 Extensions of a Multistart Clustering Algorithm for Constrained Global Optimization Problems

José-Oscar H. Sendín§, Julio R. Banga§, and Tibor Csendes*
§Process Engineering Group (IIM-CSIC, Vigo, Spain)
* Institute of Informatics (University of Szeged, Hungary)

Summary

Here we consider the solution of constrained global optimization problems, such as those arising from the fields of chemical and biosystems engineering. These problems are frequently formulated (or can be transformed to) nonlinear programming problems (NLPs) subject to differential-algebraic equations (DAEs). In this work, we extend a popular multistart clustering algorithm for solving these problems, incorporating new key features including an efficient mechanism for handling constraints and a robust derivative-free local solver. The performance of this new method is evaluated by solving a collection of test problems, including several challenging case studies from the (bio)process engineering area.
Last revision: June 29, 2007
Introduction
Many optimization problems arise from the analysis, design and operation of chemical and biochemical processes, as well as from other related areas like computational chemistry and systems biology. Due to the nonlinear nature of these systems, these optimization problems are frequently non-convex (i.e. multimodal). As a consequence, research in global optimization (GO) methods has received increasing attention during the last two decades, and this trend is very likely to continue in the future (Sahinidis and Tawarmalani, 2000; Biegler and Grossmann, 2004a,b; Floudas, 2005; Floudas et al, 2005; Chachuat et al, 2006).

Roughly speaking, global optimization methods can be classified as deterministic, stochastic and hybrid strategies. Deterministic methods can guarantee, under some conditions and for certain problems, the location of the global optimum solution. Their main drawback is that, in many cases, the computational effort increases very rapidly with the problem size. Although significant advances have been made in recent years, and very especially in the case of global optimization of dynamic systems (Esposito and Floudas, 2000; Papamichail and Adjiman, 2002, 2004; Singer and Barton, 2006; Chachuat et al, 2006), these methods have a number of requirements about certain properties (like e.g. smoothness and differentiability) of the system, precluding their application to many real problems.

Stochastic methods are based on probabilistic algorithms, and they rely on statistical arguments to prove their convergence in a somewhat weak way (Guus et al, 1995). However, many studies have shown how stochastic methods can locate the vicinity of global solutions in relatively modest computational times (Ali et al, 1997; Törn et al, 1999; Banga et al, 2003, Ali et al, 2005; Khompatraporn et al, 2005). Additionally, stochastic methods do not require any transformation of the original problem, which can be effectively treated as a black-box.

Hybrid strategies try to get the best of both worlds, i.e. to combine global and local optimization methods in order to reduce their weaknesses while enhancing their strengths. For example, the efficiency of stochastic global methods can be increased by combining them with fast local methods (Renders and Flasse, 1996; Carrasco and Banga, 1998; Klepeis et al, 2003; Katare et al, 2004; Banga et al, 2005; Balsa-Canto et al, 2005).
Here we consider a general class of problems arising from the above mentioned fields, which are stated as (or can be transformed to) nonlinear programming problems (NLPs) subject to differential-algebraic equations (DAEs). These problems can be very challenging due to their frequent non-convexity, which is a consequence of their nonlinear and sometimes non-smooth nature, and they usually require the solution of the system dynamics as an inner initial value problem (IVP). Therefore, global optimization methods capable of dealing with complex black box functions are needed in order to find a suitable solution.

The main objectives of this work are: (a) to implement and extend a multistart clustering algorithm for solving constrained global optimization problems; and (b) to apply the new algorithm to several practical problems from the process engineering area. A new derivative-free local solver for constrained optimization problems is also suggested, and results are compared with those obtained using a robust and well-known stochastic algorithm.

Problem statement
The general non-linear constrained optimization problem is formulated as:

[image: image1.wmf](

)

f

min

x

x

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1)

subject to:

[image: image2.wmf](

)

==

i

hinec

0, 1,...,

x

 MACROBUTTON MTPlaceRef * MERGEFORMAT (2)

[image: image3.wmf](

)

£=

j

gjnic

0, 1,...,

x

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3)

[image: image4.wmf]££

LU

xxx

 MACROBUTTON MTPlaceRef * MERGEFORMAT (4)

Our objective is to find a global minimizer point of this problem. A multistart method completes many local searches starting from different initial points usually generated at random within the bounds, and it is expected that at least one of these points would be in the region of attraction of the global minimum. The region of attraction of a local minimum x* is defined as the set of points from which the local search will arrive to x*. It is quite likely that multistart methods will find the same local minima several times. This computational waste can be avoided using a clustering technique to identify points from which the local search will result in an already found local minima. In other words, the local search should be initiated not more than once in every region of attraction. Several variants of the clustering procedure can be found in the literature (e.g. Boender, et al., 1982; Rinnooy Kan & Timmer, 1987b; Csendes, 1988). However, all these algorithms were mainly focused on solving unconstrained global optimization problems.
Multistart Clustering Algorithm

Basic Description of the Algorithm
The multistart clustering algorithm presented in this work is based on GLOBAL (Csendes, 1988), which is a modified version of the stochastic algorithm by Boender et al. (1982) implemented in FORTRAN. In several recent comparative studies (Mongeau et al., 1998; Moles et al., 2003; Huyer, 2004) this method performed quite well in terms of both efficiency and robustness, obtaining the best results in many cases.
A general clustering method starts with the generation of a uniform sample in the search space S (the region containing the global minimum, defined by lower and upper bounds). After transforming the sample (e.g. by selecting a user set percentage of the sample points with the lowest function values), the clustering procedure is applied. Then, the local search is started from those points which have not been assigned to a cluster.
We will refer to the previous version of the algorithm as GLOBALf, while our new implementation, which has been written in Matlab, will be called GLOBALm. Table 1 summarizes the steps of the algorithm in both implementations, and several aspects of the method will be presented separately in the following subsections.
Table 1. Overall comparison of GLOBALf (original code) versus GLOBALm (present one).
	GLOBALf
	GLOBALm

	1. Set
[image: image5.wmf]=+

iteriter

1

 and generate NSAMPL points with uniform distribution and evaluate the objective function. Add this set to the current sample.

2. Select the reduced sample of

[image: image6.wmf]NGiterNSAMPL

c

=××

points, where
[image: image7.wmf]01

c

<£

.
3. Apply the clustering procedure to the points of the reduced sample.
4. Start local search from the points which have not been clustered yet. If the result of the local search is close to any of the existing minima, add the starting point to the set of seed points. Else declare the solution as a new local minimum.
5. Try to find not clustered points in the reduced sample that can be clustered to the new point resulting from Step 4.

6. If a new local minimum was found in Step 4 and iter is less than the maximum allowed number of iterations, go to Step 1. Else STOP.
	1. Set
[image: image8.wmf]=+

iteriter

1

 and generate NSAMPL points with uniform distribution and evaluate the objective function. Add this set to the current sample.

2. Select the reduced sample of

[image: image9.wmf]NGiterNSAMPL

c

=××

points, where
[image: image10.wmf]01

c

<£

. Set k = 0.

3. Set k = k + 1 and select point xk from the reduced sample. If this point can be assigned to any of the existing clusters, go to Step 5. If no unclustererd points remained, go to Step 6.

4. Start local search from point xk. If the result is close to any of the existing minima, add xk to the corresponding cluster. Else declare the solution as a new local minimum and add both the solution and xk to a new cluster.

5. If k is not equal to NG, go to Step 3.

6. If a termination criterion is not satisfied and iter is less than the maximum allowed number of iterations, go to Step 1. Else STOP.

Handling of Constraints
As already mentioned, GLOBALf was designed to solve bound-constrained problems. Here we add constraints handling capabilities to GLOBALm. If suitable local solvers for constrained optimization problems are available, the difficulty arises in the global phase of the algorithm, i.e. the selection of good points from which the local search is to be started. In this case we will make use of the L1 exact penalty function:

[image: image11.wmf](

)

{

}

==

éù

=++

êú

êú

ëû

åå

necnic

hiigjj

ij

Pfwhwg

1,,

11

max0,

x

 MACROBUTTON MTPlaceRef * MERGEFORMAT (5)

This penalty function is exact in the sense that for sufficiently large values of the penalty weights, a local minimum of P1 is also a local minimum of the original constrained problem. In particular, if x* is a local minimum of the constrained problem, and (* and u* are the corresponding optimal Lagrange multiplier vectors, x* is also a local minimum of P1 if (Edgar et al., 2001):

[image: image12.wmf]l

³=

hii

winec

*

,

, 1,...,

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (6)

[image: image13.wmf]³=

gji

wujnic

*

,

, 1,...,

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (7)

This has the advantage that the penalty weights do not have to approach infinity as in the case of e.g. the quadratic penalty function, and consequently, a lesser distortion can be expected in the transformed objective function. If the local solver provides estimates of the Lagrange multipliers, an iterative procedure can be applied in which the values of these weights are updated with the feedback resulting from the local search.
Finally, it should be noted that, although this penalty function is non-differentiable, it is only used during the global phase, i.e. to select the candidate points from which the local solver is then started.
Clustering
The aim of the clustering step is to identify points from which the local solver will lead to already found local minima. Clusters are usually grown around seed points, which are the set of local minima found so far and the set of initial points from which the local search was started. This clustering procedure can be carried out in different ways, as described in e.g. Rinnooy Kan & Timmer (1987b) and Locatelli and Schoen (1999), but here we will focus on the algorithm variant by Boender et al. (1982). In this method, clusters are formed by means of the single linkage procedure so that clusters of any geometrical shape can be produced. A new point x will join a cluster if there is a point y in the cluster for which the distance is less than a critical value dC. The critical distance depends on the number of points in the whole sample and on the dimension of the problem, and is given by:

[image: image14.wmf](

)

(

)

a

p

-

éù

êú

êú

ëû

G+

=-

n

N

C

n

nmS

d

1/

1/2

1

2

1/('1)

/2

1(*)()

1

Hx

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (8)

where (is the gamma function, n is the number of decision variables of the problem, H(x*) is the Hessian of the objective function at the local minimum x*, m(S) is a measure of the set S (i.e. the search space defined by the lower and upper bounds), N’ is the total number of sampled points, and 0 < (< 1 is a parameter of the clustering procedure.
GLOBALf was a modification of the algorithm by Boender. The main changes made were the following:

· Variables are scaled so that the set S is the hypercube [-1, 1]n.
· Instead of the Euclidean distance, the greatest difference in absolute values is used. Also, the Hessian in equation (8) is replaced by the identity matrix.
· The condition for clustering also takes into account the objective function values, i.e. a point will join a cluster if there is another point within the critical distance dC and with a smaller value of the objective function. The latter condition for clustering is similar to that of the multi-level single linkage approach of Rinnooy Kan & Timmer (1987b).
In GLOBALm the condition for clustering will also take into account the feasibility of the candidate points. We define the constraint violation function ((x) as:

[image: image15.wmf](

)

{

}

11

max0,

necnic

ij

ij

hg

f

==

=+

åå

x

 MACROBUTTON MTPlaceRef * MERGEFORMAT (9)

A point will join a cluster if there is another point within the critical distance dC which is better in either the objective function or the constraint violation function. This condition is independent of the value of the penalty weights.
Local Solvers

In GLOBALf, two local solvers were available: a quasi-Newton algorithm with the DFP (David-Fletcher-Powell) update formula, and a random walk type direct search method, UNIRANDI (Järvi, 1973), which was recommended for non-smooth objective functions. However, these methods solve directly only problems without constraints.
In GLOBALm we have incorporated different local optimization methods which are capable of handling constraints: two SQP methods and an extension of UNIRANDI for constrained problems. In addition, other solvers, like e.g. those which are part of the MATLAB Optimization Toolbox, can be incorporated with minor programming effort. These methods are briefly described in the following paragraphs.
FMINCON (The Mathworks, Inc.): this local solver uses a Sequential Quadratic Programming (SQP) method where a quadratic programming subproblem is solved at each iteration using an active set strategy similar to that described in Gill et al. (1981). An estimate of the Hessian of the Lagrangian is updated at each iteration using the BFGS formula.
SOLNP (Ye, 1988): this is a gradient-based method which solves a linearly constrained optimization problem with an augmented Lagrangian objective function. At each major iteration, the first step is to see if the current point is feasible for the linear constraints of the transformed problem. If not, an interior linear programming (LP) Phase I procedure is performed to find an interior feasible solution.Next, a SQP method is used to solve the augmented problem. The gradient vector is evaluated using forward differences, and the Hessian is updated using the BFGS technique.
UNIRANDI: this is a random walk method with exploitation of the search direction proposed by Järvi (1973). Given an initial point x and a step length h, the original algorithm consists of the following steps:
1. Set trial = 1.
2. Generate a unit random direction d.
3. Find a trial point
[image: image16.wmf]=+×

trial

h

xxd

.
4. If
[image: image17.wmf]<

trial

ff

()()

xx

 go to Step 10.
5. Try the opposite direction:

d = - d,

[image: image18.wmf]trial

h

=+×

xxd

.
6. If
[image: image19.wmf]<

trial

ff

()()

xx

 go to Step 10.
7. Set trial = trial + 1. If trial ≤ max_ndir, go to Step 2.
8. Halve the step length, h = 0.5·h.
9. If the convergence criterion is satisfied, Stop. Else go to Step 1.
10. Linear search:

While
[image: image20.wmf]<

trial

ff

()()

xx

x = xtrial .

Double the step length, h = 2·h.

Find
[image: image21.wmf]=+×

trial

h

xxd

.

Halve step length, h = 0.5·h.

Go to Step 1.
A number of modifications have been implemented for the use in GLOBALm:
Generation of random directions: random directions are uniformly generated in the interval [-0.5, 0.5], but they are accepted only if the norm is less or equal than 0.5. This condition means that points outside the hypersphere of radius 0.5 are discarded in order to obtain a uniform distribution of random directions (i.e. to avoid having more directions pointing towards the corners of the hypercube). As the number of variables increases, it becomes more difficult to produce points satisfying this condition. In order to fix this problem, we will use normal distribution ((0, 1) to generate the random directions
.
Handling of bound-constraints: if variables arrive out of bounds, they are forced to take the value of the corresponding bound. This strategy has been proved to be more efficient to obtain feasible points than others in which infeasible points were rejected.
Convergence criterion: the algorithm stops when the step length is below a specified tolerance. The relative decrease in the objective function is not taken into account.
Filter-UNIRANDI: we propose here an extension of UNIRANDI in which the constraints are handled by means of a filter scheme (Fletcher & Leyffer, 2002). The idea is to transform the original constrained optimization problem into a multiobjective optimization problem with two conflicting criteria: minimization of the objective function f(x) and, simultaneously, minimization of a function which takes into account the constraint violation, ((x).
The key concept in the filter approach is that of non-domination. Given two points x and y, the pair [f(y), ((y)] is said to dominate the pair [f(x), ((x)] if f(y) ≤ f(x) and ((y) ≤ ((x), with at least one strict inequality. The filter
[image: image22.wmf]F

 is then formed by a collection of non-dominated pairs [f(y), ((y)]. A trial point xtrial will be accepted by the filter if the corresponding pair is not dominated by any member of the filter. Otherwise, the step made is rejected. An additional heuristic criterion for a new trial point to be accepted is that ((xtrial) ≤ (max. This upper limit is set to the maximum between 10 and 1.25 times the initial constraint violation. Figure 1 shows a graphical representation of a filter.

[image: image23.png]Objective function f

Best feasible
point

Accepted

il point

Dorminated

(fitered) trial point

Constraint violation ¢ uax

Figure 1: Graphical representation of a non-domination filter.
When the filter strategy is incorporated to the algorithm, the linear search will be performed only if a trial point reduces the objective function and the constraint violation is less or equal than that of the current best point, but as long as new trial points are not filtered, the step length is doubled and new directions are tried. The parameter max_ndir (equal to 2 in UNIRANDI) is the maximum number of consecutive failed directions which are tried before halving the step length.
A more detailed description of the Filter-UNIRANDI algorithm is given below.
1. Set trial = 1 and x0 = x, where x is the best point found so far.
2. Generate a unit random direction d.

3. Find a trial point
[image: image24.wmf]0

trial

h

=+×

xxd

.
4. If
[image: image25.wmf]<

trial

ff

()()

xx

 and
[image: image26.wmf]ff

£

trial

()()

xx

 go to Step 13.
5. If xtrial is accepted by the filter, update the Filter, double step length h, and go to Step 2.
6. Try the opposite direction:

d = - d;

[image: image27.wmf]0

trial

h

=+×

xxd

.

7. If
[image: image28.wmf]<

trial

ff

()()

xx

 and
[image: image29.wmf]ff

£

trial

()()

xx

go to Step 13.

8. If xtrial is accepted by the filter, update the Filter, double step length h, and go to Step 2.

9. Set trial = trial + 1.
10. If trial = max_ndir,

If rand < prob_pf, select a point x0 from the Filter.

If rand ≥ prob_pf, x0 = x.

Go to step 2.
11. Halve step length, h = 0.5·h.
12. If h is below the specified tolerance, Stop. Else go to Step 1.

13. Linear search:

While
[image: image30.wmf]<

trial

ff

()()

xx

and
[image: image31.wmf]ff

£

trial

()()

xx

,

x = xtria..

Double step length, h = 2·h.

Find
[image: image32.wmf]trial

h

=+×

xxd

.

Halve step length, h = 0.5·h.

Go to Step 1.
Two additional heuristics have been implemented in order to increase the robustness of the method and to avoid situations in which Filter-UNIRANDI performs poorly in terms of computational effort:
· In order to avoid an accumulation of points in
[image: image33.wmf]F

 very close to each other a relative tolerance, rtol_dom, is used in the comparisons to decide if a point is acceptable to the filter. Given a pair [f(y), ((y)] in the filter, a trial point is rejected if:

[image: image34.wmf](

)

(

)

(

)

_

trial

frtoldomff

-×£

yyx

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (10)

[image: image35.wmf](

)

(

)

(

)

_

trial

rtoldom

fff

-×£

yyx

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (11)

The default values for these tolerances has been fixed at 10-3. Decreasing this value will produce better solutions in some cases since more trial points are evaluated.
· In UNIRANDI, trial points are always generated around the best point found so far. Here we introduce a probability prob_pf of using an infeasible point in
[image: image36.wmf]F

 in order to explore other regions of the search space. If x is the best point found so far, for each point yk in the filter the ratio (k is defined as:

[image: image37.wmf](

)

(

)

(

)

(

)

k

k

k

ff

w

ff

-

=

-

xy

yx

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (12)

The point with the maximum ratio (k is chosen as the starting point x0 for the next iteration (Step 10 of the algorithm above).
Termination Criteria
GLOBALf terminates the search when either the maximum number of local minima has been reached or when after one iteration no new local minima have been found. Other termination criteria limits which can be specified by the user in GLOBALm are the following:
· Maximum number of local minima (this value was fixed at 20 in the GLOBALf code).
· Maximum number of local searches.

· Maximum number of iterations (this value was fixed at
[image: image38.wmf]1/

c

in the GLOBALf code).
· Maximum number of function evaluations.

· Maximum CPU time.
Default values of GLOBALf are kept in our Matlab implementation.
Case Studies

General Benchmark Problems
We have first considered a collection of thirteen benchmark problems in order to test the performance of the new implementation and to study the possible effect of the penalty weights. The details of these problems can be found in the study by Runarsson and Yao (2000).

Process and Biochemical Engineering Problems
TRP: Design of a metabolic pathway. Here we consider the non-linear form of the problem solved by Marín-Sanguino and Torres (2000). The objective is to maximize the rate of production of the amino acid tryptophan in the bacteria E. coli:

[image: image39.wmf](

)

aamm

=+

+

tr

z

v

zk

56

max1

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (13)

subject to:

[image: image40.wmf](

)

am

t

+

=-+=

++

dxz

x

drz

1

1

0

1(1)

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (14)

[image: image41.wmf](

)

am

t

=-+=

dy

xy

d

2

0

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (15)

[image: image42.wmf](

)

a

maamm

t

=-++-=

+++

i

i

dzykzz

z

dkzzzk

2

4

56

22

10

1

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (16)

[image: image43.wmf]££

x

0.1477230.221584

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (17)

[image: image44.wmf]££

y

6.3894049.584107

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (18)

[image: image45.wmf]££

z

1135.1451702.718

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (19)

[image: image46.wmf]££

i

k

500.005000.0

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (20)

[image: image47.wmf]m

££

0.00.2

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (21)

[image: image48.wmf]££

r

4.010

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (22)

[image: image49.wmf]a

££

5

0.01000

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (23)

where x, y, z, ki, (, (, and (5 are the decision variables.
FPD: Fermentation process design (Banga & Seider, 1996). This case study is a design problem of a fermentation process for the production of biomass. The objective is to maximize the venture profit of the process by adjusting seven independent variables: F, FC¸ fv, (, h, X, and S.

[image: image50.wmf]max

PRORFCI

F=-´

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (24)

subject to:

[image: image51.wmf]0.5

2

(1)

0

Cv

FFfh

R

a

p

+--

=

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (25)

[image: image52.wmf](

)

0.5

2

0

Cv

SK

XFFfh

kXSe

Rh

a

p

-

-++

+=

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (26)

[image: image53.wmf]2

()()

0

SK

FCC

FSSFSS

kXSe

RhabS

p

-

-+-

-=

+

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (27)

[image: image54.wmf]1.90

Rh

-³

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (28)

[image: image55.wmf],,0

C

FF

a

³

,
 MACROBUTTON MTPlaceRef * MERGEFORMAT (29)

with:

[image: image56.wmf](

)

(

)

(

)

(

)

(

)

-

-

=---

=×+

=

=

vCvt

bmvvbmcCv

t

PyrcXfhcFcFcXfhP

FCIFBVFBXfh

Pyr

ROR

770.50.5

1234

0.444

770.7240.5

,,

$10/10/3600

$101.1810

(operating minutes/)504,000

0.15

WWTP: Wastewater treatment plant (Moles et al., 2003). This is an integrated design and control problem with 8 decision variables. The objective function to minimize is a weighted sum of an economic function and a controllability measure (very often two conflicting criteria) by adjusting the static variables of the process design, the operation conditions and the controller parameters, subject to three sets of constraints:

· A set of 33 differential-algebraic equality constraints (system dynamics), which are integrated for each function evaluation using DASSL as an IVP solver.
· A set of 32 inequality constraints, imposing additional requirements for the process performance.
· A set of 120 double inequality constraints on the state variables.
DP: Drying process (Banga & Singh, 1994). This is an optimal control problem related to the air drying of foods. The objective is to find the optimal profile of the control variable to maximize the retention of a nutrient (ascorbic acid) with a constraint on the final moisture content and limits for the values of the control variable (the air dry bulb temperature). The control parameterization method, with a discretization of 10 elements for the control, was used, with LSODE as the IVP solver.

Results
General Benchmark Problems
All the optimization runs (20 experiments per problem) were carried out on a Pentium IV PC @ 1.8 GHz. Unless otherwise stated, the following settings have been used for all the problems:
· NSAMPL: 100,
· NSEL (defined as (·NSAMPL): 2,
· Maximum number of clusters: 20,
· Initial penalty weight: 1,
· Local solver: FMINCON.
The experimental results are summarized in Table 2, which shows the best objective function value found, and the mean, median and worst values of the independent 20 runs. The optimal solution (or the best known solution) is included for comparison. Table 2 also reports other performance measures of the algorithm, such as the number of local searches carried out, the number of local minima identified, the percentage of clustered points (i.e. the ratio between the number of points from which a local search is started and the total number of candidate starting points), and the computational effort in terms of number of function evaluations and the running time in seconds.
GLOBALm consistently found the global minimum in all the optimization runs except for problems g01 (5 failed runs), g03 (9 failed runs) and g08 (8 failed runs). For these problems, however, the global minimum is always obtained by increasing the value of NSEL. The test problem g02 could not be solved satisfactorily due to the non-smoothness of the objective function. It is worth mentioning that the computational cost of GLOBALm in terms of both CPU time and number of function evaluations is less than that of other stochastic approaches like SRES.
As explained before, the penalty weights are updated at each iteration with the estimation of the optimal Lagrange multipliers provided by the local solver. In order to study the effect of the initial penalty weight, its value was systematically varied between 0 and 104. In general, no significant differences in the performance of the method were detected except for problems g03 and g08. For low values of the penalty weight, the algorithm located more than 15 local minima for problem g03, and an increase in NSEL was necessary in order to assure that the global minimum was found in all the runs. However, with values of the penalty weights much greater than the optimal Lagrange multipliers, the global minimum was the only minimum found in all the runs. On the other side, for problem g08, worse results were obtained when increasing the penalty coefficients.
We want to stress the fact that with appropriate local solvers for constrained optimization problems, the use of the L1 penalty function is simply a heuristic to decide which points are candidates for the local search. The higher the value of the penalty weights, the more emphasis will be put on selecting feasible initial points.
Table 2. Results for the benchmark problems obtained using GLOBALm with FMINCON
	
	G01
	G03
	G04
	G05
	G06
	G07

	Optimal f*
	-15.0000
	-1.0000
	-30665.54
	5126.498
	-6961.81
	24.306

	Best f
	-15.0000
	-1.0000
	-30665.54
	5126.498
	-6961.81
	24.306

	Mean f
	-14.5898
	-0.5500
	-30665.54
	5126.498
	-6961.81
	24.306

	Median f
	-15.0000
	-1.0000
	-30665.54
	5126.498
	-6961.81
	24.306

	Worst f
	-12.6563
	 0.0000
	-30665.54
	5126.498
	-6961.81
	24.306

	No. successful runs
	15
	11
	20
	20
	20
	20

	No. of minima
	8
	17
	1
	1
	1
	1

	Local searches
	13
	17
	4
	4
	2
	4

	% points clustered
	2.3%
	20.3%
	24.8%
	30.8%
	64.0%
	18.9%

	Function evals.
	2205
	5295
	450
	530
	270
	1795

	CPU time (sec.)
	2.1
	5.1
	0.7
	0.7
	0.4
	2.1

Table 2 (continued). Results for the benchmark problems obtained using GLOBALm

	
	G08
	G09
	G10
	G11
	G12
	G13

	Optimal f*
	-0.095825
	680.63
	7049.331
	0.75
	-1.0000
	0.05395

	Best f
	-0.095825
	680.63
	7049.248
	0.75
	-1.0000
	0.05395

	Mean f
	-0.070917
	680.63
	7049.248
	0.75
	-0.9997
	0.07319

	Median f
	-0.095825
	680.63
	7049.248
	0.75
	-1.0000
	0.05395

	Worst f
	-0.025812
	680.63
	7049.248
	0.75
	-0.9944
	0.43885

	No. successful runs
	12
	20
	20
	20
	19
	19

	No. of minima
	3
	1
	1
	2
	3
	6

	Local searches
	4
	3
	6
	4
	4
	8

	% points clustered
	51.6%
	27.8%
	8.9%
	48.9%
	50.0%
	25.9%

	Function evals.
	650
	2145
	1890
	410
	615
	1755

	CPU time (sec.)
	0.5
	1.8
	1.5
	0.4
	4.4
	1.3

Process and Biochemical Engineering Problems
Comparison between GLOBALf and GLOBALm
We have compared the performance of GLOBALm with the original GLOBALf (the Fortran 77 code was called from Matlab via a mex-file). As before, the default values for NSAMPL and NSEL were fixed at 100 and 2, respectively, and 20 independent runs were carried out for each case study. The comparison is made using UNIRANDI as the local solver, with a tolerance value of 10-6. It should be noted that in this case the penalty weights have to be adjusted so that UNIRANDI produces feasible solutions. The L1 exact penalty function is also used in GLOBALf for handling constraints.
Results for these runs are presented in Table 3. The performance of the clustering strategy is quite similar in both implementations, but better solutions are obtained with GLOBALm. CPU times are also lower than those of GLOBALf.
Table 3. Comparison between the implementations of GLOBAL-UNIRANDI.
	
	Production of tryptophan
(TRP)
	Fermentation Process Design (FPD)

	
	GLOBALf
	GLOBALm
	GLOBALf
	GLOBALm

	Optimal f*
	-4.0116
	-11.5899

	Penalty weight
	10
	100

	Best f
	-3.9829
	-4.0110
	-11.5822
	-11.5896

	Mean f
	-3.7943
	-3.9391
	-10.7809
	-11.5183

	Median f
	-3.8532
	-3.9767
	-11.4316
	-11.5596

	Worst f
	-3.1277
	-3.7262
	- 3.8669
	-11.0713

	No. of minima
	11
	12
	5
	3

	Local searches
	11
	13
	6
	4

	% points clustered
	30.2%
	33.5%
	43.2%
	42.0%

	Function evals.
	2375
	2845
	2225
	1690

	CPU time (sec)
	2.6
	1.2
	3.2
	0.8

Table 3 (continued). Comparison between the implementations of GLOBAL-UNIRANDI.
	
	Wastewater Treatment Plant (WWTP)
	Drying Process
(DP)

	
	GLOBALf
	GLOBALm
	GLOBALf
	GLOBALm

	Optimal f*
	1537.96
	-0.19999

	Penalty weight
	10000
	10

	Best f
	1551.93
	1544.07
	-0.19063
	-0.19965

	Mean f
	1600.87
	1568.03
	-0.18615
	-0.19593

	Median f
	1582.83
	1567.49
	-0.18611
	-0.19614

	Worst f
	1828.75
	1589.52
	-0.18109
	-0.19123

	No. of minima
	17
	17
	18
	19

	Local searches
	17
	17
	18
	19

	% points clustered
	19.4 %
	19.3%
	3.7 %
	5.8%

	Function evals.
	15365
	22265
	5755
	6970

	CPU time (sec.)
	665
	1010
	500
	450

Table 4. Results using the SQP solvers.
	
	TRP
	FPD
	WWTP
	DP

	Local solver
	FMINCON
	FMINCON
	SOLNP
	SOLNP

	Penalty weight
	10
	100
	10000
	10

	Best f
	-4.0116
	-11.5899
	1537.82
	-0.19999

	Mean f
	-4.0116
	-11.5899
	1639.58
	-0.19694

	Median f
	-4.0116
	-11.5899
	1541.04
	-0.19826

	Worst f
	-4.0116
	-11.5899
	3405.70
	-0.18966

	No. of minima
	1
	1.5
	14
	19

	Local searches
	4
	3
	15
	19

	% points clustered
	15.6 %
	36.4%
	20.5%
	5.7%

	Function evals.
	460
	555
	9010
	8310

	CPU time (sec.)
	0.5
	0.5
	405
	520

Table 4 shows the results obtained when the SQP methods are selected as the local strategy. For problems TRP and FPD, the global minimum was found in all the experiments, and FMINCON performed much better than SOLNP. Although the latter also arrived to the global minimum in all runs, the computational effort was similar to that of UNIRANDI (results not shown). It is interesting to note the difference in the number of local minima located and the number of local searches with those required when UNIRANDI is selected.
On the other hand, SOLNP was clearly superior for problems WWTP and DP. Surprisingly, the best solutions were found with this solver in at least one of the runs, even when these problems are highly nonlinear and the objective functions are very noisy due the numerical integration of the differential equations. Here it should be noted that the mean objective function value for problem WWTP showed in Table 4 is a bit misleading. For this problem, GLOBALm with SOLNP improved slightly the best known solution in 6 runs.
Finally, several sets of experiments carried out with different values of the initial penalty weight also revealed that it has a very little impact on the overall performance of the algorithm.
Performance of Filter-UNIRADI within GLOBALm
Another 20 runs of GLOBALm for each problem were carried out using the Filter-UNIRANDI algorithm as local solver, applying the same optimization settings as above. The results obtained are presented in Table 5. In Appendix I a comparison with a pure multistart strategy using UNIRANDI and Filter-UNIRANDI is presented.
Table 5. Results obtained using GLOBAL with Filter-UNIRANDI.
	
	Production of tryptophan (TRP)
	Fermentation Process Design (FPD)

	max_ndir
	2
	3
	2
	3

	Best f
	-4.0116
	-4.0116
	-11.5899
	-11.5899

	Mean f
	-4.0033
	-4.0069
	-11.5853
	-11.5868

	Median f
	-4.0094
	-4.0103
	-11.5893
	-11.5883

	Worst f
	-3.9803
	-3.9892
	-11.5638
	-11.5680

	No. of minima
	12
	6
	1.7
	1.5

	Local searches
	13
	8
	4
	3

	% points clustered
	26.7%
	23.9%
	38.8%
	34%

	Function evals.
	7985
	7890
	3915
	5135

	CPU time (sec.)
	5.9
	5.6
	5.1
	5.7

Table 5 (continued). Results obtained using GLOBAL with Filter-UNIRANDI.

	
	Wastewater Treatment Plant (WWTP)
	Drying Process (DP)

	max_ndir
	2
	3
	2
	3

	Best f
	1539.3
	1540.7
	-0.19996
	-0.19996

	Mean f
	1564.0
	1556.7
	-0.19983
	-0.19981

	Median f
	1562.8
	1553.6
	-0.19986
	-0.19982

	Worst f
	1592.2
	1592.1
	-0.19948
	-0.19941

	No. of minima
	13
	17
	18
	17

	Local searches
	13
	17
	19
	19

	% points clustered
	16.2%
	16.5%
	4.0%
	5.1%

	Function evals.
	21540
	33035
	16615
	23155

	CPU time (sec.)
	1230
	2110
	1055
	1470

From inspection of Tables 3 and 5, it can be concluded that the robustness of GLOBALm is greatly improved with only a moderate increase in the computational effort needed. As in the multistart case, increasing the value of max_ndir does not produce better results, except for the problem TRP. In this case, the local minima were identified more accurately, which implies a reduction in both the number of local searches and the number of function evaluations.
It is well recognized that the efficiency and accuracy of random direct search methods, such as UNIRANDI, are rather low. However, the usefulness of Filter-UNIRANDI is illustrated with the results obtained for the problem DP, which has a highly noisy objective function. Although the best solution was found with SOLNP, the proposed local solver is more robust for this class of problems. Not only it also found solutions very close to the optimal one, but it also presents a very low dispersion. The worst value found in all the 20 runs was -0.19941 which is very similar to the best found with UNIRANDI, and it is better than the mean and median values obtained with SOLNP.
Comparison with a stochastic evolutionary algorithm
The case studies were also solved with SRES (Runnarsson & Yao, 2000), which is an evolutionary algorithm with a quite good handling of constraints. The algorithm was run in all cases with a population size of 100 and 200 generations. As shown in Table 6, worse solutions were obtained using SRES, except in the case of the wastewater treatment plant problem, for which the evolution strategy consistently found solutions very close to the global one in the majority of runs.
The performance figures of both methods are compared in Figures 2 to 5, where the convergence curves for the best three runs are depicted. It can be observed that not only GLOBALm found better solutions for the set of problems considered, but it also exhibits a faster convergence to the vicinity of the global minimum, which is usually found in the first local searches.
Table 6. Results obtained using SRES.
	
	TRP
	FPD
	WWTP
	DP

	Best f
	-4.0116
	-11.5899
	1537.82
	-0.19994

	Mean f
	-3.9858
	-11.5791
	1538.94
	-0.19898

	Median f
	-4.0021
	-11.5825
	1538.00
	-0.19858

	Worst f
	-3.8704
	-11.5470
	1553.39
	-0.19346

	Function evals.
	20000
	20000
	20000
	20000

	CPU time (sec.)
	1.6
	1.9
	1020
	1245

[image: image57.emf]10

2

10

3

10

4

-4.0

-3.8

-3.6

-3.4

-3.2

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

Function evaluations

Objective function

Figure 2. Convergence curves of the best 3 runs of SRES (solid line) and GLOBALm with Filter-UNIRANDI (dotted line) for the problem TRP.

[image: image58.emf]10

2

10

3

10

4

-12

-10

-8

-6

-4

-2

0

2

Function evaluations

Objective function

Figure 3. Convergence curves of the best 3 runs of SRES (solid line) and GLOBALm with Filter-UNIRANDI (dotted line) for the problem FPD.
[image: image59.emf]10

2

10

3

10

4

2000

3000

4000

5000

6000

7000

8000

Objective function

Function evaluations

Figure 4. Convergence curves of the best 3 runs of SRES (solid line) and GLOBALm with Filter-UNIRANDI (dotted line) for the problem WWTP.

[image: image60.emf]10

2

10

3

10

4

10

5

-0.200

-0.195

-0.190

-0.185

-0.180

-0.175

-0.170

-0.165

-0.160

Function Evaluations

Objective function

Figure 5. Convergence curves of the best 3 runs of SRES (solid line) and GLOBALm with Filter-UNIRANDI (dotted line) for the problem DP.
Conclusions
In this work we have developed and implemented GLOBALm, an extension of a well-known clustering multistart algorithm for solving nonlinear optimization problems with constraints. The proposed approach makes use of an exact penalty function in the global phase for the selection of the initial points from which the local search is started.
We have also incorporated some local optimization methods, including a new derivative-free solver which can handle nonlinear constraints without requiring the setting of any penalty parameter. This solver uses a filter approach based on the concept of non-domination, and it has proved to be more robust than the original algorithm for non-smooth and noisy problems. The performance and robustness of the new solver was tested with two sets of challenging benchmark problems, showing excellent results.
References
Ali M., Storey C., Törn A. (1997), Application of stochastic global optimization algorithms to practical problems. J. Optim. Theory Appl. 95:545-563.

Ali, M.M., C. Khompatraporn and Z. Zabinsky (2005) A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems. Journal of Global Optimization 31:635-672.

Balsa-Canto, E.; Vassiliadis, V. S.; Banga, J. R. (2005) Dynamic Optimization of Single- and Multi-Stage Systems Using a Hybrid Stochastic-Deterministic Method. Industrial and Engineering Chemistry Research 44(5): 1514-1523.

Banga, J. R., E. Balsa-Canto, C. G. Moles and A. A. Alonso (2005) Dynamic optimization of bioprocesses: Efficient and robust numerical strategies. Journal of Biotechnology 117(4):407-419.

Banga, J.R. and Seider, W.D. (1996). Global Optimization of Chemical Processes using Stochastic Algorithms. In Floudas, C.A.; Pardalos, P.M. (Editors). State of the Art in Global Optimization: Computation Methods and Applications, pp. 563-583. Kluwer Academic Publisher: Dordrecht.
Banga, J.R. and Singh, R. P. (1994). Optimization of Air Drying of Foods. Journal of Food Engineering, 23, 189-211.

Banga, J.R., Moles, C.G., Alonso, A.A. (2003) Global optimization of bioprocesses using stochastic and hybrid methods. In "Frontiers In Global Optimization ", C.A. Floudas and P. M. Pardalos, (Eds.), Nonconvex Optimization and Its Applications, vol. 74, pp. 45-70, Kluwer Academic Publishers, ISBN 1-4020-7699-1.

Biegler, L.T., Grossmann, I.E. (2004) Retrospective on optimization. Computers and Chemical Engineering 28(8):1169-1192.

Boender, C.G.E., Rinnooy Kan, A.H.G., Timmer, G.T., and Stougie, L. (1982). A Stochastic Method for Global Optimization. Mathematical Programming, 22, 125-140.
Carrasco, E.F. and J. R. Banga (1998) A hybrid method for the optimal control of chemical processes. IEE Conf. Publ. 455(2):925-930.

Chachuat, B., Singer, A.B., Barton, P.I. (2006) Global methods for dynamic optimization and mixed-integer dynamic optimization. Industrial and Engineering Chemistry Research 45 (25):8373-8392.

Csendes, T. (1988). Nonlinear parameter estimation by global optimization. Efficiency and reliability. Acta Cybernetica, 8, 361-370.
Edgar, T.F., Himmelblau, D.M., and Lasdon, L.S. (2001). Optimization of Chemical Processes. McGraw Hill, Boston.

Esposito WR, Floudas CA. (2000) Deterministic global optimization in nonlinear optimal control problems. J Global Optim. 17:97-126

Fletcher, R. and Leyffer, S. (2002). Nonlinear Programming without a Penalty Function. Mathemtaical Programming, 91, 239-269.

Floudas, C.A. (2005) Research challenges, opportunities and synergism in systems engineering and computational biology. AIChE Journal 51(7):1872-1884.

Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J. (2005) Global optimization in the 21st century: Advances and challenges. Computers and Chemical Engineering 29:1185-1202.

Gill, P.E., Murray, W., and Wright, M.H. (1981). Practical Optimization. Academic Press, New York.

Grossmann, I.E., Biegler, L.T. (2004) Part II. Future perspective on optimization. Computers and Chemical Engineering 28(8):1193-1218.

Guus, C.; Boender, E.; Romeijn, H. E. (1995) Stochastic methods. In Handbook of global optimization, ed.; Horst, R.; Pardalos, P. M. (eds.) Kluwer Academic Publishers: Dordrecht.

Huyer, W. (2004). A comparison of some algorithms for bound constrained global optimization. Technical report. University of Vienna. Available at http://www.mat.univie.ac.at/~neum/glopt/contrib/compbound.pdf
Järvi, T. (1973). A Random Search Optimizer with an Application to a Max-Min Problem. Publications of the Institute for Applied Mathematics, 3. University of Turku.
Katare, S., Bhan, A., Caruthers, J.M., Delgass, W.N., Venkatasubramanian, V. (2004) A hybrid genetic algorithm for efficient parameter estimation of large kinetic models. Computers and Chemical Engineering 28(12):2569-2581

Khompatraporn, C., Pinter, J.D., Zabinsky, Z.B. (2005) Comparative assessment of algorithms and software for global optimization. Journal of Global Optimization 31(4):613-633.

Klepeis, J.L., Pieja, M.J., Floudas, C.A. (2003) Hybrid global optimization algorithms for protein structure prediction: Alternating hybrids. Biophysical Journal 84 (2 I), pp. 869-882

Locatelli, M. and Schoen, F. (1999). Random Linkage: a Family of Acceptance/Rejection Algorithms for Global Optimization. Mathematical Programming, 85, 379-396.

Marín-Sanguino, A. and Torres, N.V. (2000). Optimization of Tryptophan Production in Bacteria. Design of a Strategy for Genetic Manipulation of the Tryptophan Operan for Tryptophan Flux Maximization. Biotechnology Progress, 16(2), 133-145.
Moles, C.G., Gutierrez, G., Alonso, A.A. and Banga, J.R. (2003). Integrated Process Design and Control via Global Optimization: a Wastewater Treatment Plant Case Study. Chemical Engineering Research & Design, 81, 507-517.
Mongeau, M., Karsenty, H., Rouzé, V., and Hiriart-Urruty, J.-B. (1998). A comparison of public-domain software for black box global optimization. Technical report LAO 98-01, Universit’e Paul Sabatier, Toulouse, France.
Papamichail I, Adjiman CS (2004) Global optimization of dynamic systems. Comput Chem Eng. 28:403-415.

Papamichail I, Adjiman CS. (2002) A rigorous global optimization algorithm for problems with ordinary differential equations. J Global Optim. 24:1-33.

Renders, J.-M., Flasse, S.P. (1996) Hybrid methods using genetic algorithms for global optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 26(2):243-258.

Rinnooy Kan, A.H.G. and Timmer, G.T. (1987a). Stochastic Global Optimization Methods, Part I: Clustering Methods. Mathematical Programming, 39, 27-56.

Rinnooy Kan, A.H.G. and Timmer, G.T. (1987b). Stochastic Global Optimization Methods, Part II: Multi Level Methods. Mathematical Programming, 39, 57-78.

Runarsson, T.P. and Yao, X. (2000). Stochastic Ranking for Constrained Evolutionary Optimization. IEEE Trans. Evol. Comput, 4, 287-294.
Sahinidis, N.V., Tawarmalani, M. (2000) Applications of global optimization to process and molecular design. Computers and Chemical Engineering 24(9-10):2157-2169.

Singer AB, Barton PI. (2006) Global optimization with nonlinear ordinary differential equations. J Global Optim. 34:159-190.

Timmer, G.T. (1984). Global Optimization: a Stochastic Approach. Ph.D. Thesis, Erasmus University, Rotterdam.
Törn, M.,M. Ali and S. Viitanen (1999) Stochastic Global Optimization: Problem Classes and Solution Techniques. Journal of Global Optimization, 14, 437-447.

Ye, Y. (1989). SOLNP Users’ Guide – A Nonlinear Optimization Program in MATLAB. University of Iowa.
Appendix I
Multistart UNIRANDI vs. Multistart Filter-UNIRANDI
If UNIRANDI is selected as the local solver (e.g. for problems involving a non-smooth objective function), the penalty weight has to be adjusted so that the final solution is feasible. In order to overcome this drawback, we have tested the new implementation of this solver which incorporates the filter approach.

For each of the problems, a set of 100 initial points was randomly generated within the bounds and these sets were used by both algorithms. Filter-UNIRANDI was applied with two values of the parameter max_ndir. The probability prob_pf of using a point from the Filter to generate trial points is fixed at 1.

As it is shown in Table A1 and the histograms of solutions depicted in Figures A1 to A8, the Filter-UNIRANDI algorithm is more robust than the original method in the sense that there are more points from which the solver converges to the vicinity of the global minimum. This is in part a consequence of using the filter as a criterion to decide when to change the step length, since as long as new points enter the filter more search directions are tried. In this regard, it can be seen that increasing the value of the parameter max_ndir does not improve significantly the results (only a slight improvement in the median value is observed, but with an excessive increase in the mean number of function evaluations).

The key feature is the generation of trial points around infeasible points to explore other regions of the search space, which allows the solver to escape from local minima. The histograms of solutions shown in Figures A1 to A8 illustrate clearly the benefits of this approach.

Table A1. Comparison between Multistart UNIRANDI and Multistart Filter-UNIRANDI
	
	TRP
	FPD

	
	UNIRANDI
	Filter-UNIRANDI
	UNIRANDI
	Filter-UNIRANDI

	max_ndir
	2
	2
	3
	2
	2
	3

	Best f
	-4.0027
	-4.0114
	-4.0115
	-11.5899
	-11.5899
	-11.5899

	Function evals.
(mean)
	240
	1075
	1685
	410
	1075
	1650

	
	
	
	
	
	
	

	
	WWTP
	DP

	
	UNIRANDI
	Filter-UNIRANDI
	UNIRANDI
	Filter-UNIRANDI

	max_ndir
	2
	2
	3
	2
	2
	3

	Best f
	1552.3
	1540.6
	1538.6
	-0.19657
	-0.19996
	-0.19996

	Function evals.
(mean)
	840
	1120
	1470
	320
	860
	1210

[image: image61.emf]-4 -3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2

0

2

4

6

8

10

12

Objective function value

Frequency

Figure A1. Histogram of solutions for the problem TRP obtained using UNIRANDI.
[image: image62.emf]-4 -3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4

0

10

20

30

40

50

60

70

80

90

Objective function value

Frequency

Figure A2. Histogram of solutions for the problem TRP obtained using Filter-UNIRANDI (max_ndir = 3 and rtol_dom = 10-3).

[image: image63.emf]-12 -10 -8 -6 -4 -2 0

0

5

10

15

20

25

30

35

40

45

Objective function value

Frequency

Figure A3. Histogram of solutions for the problem FPD obtained using UNIRANDI.

[image: image64.emf]-12 -11 -10 -9 -8 -7 -6 -5 -4

0

10

20

30

40

50

60

70

80

90

100

Objective function value

Frequency

Figure A4. Histogram of solutions for the problem FPD obtained using Filter-UNIRANDI (max_ndir = 3 and rtol_dom = 10-3).

[image: image65.emf]1500 2000 2500 3000 3500 4000 4500

0

2

4

6

8

10

12

14

16

18

Objective function value

Frequency

Figure A5. Histogram of solutions for the problem WWTP obtained using UNIRANDI.
[image: image66.emf]1500 2000 2500 3000 3500 4000 4500

0

5

10

15

20

25

30

35

40

45

Objective function value

Frequency

Figure A6. Histogram of solutions for the problem WTP obtained using Filter-UNIRANDI (max_ndir = 3 and rtol_dom = 10-3).

[image: image67.emf]-0.2 -0.195 -0.19 -0.185 -0.18 -0.175 -0.17 -0.165

0

5

10

15

Objective function value

Frequency

Figure A7. Histogram of solutions for the problem DP obtained using UNIRANDI.
[image: image68.emf]-0.2 -0.198 -0.196 -0.194 -0.192 -0.19 -0.188 -0.186 -0.184

0

5

10

15

20

25

30

Objective function value

Frequency

Figure A8. Histogram of solutions for the problem DP obtained using Filter-UNIRANDI (max_ndir = 3 and rtol_dom = 10-3).

� � HYPERLINK "http://www.abo.fi/~atorn/ProbAlg/Page52.html" ��http://www.abo.fi/~atorn/ProbAlg/Page52.html�

_1218548476.unknown

_1220095410.unknown

_1220881642.unknown

_1221397303.unknown

_1232183709.unknown

_1232201562.unknown

_1220881941.unknown

_1221397253.unknown

_1220884233.unknown

_1220881914.unknown

_1220262910.unknown

_1220881612.unknown

_1220095411.unknown

_1218548515.unknown

_1218548794.unknown

_1218549630.unknown

_1218549695.unknown

_1218549824.unknown

_1220095409.unknown

_1218549801.unknown

_1218549823.unknown

_1218549655.unknown

_1218548796.unknown

_1218549601.unknown

_1218548795.unknown

_1218548665.unknown

_1218548793.unknown

_1218548792.unknown

_1218548633.unknown

_1218548487.unknown

_1218548507.unknown

_1218548511.unknown

_1218548504.unknown

_1218548483.unknown

_1218548485.unknown

_1218548481.unknown

_1218548450.unknown

_1218548465.unknown

_1218548470.unknown

_1218548474.unknown

_1218548467.unknown

_1218548459.unknown

_1218548461.unknown

_1218548452.unknown

_1218548437.unknown

_1218548446.unknown

_1218548448.unknown

_1218548439.unknown

_1218548433.unknown

_1218548435.unknown

_1218548431.unknown

