite graphs
» decision variable:
1 ifedge (i,]) is included in the pairing,
Xij =
! 0 otherwise.
= LP model

max 17x

subjectto  Btx <1,

where BT is the unsigned incidence matrix of the bipartite graph.
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» Since B is TU, it is enough to have

as x;; € {0,1} holds automatically.

» The meaning of constraint Btx < 1:
in case we have edges as

then either the top one or the bottom one is chosen, but never together.
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TUM - example 03

» Minimum s — ¢ cut
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