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Benders Decomposition

Benders Decomposition:
1. A solution method for solving certain large-scale linear

optimization problems.
2. In each iteration, new constraints added to the problem and then

make it progress towards a solution. (”row generation”)

Consider the following problem:

min cTx + dTy
s.t. Ax + Dy ≥ b

x ≥ 0,y ≥ 0

where c ∈ Rn,d ∈ Rl ,A ∈ Rm×n,D ∈ Rm×l ,and b ∈ Rm.
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Benders Decomposition
The original problem [OP]:

min cTx + f(y)

s.t. Ax + Dy ≥ b
x ≥ 0,y ∈ Y

For a fixed value of y , the OP is given by

min cTx + f(ŷ)

s.t. Ax ≥ b− Dŷ
x ≥ 0

=⇒ f(ŷ) +


min cTx
s.t. Ax ≥ b− Dŷ

x ≥ 0


The resulting model to solve becomes:

[SP] : min cTx
s.t. Ax ≥ b− Dŷ (u)

x ≥ 0
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Benders Decomposition

Let u be the dual variable associated with Ax ≥ b− Dŷ. The dual
subproblem is given by

[DSP] : max (b− Dŷ)T u (1)
s.t. AT u ≤ c (2)

u ≥ 0 (3)

Note:
1. Only LP are considered in this model. By strong duality, the

optimal objective value of primal problem is equal to that of dual
problems.

2. The feasible region of the dual formulation does not depend on
the value of y . Assuming that the feasible region defined by (2)
and (3) is not empty, we can find all extreme points based on the
fixed ŷ .
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Benders Decomposition

To find an extreme point uj that maximizes the value of objective
function (b− Dŷ)T uj , let z = max{(b− Dŷ)T uj : j = 1,2, . . . ,Q}.
The DSP can be reformulated as follows:

min z

s.t. z ≥ (b− Dŷ)T uj for j = 1,2, . . . ,Q
z unrestricted

The reformulation of the OP in terms of z and y -variables can be
obtained by replacing cTx with z:

[MP] : min f(y) + z
s.t. z ≥ (b− Dy)T ûj for j = 1,2, . . . ,Q

y ∈ Y, z unrestricted
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Benders Decomposition
When it comes to a large size problem, it’s impractical to enumerate all
extreme points of X in the subproblem.
Let k < Q, the relaxed MP with less constraints is given by

[RMP] : min f(y) + z
s.t. z ≥ (b− Dy)T ûj , for j = 1,2, . . . , k

y ∈ Y, z unrestricted

Let (ȳ , z̄) denote an optimal solution to RMP.

† If (ȳ , z̄) is also feasible to MP, then it is optimal to the original problem.

† In order to check this optimality condition, we equivalently check if the
inequality (b− Dȳ)T uj − z̄ ≤ 0, for j = 1,2, . . . ,Q holds true.

† If the current solution of RMP, (ȳ , z̄), violates some constraints in MP,
this means we get z̄ < (b− Dȳ)T uk+1.

† Therefore, we impose Benders’ Cut to RMP

z ≥ (b− Dy)T uk+1
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Benders Decomposition Algorithm

I Initialization: Let ŷ := initial feasible solution, only solve for the
function of y to get the initial LB and then fix y to solve for UB.

I Step 1: Solve the RMP, miny{f (y) + z|cuts,y ∈ Y , z unrestricted}
If RMP is infeasible, then stop; else LB := f (ŷ) + ẑ.

I Step 2: Solve the SP, maxu{f(ŷ) + (b− Dŷ)T u|AT u ≤ c,u ≥ 0},
get extreme point û.
Get UB := f(ŷ) + (b− Dŷ)T û;
Add cut z ≥ (b− Dy)T û to RMP.

I If UB − LB = 0 or UB − LB < ε, the current solution is optimal and
stop.
If UB − LB > 0 or UB − LB > ε, perform next iteration and go to
Step 1.
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Example

Solve the following problem by using Benders decomposition.

min 2x1 + 3x2 + 2y1

s.t. x1 + 2x2 + y1 ≥ 3
2x1 − x2 + 3y1 ≥ 4
x ≥ 0, y ≥ 0

cT = [2 3]T ,A =

[
1 2
2 −1

]
,D =

[
1
3

]
,b =

[
3
4

]
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Example
Iteration 1:
Step 1: Let u = (0, 0)T . From RMP,

min 2y1 + z

s.t. z ≥
([

3
4

]
−

[
1
3

]
y1

)T [
0
0

]
y1 ≥ 0, z unrestricted

(ȳ , z̄) = (0, 0), LB = 0.
Step 2:

max 2y1 +

([
3
4

]
−

[
1
3

]
[0]

)T

u

s.t.
[

1 2
2 −1

]T

u ≤
[

2
3

]
u ≥ 0

There exists 4 extreme points in the feasible region of DSP.

u1 =

[
0
1

]
,u2 =

[
0
0

]
,u3 =

[
1.5
0

]
,u4 =

[
1.6
0.2

]
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Example
The dual optimal solution: u = [1.6, 0.2]T . UB = 5.6.

UB > LB, add the cut z ≥ (b− Dy)T
[

1.6
0.2

]
= 5.6− 2.2y1 to RMP.

Iteration 2:

min 2y1 + z

s.t. z ≥ 0

z ≥ 5.6− 2.2y1

y1 ≥ 0, z unrestricted

(ȳ , z̄) = (2.545, 0), LB = 5.091.

max 2(2.545) +

([
3
4

]
−

[
1
3

]
[2.545]

)T

u

s.t.
[

1 2
2 −1

]T

u ≤
[

2
3

]
u ≥ 0

The dual optimal solution is u = [1.5 0]T and UB = 5.772.
UB > LB, add the cut z ≥= 4.5− 1.5y1 to RMP.
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Example
Iteration 3:

min 2y1 + z

s.t. z ≥ 0

z ≥ 5.6− 2.2y1

z ≥ 4.5− 1.5y1

y1 ≥ 0, z unrestricted

(ȳ , z̄) = (1.571, 2.143), LB = 5.286.

max 2(2.545) +

([
3
4

]
−

[
1
3

]
[2.545]

)T

u

s.t.
[

1 2
2 −1

]T

u ≤
[

2
3

]
u ≥ 0

The dual optimal solution is u = [1.6, 0.2]T and UB = 5.286.
The process has converged because UB = LB. The optimal solution of OP is
(x1, x2, y1) = (0, 0.714, 1.571) and the optimal value is 5.286.
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Benders Decomposition

B Benders decomposition is a cutting plane method due to adding a
constraint at each iteration.

B It is outer approximation method.
B It reduces search region by adding linear constraints while

preserving the original feasible region.

In most application the master problem (MP) is
• an MILP
• a nonlinear programming problem (NLP), or
• a mixed integer/nonlinear programming problem (MINLP).
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Special Cases for Subproblem

1 
 

Benders decomposition is a solution method for solving certain large-scale optimization 
problems. Instead of considering all decision variables and constraints of a large-scale problem 
simultaneously, Benders decomposition partitions the problem into multiple smaller problems. 
Since computational difficulty of optimization problems increases significantly with the number of 
variables and constraints, solving these smaller problems iteratively can be more efficient than 
solving a single large problem.  
 

Benders' decomposition (alternatively, Benders's decomposition) is a technique in mathematical 
programming that allows the solution of very large linear programming problems that have a 
special block structure. This structure often occurs in applications such as stochastic 
programming. 

As it progress towards a solution, Benders' decomposition adds new constraints , so the 
approach is called "row generation". In contrast, Dantzig–Wolfe decomposition uses "column 
generation". 

 

Give a brief introduction about some generalizations of Benders decomposition. And talk about 
how the Benders decomposition works on a problem and giving a numerical example. 
 

 
 

Solve Primal SP and 3 
possible results 

Feasible Solution 

Infeasible Solution 

Unbounded Solution 

Solve RMP  

Feasible Solution 

Infeasible Solution 

Add a new 
optimality cut 

Add a new 
feasibility cut 

Stop 
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Special Cases for Subproblem

1. If both primal and dual subproblem have finite optimal solutions, two
optimal solutions are converged, then the optimal solution is obtained;
else add a new Benders optimality cut to RMP.

2. If the primal subproblem generates infeasible solutions, the dual
subproblem also has unbounded solutions, then add a new Benders
feasibility cut to RMP.

3. If the primal subproblem has unbounded solution, which means the dual
subproblem is infeasible and RMP is unbounded, the objective value will
go to −∞. Stop the process.
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Special Cases for Subproblem

If the primal subproblem is infeasible and the dual subproblem is
infeasible too, what can we do???
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Special Cases for Subproblem
Consider the infeasible primal subproblem:

min cTx
s.t. Ax ≥ b− Dŷ

x ≥ 0

min cT x + Mw
s.t. Ax + ew ≥ b− Dŷ

x ≥ 0,w ≥ 0

where M is a large value, w is an artificial variable and e is Euclidean matrix.
In this way, we can make the infeasible inequality system become feasible
since the inequality will hold after adding ew to the inequality system. Then
the objective function should be penalized by adding a very large value. So
the modified subproblem can be solved by using the previous rules.
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Special Cases for Subproblem

We can think in another way:
Primal Subproblem:

min 0 · x
s.t. Ax ≥ b− Dŷ

x ≥ 0

Dual Subproblem:

max (b− Dŷ)T u

s.t. AT u ≤ 0
u ≥ 0

I The dual subproblem cannot be infeasible. Since the trivial solution u = 0 is
always feasible.

I If the dual problem has an unbounded solution, then there exists a feasible
region that is unbounded along an extreme direction (extreme ray). Let λ > 0
and û ∈ C, we still have λû ∈ C. So (b− Dŷ)Tλu→ +∞. To avoid the
unbounded case, we have to make (b− Dŷ)T u ≤ 0 such that
(b− Dŷ)Tλu→ −∞. This is attributed to the feasible case. Therefore the
expression is (b− Dŷ)T u ≤ 0.

I The cuts of this type are referred as ”Benders feasibility cuts”.
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Special Cases for Subproblem

The new relaxed master problem is given by:

[RMP] : min f(y) + z
s.t. z ≥ (b− Dy)T up

j for j = 1,2, . . . ,Q

0 ≥ (b− Dy)T ur
i for i = 1,2, . . . ,N

y ∈ Y, z unrestricted

where up
j are extreme points of the feasible region in DSP,

and ur
i are extreme rays of the feasible region.
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Convergence

I In LP, suppose that the set Y is closed and bounded and that f (y)
and Dy are both continuous on S. We can terminate the
computation in a finite number of iterations with an optimal
solution.

I The reason is the finite number of constraints generated in the
RMP; that is, a finite number of extreme points and directions are
in any polyhedron. Besides, since the feasible region is convex,
stalling doesn’t occur in the LP problem.

I For the integer programming case, convergence can be
established based on the assumption that either Y is finite or that
the set of dual multipliers is finite. But for the general NLP, these
assumptions do not apply. For nonlinear cases, please see
Generalized Benders Decomposition.
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