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Abstract

One of the key points in interval global optimization is the selection of a suitable
inclusion function which allows to solve the problem efficiently. Usually, the tighter
the inclusions provided by the inclusion function, the better, because this will make
the accelerating devices used in the algorithm more effective at discarding boxes.
On the other hand, whereas more sophisticated inclusion functions may give tighter
inclusions, they require more computational effort than other providing larger over-
estimations. In an earlier paper the empirical convergence speed of inclusion functions
was defined and studied, and it was shown to be a good indicator of the inclusion
precision. If the empirical convergence speed is analyzed for a given type of func-
tions, then one can select the appropriate inclusion function to be used when dealing
with those type of functions. In this paper we present such a study, dealing with
functions used in competitive facility location problems.
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1 Empirical convergence speed

The following notation will be use throughout. X = [X, X] C R is a real in-
terval, I is the set of real intervals, X = (Xi,...,X,) € I" is an n-dimensional
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interval (also called boz), w(X) = X — X is the width of X € T and w,(X) =
w(X)/ max{min,ex |z|, 1} its relative width. The width of a box X € I" is to
be understood as w(X) = max;—;__, w(X;). The midpoint of the interval X
will be denoted by mid(X).

.....

The standard global optimization problem can be defined as

mip f(2), 1

where f : R” — R is a continuously differentiable function and X € I" is a box.
This paper is related with the solution of (1) via interval branch-and-bound
methods [13]. In particular, we are interested in finding the most suitable
inclusion function for solving (1).

Definition 1 Let [ be a continuous function. A function F : 1" — 1 is an
inclusion function of f, if for every X € 1" and v € X, f(x) € F(X), i.e.

fX)={f(2) |z e X} C F(X).

Usually, a surrogate for this problem is to find the inclusion function providing
tighter inclusions, since in this way the different accelerating devices used in
interval B&B methods are more efficient at discarding boxes, thus the problem
is solved faster. The classical measure for the quality of an inclusion function
is the convergence order.

Definition 2 Let F' be an inclusion function of f andY be a box, where f is
defined. Then the convergence order of F' is at least o, if there exists a positive
constant ¢ such that the inequality

w(F(X)) —w(f(X)) < c-w(X) (2)

holds for every X C Y.

However, this definition implies a worst case analysis. Instead of that, in a
recent paper [15], the empirical convergence speed of F' has been defined with
the aim of measuring the average behaviour. The empirical convergence speed
is obtained by approximating the values of a and ¢ in the equation obtained
from (2) by changing the ‘<’ sign to ‘=". To do it, the equation is transformed
into
logyo (w (F(X)) —w (f(X))) = logyg(c) + alogyy (w(X)).

Then, the actual values of w(F (X)), w(f(X)) and w(X) are computed for
a given set of boxes, and the a and ¢ constants that best fit the computed
widths are determined with linear regression. This is in accordance to the
definition of the theoretical convergence order, except that in order to get
the best approximation, the inequality is changed to equality. In this way we



will obtain information about the average behaviour of the inclusion function,
instead of the worst case analysis. This change fits exactly in what is needed
for algorithmic development, since when used in an algorithm, the average
behaviour of inclusion functions for realistic size intervals is what matters.

For a given test function f we can use different sets of boxes to determine «
and c. In this paper two different types of sets have been considered:

— sequences of embedded boxes, all containing a global minimizer point, and
— sequences of random intervals converging to a point.

As explained before, for every box in a sequence we compute the inclusion func-
tion, an approximation of the range over the box, and the width of the box. The
hardest one to produce is the approximation of the range. We obtain it by com-
puting an enclosure of the minimum and the maximum of the function in the
given interval with a Moore-Skelboe type branch-and-bound global optimiza-
tion algorithm [13], using the termination criterion wyq([f, F(X)]) < 1078,
where f is the best upper bound found so far by the algorithm.

In particular, in this paper we discuss the application of empirical conver-
gence speed values to some facility location problems. The inclusion functions
examined in the study were

natural interval extension: denoted by F, (X),

centered form|9]: F.(X) = F(c) + F'(X)(X — ¢) where ¢ = mid(X) and
F'(X) is the inclusion function of the gradient (obtained by automatic dif-
ferentiation),

Baumann’s optimal centered form [1]: Fy(X) = F(b) + F'(X)(X —b),
where b = (UX — LX) /(U — L) and F'(X) = [L, U] is the inclusion of the
gradient given by automatic differentiation,

slope arithmetic form [3]: Fi(X) = F(c) + sf(c, X)(X — ¢), where ¢ =
mid(X) and sf(c, X) is the inclusion of the slopes to any point in X from
c given by the slope arithmetic, and

affine arithmetic form [11]: (F,(X)) where a variable x is represented by
a first-degree polynomial & = xg + x161 + x260 + ... + €, x;-s are finite
floating-point numbers, and the ;-s are symbolic real variables in |-1,1].

In what follows, we denote the above inclusion functions by F;(X),i € I =
{n,c,b,s,a}. Some of those inclusion functions provide more useful informa-
tion, which can be used in global optimization algorithms. For instance, with
the centered and Baumann forms an inclusion of the gradient is available,
which allows us to use the monotonicity test. Another pruning test described
in [10] can be applied to Baumann, centered and slope arithmetic forms. This
fact has also to be taken into account when selecting an inclusion function for
solving a problem (in the results in Table 2, we used this information when
solving the problems with the different inclusion functions).



2 The examined facility location problem

In the present work we consider a special type of objective functions: those
belonging to competitive facility location problems |5]. Competitive location
deals with the problem of locating facilities to provide a service (or goods)
to the customers (or consumers) of a given geographical area where other
competing facilities offering the same service are already present (or will enter
to the market in the near future). Many models on the subject are available
in the literature that vary in the ingredients which form the model (location
space, number of facilities to be located, patronising behaviour, attraction of
customers to the facilities, ...). Many references can be found in [7,12]. Next,
we present a very general model for locating a new single facility in the plane.

Assume that a chain of warehouses or shops wants to set up a new facility
in a planar market, where similar facilities of competitors, and possibly of its
own chain, are already present. Fixed demand points split their demand in
a probabilistic way over all facilities in the market, proportionally with their
attraction to each facility through a gravitational type model. The demand
is deterministic and inelastic. The objective is the maximization of the profit
obtained by the chain. Both the location and the quality (design) of the new
facility are to be found. The notation used in the model is the following.

T,Q location and quality of the new facility,

n number of demand points,

D demand points (i = 1,...,n),

w; demand (or buying power) at p;,

m number of existing facilities,

f existing facilities (j = 1,...,m),

k number of existing facilities belonging to the chain,

d;j distance between demand point p; and facility f;,

diz distance between demand point p; and the new facility z,
aj quality of facility f; as perceived by demand point p;,
g:(+) a non-negative non-decreasing function,

Vi weight for the quality of x as perceived by demand point p;,

a;j/9i(d;;)  attraction that demand point p; feels for facility f;,
viae/gi(di) attraction that demand point p; feels for the new facility x.

The total market share attracted by the chain is given by

V¥ i Zk: Qi
n gi(diz) =1 gi(dij)
M(.T,Oé) :Zwi QY LV
i=1 7@ + Z 1
9i(diz) j=1 9i(di;)



and the profit it gets (to be maximized) is given by

I(z,a) = F(M(z,a)) — G(z, a), (3)

where F'(-) is an increasing function which transforms the market share into
expected sales and G(z,«) gives the operating costs of the new facility. It
has been suggested in |5| to choose F(M(x,«a)) = ¢+ M(z,a),¢ > 0, and
G(z,a) = Gi(z) + Gy(a) with Gy(z) = X1, wim (¢; > 0 are given

parameters) and Go(a) = oo T g (with ap > 0 and «; given values). For
more details on the model see |5]. Notice that II, the objective function of our
location problem, is a complex, highly nonlinear function. We are interesting
in finding the most suitable inclusion function for II, which allows us to solve
the corresponding location problem efficiently.

3 Numerical Results and Conclusion

For the experiments the C-XSC-2.0 library |3] was used with the automatic
differentiation tool of CToolbox-2.0 software [6,8]. For the affine arithmetic
form the freely available libaa library was used [4]. When an inclusion was ac-
curate (compared to our range approximation), and hence the overestimation
was zero, its logarithm was set to -30.

Table 1

The determined empirical convergence speed (a,log;,c) values for the studied in-
clusion functions, using all the examined facility location problems. The determined
a values are followed in brackets by the correlation coefficient of the regression.

o'
Sequence | Natural Centered | Baumann Affine Slope
Opt 1.026 (.99) | 2.667 (.89) | 3.555 (.80) | 2.662 (.85) | 1.997 (.98)
Rand 1.067 (.99) | 2.368 (.94) | 4.546 (.81) | 2.901 (.87) | 1.993 (.99)
All 1.060 (.99) | 2.422 (.93) | 4.300 (.77) | 2.853 (.86) | 1.993 (.99)

logyg ¢

Opt 2.608 3.937 3.936 3.461 2.052
Rand 2.712 3.450 -3.379 3.245 2.010
All 2.697 3.518 -2.161 3.288 2.017

We examined 12 objective functions of the form (3). In 6 of them we considered
50 demand points and 5 existing facilities (generated in a random way, as well
as the rest of the parameters), and in the other functions 100 demand points



and 10 existing facilities. The results obtained were very similar for all the
cases but one. In Table 1 we can see the approximated o and ¢ values for the
inclusion functions studied, when all the computed widths of all the examined
functions are considered.

We can see that for both the optimum following sequences (Opt) and the
random sequences of boxes (Rand) the Baumann form is the inclusion function
with the highest convergence speed, as well as when we consider the computed
widths of all the sequences together (All). This is due to the fact that on
monotonous boxes the Baumann form is accurate. The second best inclusion
is the affine arithmetic form, and in the only analyzed case in which the
Baumann was not the best function, it was the affine arithmetic form the
one providing the best values. The centered and slope forms follow in this
ranking, and finally, as expected, we have the natural interval extension, with
an « value very close to the theoretical convergence order of 1.

Figure 1 illustrates the relation of the investigated empirical convergence speed
values when we considered the 12 investigated functions and all the sequences.
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Fig. 1. The results of the linear regression for all the data on log-log scales indicat-
ing that the Baumann form and the natural interval extension are the best choice
depending on the width of the box.

From the picture we can conclude that for the examined functions the empir-
ical convergence speed suggests to use the Baumann form for every box with



width smaller than 19.56 and the natural interval extension if the width is
bigger (see the ‘Summary’ picture in Fig. 1, in which we can see the breaking
point at which it is recommended to change of inclusion function).

Algorithm 1 Adaptive multi-inclusion B&B algorithm
Input: (X, I(w(Y))) I(w(Y))— J(C I): indezes of inclusion functions
Ly — X, Ls— 10
while ( Ly, #0)

Select an interval Y from Ly, Selection Rule

Evaluate F(Y) = Nicrqwvy Fi(Y), Update f Cut-Off Test

Discard Z € Ls, Ly it F(Z) > f

if (Y cannot be discarded or reduced) Discarding Tests
Divide Y into subintervals Y7, Y5 Division Rule
if (Y; satisfies the termination criterion) Termination Rule

Store Y; in Lgs
else Store Y, in Ly

To check in practice the usefulness of the empirical convergence speed, we
applied an adaptive multi-inclusion algorithm (Algorithm 1), and measured
the time needed for solving a location problem when using different inclusion
functions. The obtained results can be seen in Table 2. We give the average
time needed for solving all the problems. The first four columns refer to the
cases when only one inclusion function was used (the results for the natural
extension are not given, since the program lasted more than two hours). In the
next three columns we have used the natural interval extension in addition
to the given inclusion function (notice that the natural interval extension
is given as a by-product when evaluating the gradients or slopes with the
used libraries). The last column contains the result when we switch from one
inclusion to another depending on the width of the box to be evaluated. It
can be seen from the table that the results are in correspondence with the
suggestion from the empirical convergence speed.

Table 2
The running times for the solution of the facility location problems in seconds. In
the rows we give the results for accuracy 1072, 10~% and 10~%, respectively.

Accuracy | Only one inclusion function | With natural extension | Switching

Cent. | Slope | Affine | Baum. | Cent. | Slope | Baum. | na/na-ba-af

1072 362.2 | 2683.6 | 492.7| 294.6 | 346.0 | 2685.7 281.8
1074 480.1 | 3695.1 | 642.6 | 385.6 | 457.6 | 3721.0 368.6
10-8 990.7 —1653.2 | 840.9 | 943.5 806.8 922.3

In future research, we plan to examine different inclusion functions, e.g. the
Taylor model [2]. We also plan to consider the effect of other aspects related
to the inclusion functions when used in a global optimization algorithm, e.g.,
other discarding tests.
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