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Adversarial examples in artificial neural networks

One of the hottest topics in present artificial intelligence research is to
understand the phenomenon of adversarial examples for machine learning
technics applying artificial neural networks.

The typical problem is that in many practical cases, e.g. in image
recognition, after the proper training of the network, surprisingly close
pictures to the actual ones result in a denial decision.
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Illustration
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A single page introduction to interval calculation

[a, b] + [c , d ] = [a + c , b + d ],

[a, b]− [c , d ] = [a − d , b − c],

[a, b] · [c , d ] = [min(ac , ad , bc , bd),max(ac , ad , bc , bd)],

[a, b]/[c , d ] = [a, b] · [1/d , 1/c] if 0 /∈ [c , d ].

The inclusion of the function

f (x) = x
2
− x

obtained for the interval [0, 1] is [−1, 1], while the range of it is here just
[−0.25, 0.0].

Using more sophisticated techniques the problem of the too loose
enclosure can be overcome – at the cost of higher computing times.
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We developed an interval arithmetic based algorithm that is capable to
describe the level sets of an artificial neural network around a feasible
positive sample.

In this way, we could ensure with mathematical rigor that adversarial
samples cannot exist within the found bounds. The key question is how
the algorithm that was published earlier by T. Csendes scales up with
increasing dimension.

According to our experiences, benevolent problems show much better
complexity numbers compared to theoretically possible pessimistic
convergence rates.
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The pseudo code of the algorithm

0. If F (p0) > 0.5 then greater = true, otherwise greater = false

1 Iterate until percent <= 100

2 Let P be an n dimensional interval

3 For i = 1 to n do

1 If pi = 0, then Pi = [0, 2 ∗ percent/100]
2 Otherwise, if pi = 1, then Pi = [1− 2 ∗ percent/100, 1]

3 Otherwise Pi = [pi − percent/100, pi + percent/100], and check the end points: if

the lower one is negative, then set it to zero, if the upper one is larger than 1,

then set it to 1.

4 If greater = true and F (P) ≥ 0.5, or greater = false and F (P) < 0.5 then do:

1 If percent < 1, then maxpercent = percent, and break the main cycle, Stop.

2 Otherwise maxpercent = percent, and percent = percent + 1

5 Otherwise if percent < 1, then set percent = percent − 0.1

1 If now percent = 0, then set maxpercent = 0 and STOP

2 Otherwise break the outer loop

6 End of the cycle started in the first step
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Proven amount of changes on the gray scale everywhere on

the picture without having an adversarial example

In the order of appearance: 2%, 4%, 8%, and 3%, respectively.
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Original pictures & proven rectangles where we can change

everything without having an adversarial example
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Original pictures & proven rectangles where we can change

everything without having an adversarial example # 2
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Conclusion and future research

We could demonstrate that our interval based algorithm is capable to
verify simple artificial neural networks on small real life picture
recognition problems.

Next steps:

Test larger realistic networks.

Try Julia to speed up the algorithm.

Implement the so-called ”interval propagation” trick to fight the
dependency problem.

Design heuristic greedy search methods to have an efficient
technique.

Check how our method scales up with increasing problem size and
with more complex networks.

Which activation function fits our procedure best?
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