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Abstract

By the use of interval methods it is proven that there existsrestable periodic solution to the damped and periodically
forced pendulum around the upper equilibrium. Itis alsosprhthat this solution can be stabilized by a control which
does not need the knowledge of values of the state variabtex the unstable periodic solution.
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1. Introduction

The mathematical pendulum is one of the most importanticiassiodels in the theory of nonlinear oscillation.
In this model a particle of masa is connected by an absolute rigid and weightless rod to albpaseeans of a pin
joint so that the particle can move in a plane. If the partigleubject to gravity, moreover the drag and the friction at
the pin joint are taken into account, then the motions of théh@matical pendulum are described by the second order
differential equation
mlp” = —mgsing —ylgy’ (¢ € R), 1)

where the state variabledenotes the angle between the rod of the pendulum and thatidirelownload measured
counter-clockwiseg, |, andy > 0 are the gravity acceleration, the length of the rod, anddtmaping coficient,
respectively. The lower equilibrium positiogs= 0 mod 2r are stable, and the upper oness # mod 2Zr are
unstable. It was a surprising discovery at the beginningneflast century [20, 13] that the upper unstable equilibria
could be stabilized by vibrating the point of suspensiotizally with suficiently large frequency. Many papers (see,
e.g. [3, 4,6, 14, 15, 16, 19] and the references thereirg haen devoted to the description of this phenomenon (see
also [1, 5, 17]).

J. Hubbard [11, 12] investigated the motions of the forcadmed pendulum

mlp” = —mgsing — ylp’ + Acoswt (¢ € R). (2)
Considering the equation with the special parameters
X" = —sinx—0.1xX" + cost, 3)

he experienced that the behavior of numerical solutionsgragly sensitive to perturbations in the initial values at
certain places of the state plain. Solutions starting fromilar angles and a little bit dierent singular velocities can
be seen in Figure 2. This phenomenon motivated him to camethat the system is chaotic. The chaos was exactly
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Figure 1: The forced damped pendulum.

proved in [2], where it was also pointed out that the final ogasf the chaos was the presence of an unstable 2
periodic motion around the upper equilibrium position, g¥hibifurcated from the upper unstable periodic equilibrium
However, the existence of the unstable periodic solutiopmet proved, and it was not treated either how to raise the
chaos. To this end it is a natural idea to stabilize the uhstadriodic motion.
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Figure 2: Some trajectories of the forced damped pendulum.

In Kapitsa’'s procedure of the stabilization of the upperiiapium of (1) the vertical vibration of the suspension
point neutralizes theffect of the gravity. Of course, the same procedure cannot piedpo stabilize the unstable
cycle of (3) since the cycle is not located in the verticatlacross the suspension point. The main problem is to find
the suitable vibration of the suspension point neutradjzive gravity analogous to Kapitsa’'s procedure.

In this paper we prove the existence of the upper unstabiegiesolution of equation (3) using interval methods.
Then we construct a vibration of the suspension point in thimpf the motion of the pendulum (3) which stabilizes
this unstable solution. This control is direct in the serisd it does not need the knowledge of values of the state
variables but the unstable periodic solution. The stahilftthe same periodic solution guaranteed by tfiect of the
control is proved by interval arithmetic based tools.

2. The damped forced pendulum

2.1. The equation of motion
Equation (3) can be rewritten into the system
X; = X,
r (@)

X, = —Sinxg — 0.1x; + cost,
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wherex, is the angle of the pendulum amgis the angular velocity.

2.2. The Poincaré map and periodic solutions

The following lemma says that the forced damped pendulursddhot have 2-periodic solutions of arbitrarily
large and small initial values of the velocity.

Lemma 1. Ift = (y1(t), Y2(t)) is a 2r-periodic solution of(4), then|y,(0)| < 10.1.

Proor. By the formula of the variation of constants (see, e.g.])[d@ have

t
Yo(t) = €01y, (0) — e O f e"15(siny(s) — coss)ds  (teR),
0

therefore o
(€42 - oa(0)= - [ sinun(s - cos9as ®)
0

Integration and the Wallis formula
eax
fea" cosbxdx = ——— (bsinbx+ acosbx) + const.
aZ + b?

yield the estimate

2 0.1S/ i dsl < 0.1-2r 1)110 01 6
fo 15(siny(s) - coss) ds < (X127 - )( +r01). (6)

From (5) and (6) we obtain the assertion. O
Definition 1. Consider a system of ordinaryffiirential equations
X' =f(t,x), @)

wheref : R x R" — R" is continuous2r-periodic with respect to t and flerentiable with respect t®; n is a natural
number. Let - Xx(t; to, £) denote the solution of7) satisfying the initial conditiox(to; to, £) = £. The map

P:R">R", P(p)=x(2r;0,p)
is called thePoincaré mapelonging to equatiofi7).

In order to prove chaos, the Poincaré-map also needs tovba gtliably. To do this, we apply interval arith-
metic based computer assisted methods. The given provittgpothand the computational technigue is typically well

applicable to similar dynamic problems. Since this mapmiagnot be represented by closed form, only one option

remains, tracking the trajectory within the, fix] time interval. The Poincaré-map of a point is given by tlsifion
of the trajectory at thé = 2r moment of time. We choose VNODE (Validated Numerical ODED)][2nd INTLAB
[18] due to their straight-forward and easy usage and thieiely recognized performance.

The package operates based on the calculation of Taylmssdts strength is that it chooses the step-size au-
tomatically, therefore taking smaller steps where it isassary. With this method, we can achieve higher accuracy.

Another advantage of this package is that it can track thedi@ries both forward and backward in time.
The only drawback of the program for us is that it can only dive position of the trajectory in such moments

that can be represented on a computer. Howevecalnot be represented on a computer in the Poincaré-map, an

therefore the system of equations is used with the followaglifications:

Yo=7,

) = 1y,

Y, = m(=0.1y> — sinyy + COsyp) .
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With this method, the Poincaré-map is achieved inttke2 moment of time. The inverse of the Poincaré-map can
be reached in dt= —2. The values of these two functions on a two-dimensionalia | are denoted aB(l) and
PX(1).

Obviouslyx(:; 0, p) is a 2r-periodic solution of (7) if and only ip is a fixed point ofP, so if we search for periodic
solutions of (7), then we have to find fixed pointsffi.e., solutions of the equatiof(p) = p. We will need the
derivative matrixD® at a fixed poinp.

It is known [10] that the solutiox(-; to, &) of (7) is differentiable with respect to the initial valuésand the
derivative matrixD:x(; to, &) satisfies the variational system to (7) belonging to thatsm x(:; to, £):

(Dex(t 10, €))" = Dxf(t, X(t; 1o, £))DeX(t 10, §),  DeX(to; to, §) = E. (8)
Settingé = p, to = 0,t = 27 we get

Lemma 2. Suppose that is a fixed point o, and denote by : R — R™" the fundamental matrix of the variational
differential system t¢7) belonging to th&r-periodic solutiorx(-; 0, p):

¢'(t) = Duf(t. x(t; 0, p))e(t),  ¢(0) =E,

where Ee R™" js the unit matrix. Then
DP(p) = ¢(2n). 9)

A fixed pointp of the mappP is calledstableif for every e > 0 there exists & > 0 such that for arbitrary with
Ix - pll < 6 we have|P¥(x) - p|| <  for all k € N, where]| - || denotes an arbitrary norm &' and®PX is thek-th iterate
of P. A fixed point isunstableif it is not stable.

Theorem 1. There exists an unstable fixed point of the Poincaré fapthe interval
I, ;= [2.6342722.634274]x [0.026042940.02604485 R2.
In other words, there exists a poifiin this interval such that the solutiot(-; 0, ¢) of (4) is 2z-periodic and unstable.

Proor. For finding periodic points, a simple and reliable Branald-8ound method was used [7]. The area of search
is the initial interval
(x,X) € [0,27] x [-10.1, 10.1].

The B&B method generates two-dimensional interdalBom the initial interval to which either of the following
statements is true: either tiheinterval does not have a common point with at least on(bj andP~1(l;), or thel,
interval is small (the size is set by the user), and it has compoints with bottP(I;) andP~1(l;).

The periodic points can only lie in an interval of the secorpt In the next step, intervals from this group having
common points are merged into bigger intervals. This preigsepeated until only pointwise disjunct intervals
remain. The number of these remaining intervals is likelyad¢o the number of periodic points of the system, and
guaranteed bounding is achieved for all of them. In our casly,two disjoint two-dimensional intervals were found:

1 = [2.6342722.634274]x [0.026042940.02604485] (10)
I, = [4.2368934.236894]x [0.39269640.3926973] (11)

Computer simulations suggest that the first interval maytaioran unstable fixed point. At the time being we only
know that if there are fixed points in [R1] x R, then they are contained in the two intervals above. We prove
simultaneously that; contains a fixed point and that the fixed point is unstable.

Consider the variational systems to (4) belonging to thetamnis starting fromgs, &) € 11:

=2,

Z, = —sinz; — 0.1z, + cost, 71(0) = &1, 2(0) = &;

. (12)
3 - t]

z, = —cosz(t; 0, &1, £2)zs — 0.1z,
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Leto(-;€) (¢(0;¢) = E) denote the fundamental matrix of the system of the two lasagons of (12). We determined
the matrix reliably by INTLAB:

(27 (%, X)1) = [169.634765210320169640780599679] [16890375683430168796219219783]
lem (% X)) = [152951345297963152974187177693] [15293115985856152215775203093]

and generated guaranteed bounding intervals for the eafygami®, A2 of this matrix by the Eig command of INTLAB:

At € [321.826237684765321854884155379)

13
1% € [-0.01311647583259.01643163463737] (13)

If we solve the eigenvalue equation directly, we obtain aenpecise result:

At € [321.8363 3218368]
12 € [0.0014210.001894]

By (9) this shows that; may only contain unstable fixed points. It just remains tovprthatl; does contain a
fixed point, which will be done by the Miranda-Vrahatis thewr[22]. Define the map

F:R? >R F(p) :=P(p) - p.

Thenp is a fixed point of? if and only if 7 (p) = 0. The Miranda-Vrahatis theorem says that if the compondiits o

in an appropriate decomposition are of opposite signs alemgpposite parallel sides of a parallelogram in the plane,
then this parallelogram contains at least one solution@gtuatior (p) = 0. It is natural to guess that one needs to
decomposé into the directions of the eigenvectors®f i.e., of . With the similar technique that was applied in
[7] we determined the parallelogram with centeil6@4273; 00260435). We searched for the directions and lengths
of the sides of the parallelogram as parameters to be og@ni&/e applied the objective function form as it was used
in [7]. We obtained parallelograms whose sides have thetitires

u :=(0.762635288220068.689712810960316);

14
v := (-0.703207789832756; D11758944192742) (14)

The reliably generated parallelogramnA8CD, where

A= ([2.6272950252879@.62729502528791]]
[0.03315291430138.03315291430139]);
B = ([2.6272464106760@.62724641067607]
[0.03310894817353.03310894817353]);
C =([2.641250974712Q02.64125097471210]
[0.0189340856986D.01893408569862]);
D = ([2.64129958932392.64129958932394]
[0.01897805182641.01897805182648])

(15)

Let us decomposg (p) defined above in the badis, v}:
F(p) = Fu(p)u + Fu(p)v,
i.e.,Fy, andF, denote the components of vect®r in the directional, v. We have succeeded in proving that

Fu(p) > 0if pe AD, Fu(p) < 0if pe BC;
Fv(p) > 0if pe CD, Fv(p) < 0if pe AB.



(a) The region of attraction of a stable solution. (b) The region of attraction of some stable solutions.

Figure 3: The region of attraction of stable periodic solog.

Here AD denotes the convex hull of the intervalsand D; the definitions ofBC, CD, andAD are analogous. This
means that all conditions of the Miranda-Vrahatis theoreensatisfied; consequentlly, contains a fixed poinp

of # for x € [0,xn]. On the basis of the results of our B&B method (10) (11), ¢hean be periodic points for
x € [0,7]in ([2.6342722.634274][0.026042940.02604485]). In this box if there exists a fixed point according
to the eigenvalues (13) then it must be unstable. These ithplyp exists and it is an unstable fixed point. By [1,
Section 28] the 2-periodic solution corresponding to the fixed pgimf Poincaré mag is unstable if and only ip

is unstable, which completes the proof. d

2.3. The stable periodic point

Similarly as it was done in the proof of Theorem 1, it can bewshthat there exists a poing4,7,) € I, from
which there starts a stable periodic solution. Naturatlg,golutions where the first coordinate is shifted witro2 its
multiples are behaving similarly. This solution probabifubcated from the lower stable equilibrium state, while th
unstable solution bifurcated from the upper unstable éxyuiin state of the unforced pendulum.

Similarly to the unforced pendulum, the stable periodizoh has also a region of attraction, meaning that the
solutions started from this region are converging to thélstperiodic solutions. This region of attraction can be
seen on Figure 3(a). If this region of attraction is drawntfar other periodically shifted solutions too, then sets are
formed, which are the so called Lakes of Wada [11], that isvshon Figure 3(b).

Definition 2. (Lakes of Wada). The sets defined infespace have the property of the Lakes of Wada, if a mutual
boundary point of any two sets is the boundary point of evérgraset too.

In other words, no matter how closely a boundary is examiataf the defined sets will appear there. In our
case it means that near these boundary points all the refjattractions of the periodic solutions appear. Therefore
moving away from these points arbitrarily slightly any elic solution can be reached, which will naturallyfer
only in the number of previous turns.

Not all the points of thex, xX’) space of the examined system belong to the region of dtiraaf any of the stable
solutions (for example unstable solution), these pointish&iexamined later.

3. Stabilization of the unstable solution

3.1. Stabilizing the upper equilibrium of the unforced paod

The literature describes two methods for stabilizing agint©ne of them is when the system is controlled based
on the state of the dynamical system. This can be done eitirtinciously or within discrete periods of time. This
type of control, also called "feedback technique” stak#izhe desired state for a wider range of its initial statbée T
other method is when the contrdfacting the system does not depend on the current state oftizerical system.
In this case the stabilization can only be experienced onadlenset of initial states.

As is known, the upper equilibrium state of the unforced pdunah is unstable. It is proven [5] that by moving
the suspension point appropriately it can be stabilizedhSuresult can be achieved by moving the suspension point
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Figure 4: The absolute value of the eigenvalues as a funofitine parametep.

with an oscillating motion with appropriate period and aitele in vertical direction. (This system is usually called
“Kapitsa pendulum” in honor of the Russian physicist, P.apksa, who observed the discussed phenomenon for the
first time.) Let the motion happen according to the law

&(t) = asin(pt),

where¢ denotes the coordinate of the suspension point on the akati¢s,a is the amplitude of the vertical displace-
ment, andp is the number of displacements withir period of time. In this case theftirential equation of the
unforced pendulum can be written as

X" = (‘% - ﬁ sin(pt)) sinx — yx/,
wherel is the length of the pendulum. To observe the stability threatian equation method can be used. In this case
it is known that the pendulum has two equilibrium points,@uwhich one is stable (the lower equilibrium state 0)
and the other one is unstable (the upper equilibrium stater). Our investigation is focused on the upper equilibrium
point as we want to stabilize it. The period of time of the dopraabove is 2/p, so the variational system will be
examined for this length. Within this time interval the matic trajectory is knownx(t) = z(t) = = =const.), therefore
the trajectory does not need to be calculated. With thesanenthe variational system offtkrential equation can be
given as

Z =1,
Z:(g ap’

l— + |_ Sln(pt)) 73 — Y.

(16)

Considering the case= 0.1, = 20, we examine how fast the suspension point must be movethén words, how
large the parametqr should be chosen so that the upper equilibrium statezy = x is stable. To guarantee stability
we use (9). We determine reliably the fundamental matrig(27/p) = E) of (16) and its eigenvalues. To achieve
stability, it is necessary and ficient that the absolute values of the eigenvalues be lerslthaigure 4 shows these
absolute values for a constamt 8 and diferentp parameters.

3.2. Stabilizing the upper limit cycle of the forced pendulu

Analogously to the previous method we try to stabilize thparpunstable periodic orbit, the existence of which
was proved in Theorem 1. Le{t) denote the angle variable of this orbit. Based on the ptevresults it can be
anticipated that the oscillatory moving of the suspensmintinto the direction ok(t) with acceleration of magnitude
lap? sin(pt)| with appropriate amplituda and frequency will stabilize the unstable cycle.
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The unit vector in the plain pointing to the position of thesgension point is equal to (c&g), sinX(t)), so the
acceleration vector is

(u” (1), v’ (1)) = (ap’ sin(pt) cosx{t), ap? sin(pt) sinX(t)), (17)

and we get the control law of the moving of the suspensiontfminiouble integration. Making the choige= | = g,
v = 0.1 again, the equation of the controlled motion has the form

X’ = (—1+ uTm)sinx— v'l_(t) cosX + cost — 0.1x. (18)

Theorem 2. If a = 4 and p = 4, then the control defined kL 7) stabilizes the upper unstable cycle of the damped
forced pendulunfd), i.e., x= X(t) is a stable periodic solution of18).

Proor. We consider the system

7z =2,
z, = —sin(z) — 0.1z, + cost,
Z =1,
Z = (—1 ﬁ sin(pt) coszl(t)) sinz;
- ﬁ sin(pt) sinzy(t) cosz; — 0.1z, + cost, (19)
Z =2,
Z = ((—1 ﬁ sin(pt) coszl(t)) coszs(t)

ap?

+T sin(pt) sinz(t) sinzg(t)) Zs — 0.1z.

The variables; andz are identical tox, x, of the original diferential equation of the forced damped pendulum.
The purpose of the first two equations of the system is to tatledhe periodic solution with which the direction
of the acceleration of the suspension point can be detednifike system of the third and forth equation fgrz,
is equivalent to the second ordeffdrential equation (18); it describes the controlled systeier the influence of
control (17), consequently it continuously uses the caowttiz; (t) of the originally unstable motion yielded by the
first two equations of the system. Finally we checked theil#faby the fifth and sixth equation which form the
variational system to the system of the third and forth égnat\Ve start the process with the initial values rf &)
and @3, z4) both equal tq[2.6342722.634274][0.026042940.02604485}),

Settinga = 4 andp = 4, the two eigenvalues of the matrix obtained by the methadriteed above for the initially
unstable solution are:

At = [-0.41408955-0.41383926} [0.600605090.60292339],

and
A% = [-0.41408955-0.41383926] [0.600605090.60292339]

The absolute values of both multiplicators are less than sm#éhe originally unstable solution has become stahble.

We illuminate Theorem 2 by a computer simulation. Figure) Sfiows the solution of the uncontrolled pendu-
lum (4) satisfying initial condition;(0) = 2.5, x(0) = 0.0. To demonstrate the influence of the control on this
solution, in Figure 5(c) we present the solution of (18) with same initial condition.

Let us observe that control (17) does not depend on statdseafurrent pendulum — neither on the speed nor
the angle. Only the solution of the upper unstable trajgasapplied in these functions, which can be calculated in
advance and stored. Therefore the control applied on threrproblem is a kind of non-feedback techniques.
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Figure 5: Stabilization of the forced pendulum.
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