Advanced Optimization

Boglárka G.-Tóth and Tamás Vinkó University of Szeged

TUM = Total Unimodular Matrices

Linear algebra

- Determinant of matrix A: det(A)
- It is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the linear transformation described by the matrix.
- Geometrically, it is the signed volume of the *n*-dimensional parallelepiped spanned by the column or row vectors of the matrix.
- The determinant is positive or negative according to whether the linear transformation preserves or reverses the orientation of a real vector space.

Linear algebra

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc. \tag{1}$$

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$
 (2)

$$= aei + bfg + cdh - ceg - bdi - afh.$$
 (3)

TUM

- <u>Definition</u>. A square matrix *U* is *unimodular* if $det(U) = \pm 1$
- <u>Definition.</u> A matrix $M \in \mathbb{R}^{m \times n}$ is called *totally unimodular* if every square non-singular submatrix of M is unimodular.

Put it differently: all submatrix U of M has $det(U) \in \{0, 1, -1\}$.

TUM - properties: For any TUM matrix M...

- all elements of M are either 0 or 1 or -1.
- -M and M^T is also TU
- **Theorem:** [*M I*] is also TU **Proof** (incomplete)

Let $\mathbf{e}_i = (0, 0, \dots, 1, 0, \dots, 0)^T$. We are going to show that $M' = [M \ \mathbf{e}_i]$ is TU.

Choose a $k \times k$ submatrix U from M' (k rows and k columns).

- if the last column and the *i*th row is included then $det(U) = \pm 1 det(M^*)$, where M^* is a submatrix of M
- if the *i*th row is not included then det(U) = 0.
- if the last column is not included, then U is a submatrix of M, which is TUM.

TUM - integer solution of LP

Theorem. Let $M \in \mathbb{R}^{m \times n}$ (where m < n) be full row-rank and totally unimodular. Let $\mathbf{b} \in \mathbb{Z}^m$ and $\mathbf{c} \in \mathbb{R}^n$.

Then the LP:

$$min \mathbf{c}^T \mathbf{x}$$
subject to: $M\mathbf{x} = \mathbf{b}$

$$\mathbf{x} \ge 0$$

has integer $\mathbf{x}^* \in \mathbb{Z}^n$ solution.

This is important result as we can use any LP solver to get integer solution. Time of solving LP: polynomial, whereas solving ILP: exponential.

TUM

<u>Proof.</u> An optimal solution of an LP is a possible basis (extreme point of the polyhedron $\mathcal{P} = \{M\mathbf{x} = \mathbf{b}, \mathbf{x} \geq 0\}$). We are going to show that these extreme points are integers.

A vector \mathbf{x} is called possible basis if

- M**x** = **b**, **x** \geq 0 which means that **x** is feasible.
- x has at most m non-zero elements.
 Let B(x) ⊂ {1,...,n} be those indices which correspond to the non-zero elements of x.
- The submatrix A of M which is selected by the indicies $B(\mathbf{x})$ is non-singular, i.e., $\det(A) \neq 0$. In this case the system of linear equations $A\hat{\mathbf{x}} = \mathbf{b}$ can be solved, where $\hat{\mathbf{x}}$ is a sub-vector of \mathbf{x} which is selected by $B(\mathbf{x})$.

TUM

(repeated from the previous slide):

• The submatrix A of M which is selected by the indicies $B(\mathbf{x})$ is non-singular, i.e., $\det(A) \neq 0$. In this case the system of linear equations $A\hat{\mathbf{x}} = \mathbf{b}$ can be solved, where $\hat{\mathbf{x}}$ is a sub-vector of \mathbf{x} which is selected by $B(\mathbf{x})$.

Apply Cramer's rule:

$$\hat{\mathbf{x}}_i = \frac{\det(A_i)}{\det(A)},$$

where matrix A_i is obtained by changing the *i*th column in A into **b**.

We know that **b** is integer.

 $det(A) = \pm 1$ for sure since matrix A is non-singular and it is a sub-matrix of M. $det(A_i)$ needs to be integer.

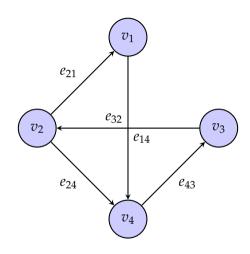
 \Rightarrow $\hat{\mathbf{x}}_i$ is integer too \Rightarrow \mathbf{x}^* is integer.

- Let G = (V, E) be a <u>directed</u> graph.
- Let *B* the incidence matrix of *G*.
- *B* has dimension $|V| \times |E|$ and by definition

$$b_{ij} = \begin{cases} -1 & \text{if node } i \text{ is the tail of edge } j, \\ 1 & \text{if node } i \text{ is the head of edge } j, \\ 0 & \text{otherwise.} \end{cases}$$

Example.

Example



Directed graph G(V, E)

Incidence matrix

	e_{14}	e_{21}	e_{24}	e_{32}	e_{43}
v_1	-1	1	0	0	0
v_2	0	-1	1	0	0
v_3	0	0	0	-1	1
v_4	$egin{array}{c c} e_{14} \\ -1 \\ 0 \\ 0 \\ 1 \\ \end{array}$	0	-1	1	-1

- **Theorem.** Matrix *B* is TU.
- <u>Proof.</u> By induction.
 - Assume that the theorem holds for all sub-matrices of *B* of size $(k-1) \times (k-1)$.
 - Take a sub-matrix U of size $k \times k$.
 - There are 3 possibilities.
 - 1) *U* has all-zero column. \Rightarrow det(*U*) = 0.
 - 2) U has a column which contains a non-zero element. $det(U) = \pm 1 \cdot det(U^*)$, where U^* is a sub-matrix of size $(k-1) \times (k-1)$.

3) All columns of *U* has 2 non-zero elements.
Within a column, one of them is +1 and the other one is −1.
Hence, the sums of the columns are all equal to 0.
In this case, the rows of the matrix are linearly dependent.

 $\Rightarrow \det(U) = 0.$

- Sufficient conditions: Let $A = [a_{ij}]$ be a matrix such that
 - i) $a_{ij} \in \{+1, -1, 0\}$ for all i, j.
 - ii) Each column contains at most two nonzero coefficients,

$$\sum_{i=1}^{m} |a_{ij}| \le 2 \quad (j \in [1, n]).$$

iii) The set M of rows can be partitioned into (M_1, M_2) such that each column j containing two nonzero coefficients satisfies

$$\sum_{i\in M_1} a_{ij} - \sum_{i\in M_2} a_{ij} = 0.$$

Then *A* is totally unimodular.

Bipartite graphs and TUMs

- **Theorem.** Let G be a bipartite graph and B^+ its unsigned incidence matrix. Then B^+ is TU.
- <u>Proof.</u> Each column of B^+ contains exactly two nonzero components, a 1 for some $v \in V_1$, and a 1 for some $w \in V_2$.

Therefore, the sufficient criterion of the above theorem applies for the choice $M_1 = V_1$, $M_2 = V_2$.

TUM - example 01

- Shortest path in directed graph *G*
- decision variable

$$x_{ij} = \begin{cases} 1 & \text{if edge } (i,j) \text{ is part of the shortest path,} \\ 0 & \text{otherwise.} \end{cases}$$

(from s to t)

LP modell:

$$\min \sum_{(i,j)\in E} x$$
subject to

$$(B\mathbf{x})_i = \begin{cases} -1 & \text{if } i = s, \\ 1 & \text{if } i = t, \\ 0 & \text{otherwise.} \end{cases}$$

Matrix B is the incidence matrix of G.

TUM - example 01

Another notation:

$$\min \mathbf{1}^{T} \mathbf{x}$$
 subject to $B\mathbf{x} = (-1, 0, 0, \dots, 0, 1)^{T}$ $\mathbf{x} \ge 0$.

• We do not need to prove that $x_{i,j} \in \{0,1\}$ as it gets automatically fulfilled.

TUM - example 02

- Maximal pairing in bipartite graphs
- decision variable:

$$x_{ij} = \begin{cases} 1 & \text{if edge } (i,j) \text{ is included in the pairing,} \\ 0 & \text{otherwise.} \end{cases}$$

LP model

$$\max \mathbf{1}^{T} \mathbf{x}$$
 subject to $B^{+} \mathbf{x} \leq \mathbf{1}$,

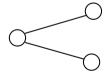
where B^+ is the unsigned incidence matrix of the bipartite graph.

• Since B^+ is TU, it is enough to have

$$\mathbf{x} \ge 0$$

as $x_{ij} \in \{0, 1\}$ holds automatically.

■ The meaning of constraint $B^+\mathbf{x} \leq \mathbb{1}$: in case we have edges as



then either the top one or the bottom one is chosen, but never together.

TUM - example 03

• Minimum s - t cut