
MILP: Why do we need integer variables?

Sometimes, the variables represent things that, because of its nature,
can only take integer values: number of books to buy, number of
facilities to be located, number of people to be hired.

Logic constraints can be modeled via binary/integer variables.

Some nonlinear models can be approximated using MILP.



Modeling tricks

Dealing with unrestricted variables

If x1, . . . , xr ∈ R are unrestricted variables, and our algorithm only works
with nonnegative variables, we can change:

xi = x1i − x2i , x1i , x
2
i ≥ 0.

This duplicates the number of variables. We can do better and introduce
only one additional variable x∗ which just move all the variable to the right:

xi = x∗i − x∗, x∗i , x
∗ ≥ 0.

Example

x1 + x2 ≤ 1
2x1 − x2 ≥ 3

x1, x2 ∈ R

is equivalent to
x∗1 − x∗ + x∗2 − x∗ ≤ 1

2(x∗1 − x∗)− (x∗2 − x∗) ≥ 3
x∗1 , x

∗
2 , x

∗ ≥ 0



Modeling tricks

Converting linear equalities into linear inequalities

Using slack and surplus variables we can transform inequalities into
equalities. But we can also do the opposite.

ati x = bi , i = 1 . . . ,m

can be transformed into

ati x ≤ bi , i = 1 . . . ,m
(
Pm

i=1 a
t
i ) x ≥

Pm
i=1 bi

Example

x1 + x2 = 1
2x1 − x2 = 3

is equivalent to
x1 + x2 ≤ 1
2x1 − x2 ≤ 3

3x1 ≥ 4



Modeling tricks

Converting nonlinear objective functions into linear

min f (x)
s.t. x ∈ X

is equivalent to
min t
s.t. f (x) ≤ t

x ∈ X



Modeling tricks

Dealing with absolute values

min
Pm

i=1 |fi(x)|
s.t. x ∈ X

is equivalent to

min
Pm

i=1 ti
s.t. x ∈ X

fi(x) ≤ ti , i = 1, . . . ,m
−fi(x) ≤ ti , i = 1, . . . ,m
ti ≥ 0, i = 1, . . . ,m



Modeling tricks

Dealing with the max function

min maxmi=1{fi (x)}
s.t. x ∈ X

is equivalent to
min t
s.t. x ∈ X

fi(x) ≤ t, i = 1, . . . ,m



MILP: modeling tricks

Alternative sets of constraints

Consider two set of constraints

f 1i (x) ≤ b1i , i = 1, . . . ,m1

f 2i (x) ≤ b2i , i = 1, . . . ,m2

A set of constraints stating that at least one of the two above sets of
constraints must be satisfied can be written as

f 1i (x)− δ1M
1
i ≤ b1i , i = 1, . . . ,m1

f 2i (x)− δ2M
2
i ≤ b2i , i = 1, . . . ,m2

δ1 + δ2 ≤ 1
δ1, δ2 ∈ {0, 1}

provided that the parameters M j
i satisfy

f ji (x) ≤ bji +M j
i , i = 1, . . . ,mj , j = 1, 2



MILP: modeling tricks

Alternative sets of constraints

Consider two set of constraints

f 1i (x) ≤ b1i , i = 1, . . . ,m1

f 2i (x) ≤ b2i , i = 1, . . . ,m2

A set of constraints stating that only one set of contraints must be
satisfied can be written as

f 1i (x)− δ1M
1
i ≤ b1i , i = 1, . . . ,m1

f 2i (x)− δ2M
2
i ≤ b2i , i = 1, . . . ,m2

δ1 + δ2 = 1
δ1, δ2 ∈ {0, 1}

provided that the parameters M j
i satisfy

f ji (x) ≤ bji +M j
i , i = 1, . . . ,mj , j = 1, 2



MILP: modeling tricks

Alternative sets of constraints

Consider two set of constraints

f 1i (x) ≤ b1i , i = 1, . . . ,m1

f 2i (x) ≤ b2i , i = 1, . . . ,m2

A set of constraints stating that only one set of contraints must be
satisfied can be written as

f 1i (x)− δ1M
1
i ≤ b1i , i = 1, . . . ,m1

f 2i (x)− δ2M
2
i ≤ b2i , i = 1, . . . ,m2

δ1 + δ2 = 1
δ1, δ2 ∈ {0, 1}

provided that the parameters M j
i satisfy

f ji (x) ≤ bji +M j
i , i = 1, . . . ,mj , j = 1, 2

This can be used to define nonconvex polygonal feasible sets.



MILP: modeling tricks

Conditional constraints 1

A conditional constraint of the form

f (x) > a =⇒ g(x) ≤ b

can be modeled with the alternative set of constraints

f (x) ≤ a and/or g(x) ≤ b

which in turn can be modeled as explained before (see more equivalences
for conditional statements later on).



MILP: modeling tricks

K out of N constraints must hold

If we have a set of N constraints

f1(x) ≤ b1, . . . , fN(x) ≤ bN

and only K out of the N constraints must hold, this can be modeled as
follows:

f1(x) ≤ b1 +M1δ1
. . .

fN(x) ≤ bN +MNδN
NX

i=1

δi = N − K

δi ∈ {0, 1}, i = 1, . . . ,N

where Mi is an upper bound for fi(x)− bi .



MILP: modeling tricks

Modeling fixed costs

The discontinuous function to be minimized

min f (x) =

�
0 if x = 0
k + g(x) if 0 < x ≤ b

which sets a fixed cost k in case the variable x is used (in case x > 0) can
be written as

min kδ + g(x)
s.t. x ≤ bδ

x ≥ 0
δ ∈ {0, 1}

Notice that

δ =

(
0 if x = 0

1 if x > 0



MILP: modeling tricks

Modeling a piecewise linear function

Consider the piecewise linear function g(x) of the picture. Assume that
there are p + 1 breaking points, b0, . . . , bp . The slope of the s-th segment
[bs−1, bs ] will be denoted by cs , and the point where the line containing
that segment cuts the 0Y -axis by f s . Then, the value of g(x) at a point
z s on that segment is given by g(z s) = f s + csz s .

�

�

�

�

�

g(x)

bs−1 bsb0 = 0

f s

z s

cs



MILP: modeling tricks

Modeling a piecewise linear function 1

Let us denote

z s =

(
x if x ∈ [bs−1, bs ]

0 otherwise
and δs =

(
1 if z s > 0

0 otherwise
, s = 1 . . . , p

Then function g(x) can be rewritten as follows:

g(x) =
Pp

s=1(c
sz s + f sδs)

x =
Pp

s=1 z
s

bs−1δs ≤ z s ≤ bsδsPp
s=1 δs = 1

δs ∈ {0, 1}, s = 1 . . . , p

�

�

�

�

�

g(x)

bs−1 bsb0 = 0

f s

z s

cs



MILP: modeling tricks

Modeling a piecewise linear function 2

Alternatively, since each point z s ∈ [bs−1, bs ] may be written as a convex
combination of its end points, (bs−1, csbs−1 + f s) and (bs , csbs + f s),

(z s , g(z s)) = λs(b
s−1, csbs−1 + f s) + µs(b

s , csbs + f s), λs + µs = 1

we can also rewrite the function g(x) as follows:

g(x) =
Pp

s=1(λs(c
sbs−1 + f s) + µs(c

sbs + f s))
x =

Pp
s=1(λsb

s−1 + µsb
s)

λs + µs = δsPp
s=1 δs = 1

δs ∈ {0, 1}
λs , µs ≥ 0, i = 1, . . . , p

�

�

�

�

�

g(x)

bs−1 bsb0 = 0

f s

z s

cs



MILP: modeling tricks

A function must take a value out of N possible values

f (x) = b1 ∨ b2 ∨ . . . ∨ bN

can be modeled as

f (x) =

NX

i=1

biδi

NX

i=1

δi = 1

δi ∈ {0, 1}, i = 1, . . . ,N



MILP: modeling tricks

Transforming integer variables into binary variables

Assume that
0 ≤ x ≤ u, z ∈ Z.

If 2N ≤ u ≤ 2N+1 then we can represent x using binary variables as follows:

x =
NX

i=0

2iδi , δi ∈ {0, 1}, i = 1 . . . ,N



MILP: modeling tricks

Linearizing the product of two binary variables

Let y1, y2 ∈ {0, 1} two binary variables, and assume that its product, y1y2,
which is a nonlinear expression, appears in a given formulation. We can
linearize the product as follows:

δ ≤ y1
δ ≤ y2

δ ≥ y1 + y2 − 1
δ ∈ {0, 1}

Notice that δ = y1y2.



MILP: modeling tricks

Linearizing the product of a binary and a continous variable

Let z be a continuous variable such that L ≤ z ≤ U, and x ∈ {0, 1} be a
binary variable. Assume that its product, zx , which is a nonlinear
expression, appears in a given formulation. We can linearize the product as
follows:

y ≤ Ux
y ≥ Lx

z − y ≤ U(1− x)
z − y ≥ L(1− x)

Notice that y = zx



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

A chain wants to enter in a given area by opening p facilities.

Those facilities are to be open in p of the s potential sites
pre-selected by the chain.

There already exists m competing facilities operating in the area.

Customers follow a probabilistic choice rule (they patronize all the
facilities, and the amount spent at each facility is proportional to its
attraction).

The objective is to maximize the market share captured by the
locating chain.



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

Indices

i index for demand points (or customers), i = {1, . . . , n}.
j index for the facilities,

j = 1, . . . , s, for the potential new facilities,
j = s + 1, . . . , s +m, for the existing competing facilities.

Data

wi demand (or buying power) of demand point i .
dij distance between demand point i and location j .
aij quality of facility j as perceived by deman point i .
β modulator of the distance



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

Computed data

uij =
aij

(dij + 1)β
attraction that demand point i feels towards facility j .

Variables

xj =

(
1 if a facility is open at j

0 otherwise
, j = 1 . . . , s



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

max

nX

i=1

wi

sX

j=1

uijxj

sX

j=1

uijxj +

s+mX

j=s+1

uij

s.t.

sX

j=1

xj = p

xj ∈ {0, 1}, j = 1, . . . , s



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

max

nX

i=1

wi

sX

j=1

uijxj

sX

j=1

uijxj +

s+mX

j=s+1

uij

s.t.

sX

j=1

xj = p

xj ∈ {0, 1}, j = 1, . . . , s

If we denote

zi =
1

sX

j=1

uijxj +

s+mX

j=s+1

uij

, i = 1, . . . , n

then the problem becomes



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

max
nX

i=1

wizi

sX

j=1

uijxj

s.t. zi =
1

sX

j=1

uijxj +

s+mX

j=s+1

uij

, i = 1, . . . , n

sX

j=1

xj = p

xj ∈ {0, 1}, j = 1, . . . , s
zi ≥ 0, i = 1, . . . , n



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

max
nX

i=1

sX

j=1

wiziuijxj

s.t. zi =
1

sX

j=1

uijxj +

s+mX

j=s+1

uij

, i = 1, . . . , n

sX

j=1

xj = p

xj ∈ {0, 1}, j = 1, . . . , s
zi ≥ 0, i = 1, . . . , n



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

max
nX

i=1

sX

j=1

(wiziuij)xj

s.t. zi =
1

sX

j=1

uijxj +

s+mX

j=s+1

uij

, i = 1, . . . , n

sX

j=1

xj = p

xj ∈ {0, 1}, j = 1, . . . , s
zi ≥ 0, i = 1, . . . , n



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

If we denote

yij = (wiziuij)xj , i = 1, . . . , n, j = 1, . . . , s

and taking into account that the product y = zx , where L ≤ z ≤ U is
continuous and x binary can be linearized as

y ≤ Ux
y ≥ Lx

z − y ≤ U(1− x)
z − y ≥ L(1− x)

we have that the product yij = (wiziuij)xj can be linearized as follows

yij ≤ wixj ,
yij ≥ 0xj ⇔ yij ≥ 0,
wiziuij − yij ≤ wi (1− xj),
wiziuij − yij ≥ 0(1 − xj) ⇔ wiziuij − yij ≥ 0,





i = 1, . . . , n, j = 1, . . . , s



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

max

nX

i=1

sX

j=1

yij

s.t. zi =
1

sX

j=1

uijxj +
s+mX

j=s+1

uij

, i = 1, . . . , n

yij ≤ wixj , i = 1, . . . , n, j = 1, . . . , s
yij ≥ 0, i = 1, . . . , n, j = 1, . . . , s
wiziuij − yij ≤ wi (1− xj), i = 1, . . . , n, j = 1, . . . , s
wiziuij − yij ≥ 0, i = 1, . . . , n, j = 1, . . . , s
sX

j=1

xj = p

xj ∈ {0, 1}, j = 1, . . . , s
zi ≥ 0, i = 1, . . . , n
yij ≥ 0, i = 1, . . . , n, j = 1, . . . , s



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

max

nX

i=1

sX

j=1

yij

s.t. zi =
1

sX

j=1

uijxj +
s+mX

j=s+1

uij

, i = 1, . . . , n

yij ≤ wixj , i = 1, . . . , n, j = 1, . . . , s
yij ≥ 0, i = 1, . . . , n, j = 1, . . . , s
wiziuij − yij ≤ wi (1− xj), i = 1, . . . , n, j = 1, . . . , s
wiziuij − yij ≥ 0, i = 1, . . . , n, j = 1, . . . , s
sX

j=1

xj = p

xj ∈ {0, 1}, j = 1, . . . , s
zi ≥ 0, i = 1, . . . , n
yij ≥ 0, i = 1, . . . , n, j = 1, . . . , s



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

zi =
1Ps

j=1 uijxj +
Ps+m

j=s+1 uij
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Example: A discrete competitive location problem under the probabilistic choice rule.

zi =
1Ps

j=1 uijxj +
Ps+m

j=s+1 uij
⇔

zi(
Ps

j=1 uijxj +
Ps+m

j=s+1 uij) = 1



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

zi =
1Ps

j=1 uijxj +
Ps+m

j=s+1 uij
⇔

zi(
Ps

j=1 uijxj +
Ps+m

j=s+1 uij) = 1 ⇔

zi
Ps

j=1 uijxj + zi
Ps+m

j=s+1 uij = 1



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

zi =
1Ps

j=1 uijxj +
Ps+m

j=s+1 uij
⇔

zi(
Ps

j=1 uijxj +
Ps+m

j=s+1 uij) = 1 ⇔

zi
Ps

j=1 uijxj + zi
Ps+m

j=s+1 uij = 1 ⇔

wizi
Ps

j=1 uijxj + wizi
Ps+m

j=s+1 uij = wi
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Example: A discrete competitive location problem under the probabilistic choice rule.

zi =
1Ps

j=1 uijxj +
Ps+m

j=s+1 uij
⇔

zi(
Ps

j=1 uijxj +
Ps+m

j=s+1 uij) = 1 ⇔

zi
Ps

j=1 uijxj + zi
Ps+m

j=s+1 uij = 1 ⇔

wizi
Ps

j=1 uijxj + wizi
Ps+m

j=s+1 uij = wi ⇔

Ps
j=1 wiziuijxj + wizi

Ps+m
j=s+1 uij = wi



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

zi =
1Ps

j=1 uijxj +
Ps+m

j=s+1 uij
⇔

zi(
Ps

j=1 uijxj +
Ps+m

j=s+1 uij) = 1 ⇔

zi
Ps

j=1 uijxj + zi
Ps+m

j=s+1 uij = 1 ⇔

wizi
Ps

j=1 uijxj + wizi
Ps+m

j=s+1 uij = wi ⇔

Ps
j=1 wiziuijxj + wizi

Ps+m
j=s+1 uij = wi ⇔

Ps
j=1 yij + wizi

Ps+m
j=s+1 uij = wi



MILP: modeling tricks
Example: A discrete competitive location problem under the probabilistic choice rule.

max
nX

i=1

sX

j=1

yij

s.t.
Ps

j=1 yij + wizi
Ps+m

j=s+1 uij = wi , i = 1, . . . , n

yij ≤ wixj , i = 1, . . . , n, j = 1, . . . , s
yij ≥ 0, i = 1, . . . , n, j = 1, . . . , s
wiziuij − yij ≤ wi (1− xj), i = 1, . . . , n, j = 1, . . . , s
wiziuij − yij ≥ 0 i = 1, . . . , n, j = 1, . . . , s
sX

j=1

xj = p

xj ∈ {0, 1}, j = 1, . . . , s
zi ≥ 0, i = 1, . . . , n
yij ≥ 0, i = 1, . . . , n, j = 1, . . . , s
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Example: A discrete competitive location problem under the probabilistic choice rule.

max
nX

i=1

sX

j=1

yij

s.t.
Ps

j=1 yij + wizi
Ps+m

j=s+1 uij ≤ wi , i = 1, . . . , n

yij ≤ wixj , i = 1, . . . , n, j = 1, . . . , s
yij ≥ 0, i = 1, . . . , n, j = 1, . . . , s
wiziuij − yij ≤ wi (1− xj), i = 1, . . . , n, j = 1, . . . , s
wiziuij − yij ≥ 0 i = 1, . . . , n, j = 1, . . . , s
sX

j=1

xj = p

xj ∈ {0, 1}, j = 1, . . . , s
zi ≥ 0, i = 1, . . . , n
yij ≥ 0, i = 1, . . . , n, j = 1, . . . , s
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Let x be a continuous variable such that L ≤ x ≤ U. And let δ ∈ {0, 1} be
a binary variable.



MILP: modeling tricks

Let x be a continuous variable such that L ≤ x ≤ U. And let δ ∈ {0, 1} be
a binary variable.

Conditional constraints 2

δ = 0 =⇒ x ≤ 0

can be modeled as
x ≤ δU.

Since P ⇒ Q is equivalent to ¬Q ⇒ ¬P the previous expression also
models

x > 0 =⇒ δ = 1



MILP: modeling tricks

Let x be a continuous variable such that L ≤ x ≤ U. And let δ ∈ {0, 1} be
a binary variable.

Conditional constraints 3

δ = 0 =⇒ x ≥ 0

can be modeled as
x ≥ δL.

Since P ⇒ Q is equivalent to ¬Q ⇒ ¬P the previous expression also
models

x < 0 =⇒ δ = 1



MILP: modeling tricks

Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.



MILP: modeling tricks

Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 4 (type ≤)

δ = 1 =⇒ f (x) ≤ b

can be modeled as
f (x) ≤ b +M(1− δ).

Since P ⇒ Q is equivalent to ¬Q ⇒ ¬P the previous expression also
models

f (x) > b =⇒ δ = 0



MILP: modeling tricks

Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 5 (type ≤)

f (x) ≤ b =⇒ δ = 1

is equivalent to
δ = 0 =⇒ f (x) > b

which can be tranformed into

δ = 0 =⇒ f (x) ≥ b + ǫ.

The previous expressions can be both modeled as

f (x) ≥ b + ǫ+ (m − ǫ)δ
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Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.
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Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 6 (type ≥)

δ = 1 =⇒ f (x) ≥ b

can be modeled as
f (x) ≥ b +m(1− δ).

Since P ⇒ Q is equivalent to ¬Q ⇒ ¬P the previous expression also
models

f (x) < b =⇒ δ = 0



MILP: modeling tricks

Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 7 (type ≥)

f (x) ≥ b =⇒ δ = 1

is equivalent to
δ = 0 =⇒ f (x) < b

which can be transformed into

δ = 0 =⇒ f (x) ≤ b − ǫ.

The previous expressions can be both modeled as

f (x) ≤ b − ǫ+ (M + ǫ)δ



MILP: modeling tricks

Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.
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Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 8 (type =)

δ = 1 =⇒ f (x) = b is equivalent to δ = 1 =⇒

(
f (x) ≤ b

f (x) ≥ b

Hence, it can be modeled by the constraints

f (x) ≤ b +M(1− δ)
f (x) ≥ b +m(1− δ)

Since P ⇒ Q is equivalent to ¬Q ⇒ ¬P the previous expression also
models

f (x) 6= b =⇒ δ = 0



MILP: modeling tricks

Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 9 (type =)

f (x) = b =⇒ δ = 1 is equivalent to

f (x) ≤ b =⇒ δ1 = 1
f (x) ≥ b =⇒ δ2 = 1
δ1 = 1
δ2 = 1

�
=⇒ δ = 1

δ1, δ2 ∈ {0, 1}

which can be modeled as

f (x) ≥ b + ǫ+ (m − ǫ)δ1
f (x) ≤ b − ǫ+ (M + ǫ)δ2

δ1 + δ2 − δ ≤ 1
δ1, δ2 ∈ {0, 1}



MILP: modeling tricks

Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 9 (type =)

Since f (x) = b =⇒ δ = 1 is equivalent to δ = 0 =⇒ f (x) 6= b

this last conditional constraint can also be modeled as

f (x) ≥ b + ǫ+ (m − ǫ)δ1
f (x) ≤ b − ǫ+ (M + ǫ)δ2

δ1 + δ2 − δ ≤ 1
δ1, δ2 ∈ {0, 1}
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Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 10: double implications

Double implications can be transformed into two unidirectional
implications. For instance

δ = 1 ⇐⇒ f (x) ≤ b

is equivalent to �
δ = 1 =⇒ f (x) ≤ b

f (x) ≤ b =⇒ δ = 1

Hence, it can be modeled as

f (x) ≤ b +M(1− δ)
f (x) ≥ b + ǫ+ (m − ǫ)δ
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Let ǫ > 0 be a small number, and m and M two constants such that
m ≤ f (x) − b ≤ M for any feasible value of x . And let δ ∈ {0, 1} be a
binary variable.

Conditional constraints 10: double implications

δ = 1 ⇐⇒ f (x) = b

can be modeled as

f (x) ≤ b +M(1− δ)
f (x) ≥ b +m(1− δ)

f (x) ≥ b + ǫ+ (m − ǫ)δ1
f (x) ≤ b − ǫ+ (M + ǫ)δ2

δ1 + δ2 − δ ≤ 1
δ1, δ2 ∈ {0, 1}
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Equivalences for conditional propositions

The following equivalences can be used before converting them into
constraints:

P ⇒ Q ¬P ∨ Q

P ⇒ (Q ∧ R) (P ⇒ Q) ∧ (P ⇒ R)

P ⇒ (Q ∨ R) (P ⇒ Q) ∨ (P ⇒ R)

(P ∧ Q) ⇒ R (P ⇒ R) ∨ (Q ⇒ R)

(P ∨ Q) ⇒ R (P ⇒ R) ∧ (Q ⇒ R)

¬(P ∨ Q) (¬P) ∧ (¬Q)

¬(P ∧ Q) (¬P) ∨ (¬Q)
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Assume that the indicator variable δi is equal to 1 when the constraint Ci

holds:

δi =

(
1 if Ci holds

0 otherwise

Simple conditional or composed statements

C1 ∨ C2 δ1 + δ2 ≥ 1

C1 ∧ C2 δ1 + δ2 = 2

¬C1 δ1 = 0

C1 =⇒ C2 δ1 ≤ δ2
C1 ⇐⇒ C2 δ1 = δ2
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Complex conditional or composed statements

Complex conditional or composed statements are decomposed into two
implications in order to model them easier.

Example

(C1 ∨ C2) =⇒ (C3 ∨ C4 ∨ C5)

is modeled as
(δ1 + δ2 ≥ 1) =⇒ (δ3 + δ4 + δ5 ≥ 1)

which, in turn, can be transformed into

(δ1 + δ2 ≥ 1) ⇒ δ = 1 ⇒ (δ3 + δ4 + δ5 ≥ 1)

or more clearly,(
(δ1 + δ2 ≥ 1) ⇒ δ = 1

δ = 1 ⇒ (δ3 + δ4 + δ5 ≥ 1)
which becomes

(
δ1 + δ2 ≤ 2δ

δ ≤ δ3 + δ4 + δ5
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Example

(x ≤ b) ∧ (x ≥ 1) =⇒ (y = z + 1)

is first transformed into

(x ≤ b) ∧ (x ≥ 1) =⇒ δ = 1 =⇒ (y = z + 1)

and this in turn is written as

(x ≤ b) ⇒ δ1 = 1
(x ≥ 1) ⇒ δ2 = 1
(δ1 = 1) ∧ (δ1 = 1) ⇒ δ = 1
(δ = 1) ⇒ (y ≥ z + 1)
(δ = 1) ⇒ (y ≤ z + 1)

which becomes

x ≥ b + ǫ+ (m1 − ǫ)δ1
x ≤ 1− ǫ+ (M1 + ǫ)δ2
δ1 + δ2 − δ ≤ 1
y − z ≥ 1 +m2(1− δ)
y − z ≤ 1 +M2(1− δ)

where ǫ > 0 is a small number and m1 ≤ x − b, M1 ≥ x − 1,
m2 ≤ y − z − 1 ≤ M2.



MILP: modeling tricks

More tricks have been designed to:

Define nonconvex polygonal regions throught a set of constraints.

Work with Special Ordered Sets of type 1 (SOS1), where in a set of
variables only one of them can have a value different from 0, and
SOS2, where in a set a variables at most two of them can be different
from 0 and they must be consecutive variables.
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if the feasible set of ‘A’ is included in the feasible set of ‘B’.
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(the difference between the solution of the linear relaxation and the integer
solution) will be smaller.
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More tricks have been designed to:

Define nonconvex polygonal regions throught a set of constraints.

Work with Special Ordered Sets of type 1 (SOS1), where in a set of
variables only one of them can have a value different from 0, and
SOS2, where in a set a variables at most two of them can be different
from 0 and they must be consecutive variables.

Sometimes the same problem can be modeled in different ways. A
formulation ‘A’ is said to be better (stronger) than another formulation ‘B’
if the feasible set of ‘A’ is included in the feasible set of ‘B’. In this way,
the solution of the LP relaxation of ‘A’ will have a better (or equal)
objective value than the solution of the LP relaxation of ‘B’, so its gap
(the difference between the solution of the linear relaxation and the integer
solution) will be smaller.
Interestingly, in MILP sometimes it is better a formulation with a bigger
number of variables and constraints!


