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SUMMARY

JavaScript is a popular programming language that is also error-prone due to its asynchronous, dynamic,
and loosely typed nature. In recent years, numerous techniques have been proposed for analyzing and
testing JavaScript applications. However, our survey of the literature in this area revealed that the proposed
techniques are often evaluated on different datasets of programs and bugs. The lack of a commonly used
benchmark limits the ability to perform fair and unbiased comparisons for assessing the efficacy of new
techniques. To fill this gap, we propose BUGSIS, a benchmark of 453 real, manually validated JavaScript
bugs from 10 popular JavaScript server-side programs, comprising 444k lines of code (LOC) in total. Each
bug is accompanied by its bug report, the test cases that expose it, as well as the patch that fixes it. We
extended BUGSIJS with a rich web interface for visualizing and dissecting the bugs’ information, as well as
a programmable API to access the faulty and fixed versions of the programs and to execute the correspond-
ing test cases, which facilitates conducting highly reproducible empirical studies and comparisons of
JavaScript analysis and testing tools. Moreover, following a rigorous procedure, we performed a classifica-
tion of the bugs according to their nature. Our internal validation shows that our taxonomy is adequate for
characterizing the bugs in BUGSJS. We discuss several ways in which the resulting taxonomy and the bench-
mark can help direct researchers interested in automated testing of JavaScript applications.
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1. INTRODUCTION

JavaScript (JS) is the de-facto web programming language globally,* and the most adopted lan-
guage on GitHub.® JavaScript is massively used in the client-side of web applications to achieve
high responsiveness and user friendliness. In recent years, due to its flexibility and effectiveness,
it has been increasingly adopted also for server-side development, leading to full-stack web appli-
cations [1]. Platforms such as Node.js" allow developers to conveniently develop both the front-end
and back-end of the applications entirely in JS.

Despite its popularity, the intrinsic characteristics of JS—such as weak typing, prototypal inher-
itance, and run-time evaluation—make it one of the most error-prone programming languages. As
such, a large body of software engineering research has focused on the analysis and testing of JS
web applications [2-9].

*https://insights.stackoverflow.com/survey/2019
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Existing research techniques are typically evaluated through empirical methods (e.g., con-
trolled experiments), which need software-related artifacts, such as source code, test suites,
and descriptive bug reports. To date, however, most of the empirical works and tools for JS
have been evaluated on different datasets of subjects. Additionally, subject programs or accom-
panying experimental data are rarely made available in a detailed, descriptive, curated, and co-
herent manner. This not only hampers the reproducibility of the studies themselves but also
makes it difficult for researchers to assess the state-of-the-art of related research and to compare
existing solutions.

Specifically, testing techniques are typically evaluated with respect to their effectiveness at de-
tecting faults in existing programs. However, real bugs are hard to isolate, reproduce, and char-
acterize. Therefore, the common practice relies on manually seeded faults or mutation testing
[10]. Each of these solutions has limitations. Manually injected faults can be biased toward re-
searchers’ expectations, undermining the representativeness of the studies that use them.
Mutation techniques, on the other hand, allow generating a large number of ‘artificial’ faults.
Although research has shown that mutants are quite representative of real bugs [11-13], mutation
testing is computationally expensive to use in practice. For these reasons, benchmarks of manually
validated bugs are of paramount importance for devising novel debugging, fault localization, or pro-
gram repair approaches.

Several benchmarks of bugs have been proposed and largely utilized by researchers to advance
testing research. Notable instances are the Software-artifact Infrastructure Repository (SIR) [14],
Defects4] [15], ManyBugs [16], and BugSwarm [17]. Purpose-specific test and bug datasets also
exist to support studies in program repair [18], test generation [19], and security [20]. However,
to date, a well-organized repository of labeled JS bugs is still missing. The plethora of different
JS implementations available (e.g., V8, JavaScriptCore, Rhino) further makes devising a cohesive
bugs benchmark nontrivial.

In our previous work [21], we presented BUGSJS, a benchmark of 453 JS-related bugs from 10
open-source JS projects, based on Node.js and the Mocha testing framework. BUGSJS features an
infrastructure containing detailed reports about the bugs, the faulty versions of programs, the test
cases exposing them, as well as the patches that fix them.

This article is a revised and expanded version of our conference paper [21]. We provide details on
the differences between the prior paper and this article. From the technical standpoint, first we
added a port ‘dissection’ to BUGSJS, that is, a web interface to inspect/query information about
the bugs. Second, we enriched the API with the possibility of conducting more fine-grained analysis
with an optimized command that retrieves the coverage for each individual test (per-test coverage).
We also added more precomputed data from the source code, test cases, and executions to better
facilitate related research. Concerning the intellectual contributions, we performed a classification
of the bugs in BUGSJS, which was missing in the initial conference paper. We constructed our tax-
onomy using faceted classification [22], that is, we created the categories/sub-categories of our tax-
onomy in a bottom-up fashion, by analyzing different sources of information about the bugs.

This article makes the following contributions:

Survey. A survey of the previous work on analysis and testing of JS applications, revealing
the lack of a comprehensive benchmark of JS programs and bugs to support empir-
ical evaluation of the proposed techniques.

Dataset. BUGSJS, a benchmark of 453 manually selected and validated JS bugs from 10 JS
Node.js programs pertaining to the Mocha testing framework.

Framework. A Docker-based infrastructure to download, analyze, and run test cases exposing
each bug in BUGSJS and the corresponding real fixes implemented by developers.
The infrastructure includes a web-based dashboard and a set of precomputed data
from the subjects and tests as well.

Taxonomy. A qualitative analysis of BUGSJS resulting in a bug taxonomy of server-side JS bugs,
which, to our knowledge, is the first of this kind.

Evaluation. A quantitative and qualitative analysis of the bug fixes related to the BUGSJS bugs in
relation to existing classification schemes.
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2. STUDIES ON JAVASCRIPT ANALYSIS AND TESTING

To motivate the need for a novel benchmark for JS bugs, we surveyed the works related to software
analysis and testing in the JS domain. Our review of the literature also allowed us to gain insights
about the most active research areas in which our benchmark should aim to be useful.

In the JS domain, the term benchmark commonly refers to collections of programs used to mea-
sure and test the performance of web browsers with respect to the latest JS features and engines.
Instances of such performance benchmarks are JetStream," Kraken,** Dromaeo, " Octane,ii and
V8.3% In this work, however, we refer to benchmark as a collection of JS programs and artifacts
(e.g., test cases or bug reports) used to support empirical studies (e.g., controlled experiments or
user studies) related to one or more research areas in software analysis and testing.

We used the databases of scientific academic publishers and popular search engines to look for
papers related to different software analysis and testing topics for JS. We adopted various combina-
tions of keywords: JavaScript, testing (including code coverage measurement, mutation
testing, test generation, unit testing, test automation, regression testing), bugs and debugging
(including fault localization, bug, and error classification), and web. We also performed a light-
weight forward and backward snowballing [23] to mitigate the risk of omitting relevant literature.
Last, we examined the evaluation section of each paper. We retained only papers in which real-
world, open-source JS projects were used, whose repositories and versions could be clearly identi-
fied. This yielded 25 final papers. Nine of these studies are related to bugs, in which 670 subjects
were used in total. The remaining 16 papers are related to other testing fields, comprising 494 sub-
jects in total.

In presenting the results of our survey of the literature, we distinguish (i) studies containing spe-
cific bug information and other artifacts (such as source code and test cases), and (ii) studies con-
taining only JS programs and other artifacts not necessarily related to bugs.

2.1. Bug-related studies for JavaScript

We analyzed papers using JS systems that include bug data in greater detail, because these works
can provide us important insights about the kind of analysis researchers used the subjects for, and
thus, the requirements that a new benchmark of bugs should adhere to.

We found nine studies in this category. Ocariza et al. [9] present an analysis and classification of
bug reports to understand the root causes of client-side JS faults. This study includes 502 bugs from
19 projects with over 2MLOC. The results of the study highlight that the majority (68%) of JS
faults are caused by faulty interactions of the JS code with the Document Object Model (DOM).
Moreover, most JS faults originate from programmer mistakes committed in the JS code itself, as
opposed to other web application components.

Another bug classification presented by Gao et al. [24] focuses on type system-related issues in
JS (which is a dynamically typed language). The study includes about 400 bug reports from 398
projects with over 7MLOC. The authors ran a static type checker such as Facebook’s Flow"" or
Microsoft’s TypeScript  on the faulty versions of the programs. On average, 60 out of 400 bugs
were detected (15%), meaning they may have been avoided in the first place if a static type checker
were used to warn the developer about the type-related bug.

Hanam et al. [25] present a study of cross-project bug patterns in server-side JS code, using 134
Node.js projects of about 2.5MLOC. They propose a technique called BugAID for discovering
such bug patterns. BugAID builds on an unsupervised machine learning technique that learns the
most common code changes obtained through AST differencing. Their study revealed 219 bug

1£1ttps://browserbench,org/JetStream
__https://wiki.mozilla.org/Kraken
""https://wiki.mozilla.org/Dromaeo
https://developers.google.com/octane
$Shttps://github.com/hakobera/node-v8-benchmark-suite
"https://flow.org/

*https://www.typescriptlang.org/
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fixing change types and 13 pervasive bug patterns that occur across multiple projects. In our eval-
uation, we conduct a thorough comparison with Hanam et al.’s taxonomy.

Ocariza et al. [26] propose an inconsistency detection technique for model-view-controller-
based JS applications which is evaluated on 18 bugs from 12 web applications (7k LOC). A re-
lated work [27] uses 15 bugs in 20 applications (nearly IMLOC). They also present an automated
technique to localize JS faults based on a combination of dynamic analysis, tracing, and backward
slicing, which is evaluated on 20 bugs from 15 projects (14k LOC) [28]. Also, their technique for
suggesting repairs for DOM-based JS faults is evaluated on 22 bugs from 11 applications (1M
LOC) [29].

Wang et al. [3] present a study on 57 concurrency bugs in 53 Node.js applications (about 3.5M
LOC). The paper proposes several different analyses pertaining to the retrieved bugs, such as bug
patterns, root causes, and repair strategies. Davis et al. [30] propose a fuzzing technique for identi-
fying concurrency bugs in server-side event-driven programs and evaluate their technique on 12
real-world programs (around 216k LOC) and 12 manually selected bugs.

2.2. Other analysis and testing studies for JavaScript

Empirical studies in software analysis and testing benefit from a large variety of software artifacts
other than bugs, such as test cases, documentation, or code revision history. In this section, we
briefly describe the remaining papers of our survey.

Milani Fard and Mesbah [31] characterize JS tests in 373 JS projects according to various met-
rics, for example, code coverage, test commits ratio, and number of assertions.

Mirshokraie et al. propose several approaches to JS automated testing. This includes an auto-
mated regression testing based on dynamic analysis, which is evaluated on nine web applications
[32]. The authors also propose a mutation testing approach, which is evaluated on seven subjects
[33] and on eight applications in a related work [34]. They also propose a technique to aid test gen-
eration based on program slicing [35], where unit-level assertions are automatically generated for
testing JS functions. Seven open-source JS applications are used to evaluate their technique. The
authors also present a related approach for JS unit test case generation, which is evaluated on 13
applications [36].

Adamsen et al. [37] present a hybrid static/dynamic program analysis method to check code
coverage-based properties of test suites from 27 programs. Dynamic symbolic execution is used
by Milani Fard et al. [38] to generate DOM-based tes? fixtures and inputs for unit testing JS func-
tions, and four experimental subjects are used for evaluation. Ermuth and Pradel propose a GUI test
generation approach [7], and evaluate it on four programs.

Artzi et al. [39] present a framework for feedback-directed automated test generation for JS
web applications. In their study, the authors use 10 subjects. Mesbah et al. [40] present Atusa, a test
generation technique for Ajax-based applications, which they evaluate on six web applications. A
comprehensive survey of dynamic analysis and test generation for JS is presented by Andreasen
et al. [41].

Billes et al. [8] present a black-box analysis technique for multi-client web applications to detect
concurrency errors on three real-world web applications. Hong et al. [42] present a testing frame-
work to detect concurrency errors in client-side web applications written in JS and use five
real-world web applications.

Wang et al. [2] propose a modification to the delta debugging approach that reduces the event
trace, which is evaluated on 10 real-world JS application failures. Dhok et al. [43] present a
concolic testing approach for JS which is evaluated on 10 subjects.

2.3. Findings

In the surveyed papers, we observed that the proposed techniques were evaluated using different
sets of programs, with little to no overlap.

Table I shows the program distribution per paper. In bug-related studies, 633 subject programs
were adopted overall, with 607 of these programs (96%) were used in only one study, and no sub-
ject was used in more than four papers (Table I, columns 1 and 2). Other studies exhibit the same
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Table I. Subject distribution among surveyed papers

Bug-related All studies
# Papers # Subjects # Papers # Subjects
1 607 1 910
2 17 2 91
3 7 3 17
4 2 4 4
5 0 5 1

trend (Table I, columns 3 and 4): overall, 1,164 subjects were used in all the investigated papers, of
which 1,023 were unique. From these, 910 (89%) were used in only one paper, and no subject was
used in more than five papers.

In conclusion, we observe that the investigated studies involve different sets of programs, since
no centralized benchmark is available to support reproducible experiments in analysis and testing
related to JS bugs.

To devise a centralized benchmark for JS bugs that enables reproducibility studies in software
analysis and testing, we considered the insights and guidelines provided by existing similar datasets
(e.g., Defects4] [15]), as well as the knowledge gained from our study of the literature on empirical
experiments using JS programs and bugs.

First, the considered subject systems should be real-world, publicly available open-source JS pro-
grams. To ensure representativeness of the benchmark, they should be diverse in terms of the appli-
cation domain, size, development, testing, and maintenance practices (e.g., the use of continuous
integration CI or code review process).

Second, the buggy versions of the programs must have one or more fest cases available demon-
strating each bug. The bugs must be reproducible under reasonable constraints; this excludes
non-deterministic or flaky features.

Third, the versions of the programs in which the bugs were fixed by developers, that is, the
patches, must be also available. Typically, when a bug is fixed, new unit tests are also added (often
in the same bug-fixing commit) to cover the buggy feature, allowing for better regression testing.
This allows extracting the bug-fixing changes, for example, by diffing the buggy and fixed
revisions.

Additionally, the benchmark should include the bug report information, including critical times
(e.g., when the bug was opened, closed, or reopened), the discussions about each bug, and link
to the commits where the bug was fixed.

To fill this gap, in Section 3, we overview BUGSJS [21], a benchmark of real JS bugs, its design
and implementation.

3. BUGSIS—THE PROPOSED BENCHMARK

To construct a benchmark of real JS bugs, we identify existing bugs from the programs’ version
control histories and collect the real fixes provided by developers. Developers often manually label
the revisions of the programs in which reported bugs are fixed (bug-fixing commits or patches). As
such, we refer to the revision preceding the bug-fixing commit as the buggy commit. This allowed
us to extract detailed bug reports and descriptions, along with the buggy and bug-fixing commits
they refer to. Particularly, each bug and fix should adhere to the following properties:

e Reproducibility. One or more fest cases are available in a buggy commit to demonstrate the
bug. The bug must be reproducible under reasonable constraints. We excluded
non-deterministic features and flaky tests from our study, since replicating them in a controlled
environment would be excessively challenging.

® Isolation. The bug-fixing commit applies to JS source code files only; changes to other arti-
facts such as documentation or configuration files are not considered. The source code of each
commit must be cleaned from irrelevant changes (e.g., feature implementations, refactorings,

© 2020 The Authors. Software Testing, Verification & Reliability Softw. Test. Verif. Reliab. (2020)
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Figure 1. Overview of the bug selection and inclusion process.

and changes to non-JS files). The isolation property is particularly important in research areas
where the presence of noise in the data has detrimental impacts on the techniques (e.g., auto-
mated program repair, or fault localization approaches).

Figure 1 depicts the main steps of the process we performed to construct our benchmark. First,
we adopted a systematic procedure to select the JS subjects to extract the bug information from @.
Then, we collected bug candidates from the selected projects @, and manually validated each bug
for inclusion by means of multiple criteria ®. Next, we performed a dynamic sanity check to make
sure that the tests introduced in a bug-fixing commit can detect the bug in the absence of its fix @.
Finally, the retained bugs were cleaned from irrelevant patches (e.g.,whitespaces).

3.1. Subject systems selection

To select relevant programs to include in BUGSJS, we focused on popular and trending JS projects on
GitHub. Such projects often engage large communities of developers and therefore are more likely
to follow software development best practices, including bug reporting and tracking. Moreover,
GitHub’s issue IDs allow conveniently connecting bug reports to bug-fixing commits.

Popularity was measured using the projects’ Stargazers count (i.e., the number of stars owned by
the subject’s GitHub repository). We selected server-side Node.js applications which are popular
(Stargazers count >100) and mature (number of commits >200) and have been actively maintained
(year of the latest commit >2017). We currently focus on Node.js because it is emerging as one of
the most pervasive technologies to enable using JS in the server side, leading to the so-called full-
stack web applications [1]. Limiting the subject systems to server-side applications and specific
testing frameworks is due to technological constraints, as running tests for browser-based programs
would require managing many complex and time-consuming configurations. We discuss the poten-
tial implications of this constraint in Section 6.

We examined the GitHub repository of each retrieved subject system to ensure that bugs were
properly tracked and labeled. Particularly, we only selected projects in which bug reports had a ded-
icated issue label on GitHub’s Issues page, which allows filtering irrelevant issues (pertaining to,
for example, feature requests, build problems, or documentation), so that only actual bugs are in-
cluded. Our initial list of subjects included 50 Node.js programs, from which we filtered out pro-
jects based on the number of candidate bugs found and the adopted testing frameworks.

3.2. Bugs collection

Collecting bugs and bug-fixing commits.

For each subject system, we first queried GitHub for closed issues assigned with a specific bug
label using the official GitHub’s APL T For each closed bug, we exploit the links existing between
issues and commits to identify the corresponding bug-fixing commit. GitHub automatically detects
these links when there is a specific keyword (belonging to a predefined list™*+), followed by an issue
ID (e.g., Fixes #14).

Each issue can be linked to zero, one, or more source code commits. A closed bug without a
bug-fixing commit could mean that the bug was rejected (e.g., it cannot be replicated) or that

ﬁj‘https://developer. github.com/v3/
Hinttps://help.github.com/articles/closing-issues-using-keywords/
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Table II. Subjects included in BUGSIS

Stats (#) Tests (#) Coverage (%)
kLOC

(JS) StarsCommitsForks  AllPassingPendingFailingStatementsBranchesFunctionsLines

BOWER 16 15,290 2,706 1,995 455 103 19 36 81.11 6691 80.6281.11
ESLINT 240 12,434  6,6152,14118,528 18,474 0 54 99.21  98.19 99.7299.21
EXPRESS 11 40,407 5,5007,055 855 855 0 0 98.71  94.32 10099.95
HESSIAN.JS 6 104 217 23 225 223 2 0 96.42  91.27 98.9996.42
HEXO 17 23,748  2,5453,277 875 868 7 0 96.20  90.51 98.5497.27
KARMA 12 10,210 2,4851,531 331 331 0 0 54.61  34.03 43.9854.76
MONGOOSE 65 17,036  9,7702,457 2,107 2,071 36 0 90.97  85.95 89.6591.04
NODE-REDIS 11 10,349  1,2421,245 966 965 0 1 99.06  98.19 97.9999.06
PENCILBLUE 46 1,596 3,675 276 807 802 0 5 35.21 19.09 22.9135.22
SHIELDS 20 6,319  2,0361,432 482 469 13 0 7598  65.60 83.2675.97

developers did not associate that issue with any commit. We discarded such bugs from our bench-
mark, as we require each bug to be identifiable by its bug-fixing commit. At last, similarly to
existing benchmarks [15], we discarded bugs linked to more than one bug-fixing commit, as this
might imply that they were fixed in multiple steps or that the first attempt for fixing them was
unsuccessful.

Including corresponding tests.

We require each fixed bug to have unit tests that demonstrate the absence of the bug. To meet this
requirement, we examined the bug-fixing patches to ensure they also contain changes or additions
in the test files. For this filtering, we manually examined each patch to determine whether test files
were involved. The result of this step is the list of bug candidates for the benchmark. From the ini-
tial list of 50 subject systems, we considered the projects having at least 10 bug candidates.

Testing frameworks.

There are several testing frameworks available for JS applications. We collected statistics about
the testing frameworks used by the 50 considered JS projects. Our results show that there is no sin-
gle predominant testing framework for JS (as compared to, for instance, JUnit which is used by
most Java developers). We found that the majority of tests in our pool were developed using Mo-
cha®*" (52%), Jasmine™" (10%), and QUnit"" (8%). Consequently, the initial version of BUGSIS
only includes projects that use Mocha, whose prevalence as JS testing framework is also supported
by a recent large-scale empirical study [31].

Final selection.

Table II reports the names and descriptive statistics of the 10 applications we ultimately retained.
Notice that all these applications have at least 1,000 LOC (frameworks excluded), thus being rep-
resentative of modern web applications (Ocariza et al. [9] report an average of 1,689 LOC for
Angular]JS web applications on GitHub with at least 50 stars).

The subjects represent a wide range of domains. Bower is a front-end package management tool
that exposes the package dependency model through an API. Express is a minimal and flexible
Node.js web application framework that provides a robust set of features for web and mobile appli-
cations. Hessian.js is a JS binary web service protocol that makes web services usable without re-
quiring a large framework and without learning a new set of protocols. Hexo is a blog framework
powered by Node.js. Karma is a popular framework agnostic test runner tool for JS. Mongoose
is a MongoDB object modeling tool for Node.js. Node-redis is a Node.js client for Redis database.
Pencilblue is a content management system (CMS) and blogging platform, powered by Node.js.
Shields is a web service for badges in SVG and raster format.

$83pttps://mochajs.org/
Mhttps://jasmine.github.io/
"https://qunitjs.com/
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3.3. Manual patch validation

We manually investigated each bug and the corresponding bug-fixing commit to ensure that only
bugs meeting certain criteria are included, as described below.

Methodology.

Two authors of this paper manually investigated each bug and its corresponding bug-fixing com-
mit and labeled them according to a well-defined set of inclusion criteria (Table I1I). The bugs that
met all criteria were initially marked as ‘Candidate Bug’ to be considered for inclusion.

In detail, for each bug, the authors investigated simultaneously the code of the commit to ensure
relatedness to the bug being fixed. During the investigation, however, several bug-fixing commits
were too complex to comprehend by the investigators, either because domain knowledge was re-
quired or because the number of files or lines of code being modified was large. We labeled such
complex bug-fixing commits as ‘Too complex’, and discarded them from the current version of
BUGSJS. The rationale is to keep the size of the patches within reasonable thresholds, so as to select
a high quality corpus of bugs which can be easily analyzable and processable by both manual in-
spection and automated techniques. Particularly, we deemed a commit being too complex if the pro-
duction code changes involved more than three (3) files or more than 50 LOC, or if the fix required
more than 5min to understand. In all such cases, a discussion was triggered among the authors, and
the case was ignored if the authors unanimously decided that the fix was too complex.

Another case for exclusion is due to refactoring operations in the analyzed code. First, our inten-
tion was to keep the original code’s behavior as written by developers. As such, we only restored
modifications that did not affect the program’s behavior (e.g., whitespaces). Indeed, in many cases,
in-depth domain knowledge is very much required to decouple refactoring and bug fixation. JS is a
dynamic language, and code can be refactored in many ways. Thus, it is more challenging to ob-
serve and account for side effects only by looking at the code than, for instance, in Java. In addition,
refactoring may affect multiple parts of a project, it affects metrics such as code coverage, and it
makes restoring the original code changes more challenging.

Results.

Overall, we manually validated 795 commits (i.e., bug candidates), of which 542 (68.18%) ful-
filled the criteria. Table IV (Manual) illustrates the result of this step for each application and across
all applications.

The most common reason for excluding a bug is that the fix was deemed as too complex (136).
Other frequent scenarios include cases where a bug-fixing commit addressed more than one
bug (32), or where the fix did not involve production code (29), or contained refactoring opera-
tions (39). Also, we found four cases in which the patch did not involve the actual test’s source
code, but rather comments or configuration files.

3.4. Sanity checking through dynamic validation

To ensure that the test cases introduced in a bug-fixing commit were actually intended to test the
buggy feature, we adopted a systematic and automatic approach described next.

Methodology.

Let V3,4 be the version of the source code that contains a bug b, and let V;, be the version in which
b is fixed. The existing test cases in V},,, do not fail due to b. However, at least one test of V', should

Table III. Bug-fixing commit inclusion criteria

Rule name  Description

Isolation The bug-fixing changes must fix only one (1) bug (i.e., must close exactly one (1) issue).

Complexity The bug-fixing changes should involve a limited number of files (<3), lines of code (<50) and be
understandable within a reasonable amount of time (max 5min).

Dependency If a fix involves introducing a new dependency (e.g., a library), there must also exist production
code changes and new test cases added in the same commit.

Relevant The bug-fixing changes must involve only changes in the production code that aim at fixing the bug

changes (whitespace and comments are allowed).
Refactoring  The bug-fixing changes must not involve refactoring of the production code.
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fail when executed on V.. This allows us to identify the test in V', used to demonstrate b (isolation)
and to discard cases in which tests immaterial to the considered buggy feature were introduced.

To run the tests, we obtained the dependencies and set up the environment for each specific re-
vision of the source code. Over time, however, developers made major changes to some of the pro-
jects’ structure and environment, making tests replication infeasible. These cases occurred, for
instance, when older versions of required dependencies were no longer available, or when devel-
opers migrated to a different testing framework (e.g., from QUnit to Mocha).

For the projects that used scripts (e.g., grunt, bash, and Makefile) to run their tests, we ex-
tracted them, so as to isolate each test’s execution and avoiding possible undesirable side effects
caused by running the complete test suite.

Results.

After the dynamic analysis, 453 bug candidates were ultimately retained for inclusion in BUGSJS
(84% of the 542 bug candidates from the previous step).

Table IV (Dynamic) reports the results for the dynamic validation phase. In 22 cases, we were
unable to run the tests because dependencies were removed from the repositories. In 15 cases,
the project at revision V7, did not use Mocha for testing b. In 12 cases, tests were failing during
the execution, whereas in 40 cases no tests failed when executed on V},,. We excluded all such
bug candidates from the benchmark.

3.5. Patch creation

We performed manual cleaning on the bug-fixing patches, to make sure they only include changes
related to bug fixes. In particular, we removed irrelevant files (e.g., * .md, .gitignore, LI-
CENSE), and irrelevant changes (i.e., source code comments, when only comments changed, and
comments unrelated to bug-fixing code changes, as well as changes solely pertaining to
whitespaces, tabs, or newlines). Furthermore, for easier analysis, we separated the patches into
two separate files, the first one including the modifications to the tests, and the second one
pertaining to the production code fixes.

3.6. Final benchmark infrastructure and implementation

Infrastructure.

Figure 2 illustrates the overall architecture of BUGSJS, which supports common activities related
to the benchmark, such as running the tests at each revision or checking out specific commits. The
framework’s command-line interface includes the following commands:

® info: Prints out information about a given bug.

BllgSJ S ) Organization
Subject#1 Subject#N bug dataset docker environment
Fork Fork Repository Repository
Source code Source code Utility framework | Pre-built environment
Tests “*7l Tests Bug statistics
Cleaned patches Cleaned patches Test commands
Tagged bug fixes Tagged bug fixes | Bug report data
Forked Forked

i Subject#l

:  Subject#N
Original repository '

1
:
1
Original repository !

Figure 2. Overview of BUGSJS architecture.
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® checkout: Checks out the source code for a given bug.
® test: Runs all tests for a given bug and measures the test coverage.
® per-test: Runs each test individually and measures the per-test coverage for a given bug.

For the checkout, test, and per-test commands, the user can specify the desired code re-
vision: buggy, buggy with the test modifications applied, or the fixed version. BUGSIS is equipped
with a prebuilt environment that includes the necessary configurations for each project to execute
correctly. This environment is available as a Docker image along with a detailed step-by-step tuto-
rial. The interested reader can find more information on BUGSJS and access the benchmark on our
website ( https://bugsjs.github.io/).

Source code commits and tests.

We used GitHub’s fork functionality to make a full copy of the gif history of the subject systems.
The unique identifier of each commit (i.e., the commit SHA1 hashes) remains intact when forking.
In this way, we were able to synchronize the copied fork with the original repository and keep it up-
to-date. Importantly, our benchmark will not be lost if the original repositories get deleted.

The fork is a separate git repository; therefore, we can push commits to it. Taking advantage of
this possibility, we have extended the repositories with additional commits, to separate the
bug-fixing commits and their corresponding tests. To make such commits easily identifiable, we
tagged them using the following notation (X denotes a sequential bug identifier):

® Bug-X: The parent commit of the revision in which the bug was fixed (i.e., the buggy
revision);

® Bug-X-original: A revision with the original bug-fixing changes (including the produc-
tion code and the newly added tests);

® Bug-X-test: A revision containing only the tests introduced in the bug-fixing commit, ap-
plied to the buggy revision;

® Bug-X-fix: A revision containing only the production code changes introduced to fix the bug,
applied to the buggy revision;

® Bug-X-full: A revision containing both the cleaned fix and the newly added tests, applied
to the buggy revision.

Test runner commands.
For each project, we have included the necessary test runner commands in a CSV file. Each row
of the file corresponds to a bug in the benchmark and specifies

A sequential bug identifier;

The test runner command required to run the tests;

The test runner command required to produce the test coverage results;

The Node.js version required for the project at the specific revision where the bug was fixed,

so that the tests can execute properly;

5. The preparatory test runner commands (e.g., to initialize the environment to run the tests,
which we call pre-commands);

6. The cleaning test runner commands (e.g., the tear down commands, which we call post-

commands) to restore the application’s state.

bl ot

Bug report data.

Forking repositories does not maintain the issue data associated with the original repository.
Thus, the links appearing in the commit messages of the forked repository still refer to the original
issues. In order to preserve the bug reports, we obtained them via the GitHub’s API and stored them
in the Google’s Protocol Buffers”  format. Particularly, for each bug report, we store the original
issue identifier paired with our sequential bug identifier, the text of the bug description, the issue
open and close dates, and the SHA1 of the original bug-fixing commit along with the commit date
and commit author identifiers. Lastly, we save the comments from the issues’ discussions.

ETTT

https://developers.google.com/protocol-buffers/
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In the following, we list several artifacts that we added to BUGSIJS in form of precomputed
data."™" These can be reproduced by performing suitable static and dynamic analyses on the
benchmark; however, we supply this information to better facilitate further bug-related research, in-
cluding bug prediction, fault localization, and automatic repair.

Test coverage data.

As part of the technical extensions to the initial version of the framework [21], we included in
BUGSJS precomputed information. We used the tool Istanbul*** to compute per-test coverage
data for Bug-X and Bug-X-test versions of each bug, and the results are available in the JSON
format. Particularly, for each project, we included information about the tests of the Bug-X versions
in a separate CSV file. Each row in such file contains the following information:

1. A sequential bug identifier;

2. Total LOC in the source code, as well as LOC covered by the tests;

3. The number of functions in the source code, as well as the number of functions covered by the
tests;

4. The number of branches in the source code, as well as the number of branches covered by the
tests;

5. The total number of tests in the test suite, along with the number of passing, failing, and pend-
ing tests (i.e., the tests which were skipped due to execution problems).

Static source code metrics.

Furthermore, to support studies based on source code metrics, we run static analysis on Bug-X-
full and Bug-X versions of each bug. For the static analysis, we used the tool SourceMeter %
which calculates 41 static source code metrics for JS. The results are available in a zip file named
metrics.

3.7. BugsJS dissection

Sobreira et al. [44] implemented a web-based interface for the bugs in the Defects4J bug benchmark
[15]. It presents data to help researchers and practitioners to better understand this bug dataset. ™!
We also utilized this dashboard and ported dissection to BUGSJS (Figure 3), which is available on the
BUGSIS website (https://bugsjs.github.io/dissection).

BUGSJS dissection presents the information in the dataset to the user in an accessible and brows-
able format, which is useful for inspecting the various information related to the bugs, their fixes,
their descriptions, and other artifacts such as the precomputed metrics.

More precisely, information provided in BUGSJS Dissection include the following:

# Files: number of changed files.

# Lines: number of changed lines.

# Added: number of added lines.

# Removed: number of removed lines.

# Modified: number of modified lines.

# Chunks: number of sections containing sequential line changes.

# Failing tests: number of failed test cases.

# Bug-fixing type: number of bug-fixing types based on the taxonomy by Pan et al. [45].

e

Inspection of the bugs is supported through different filtering mechanisms that are based on the
bug taxonomy and bug-fix types. By clicking on a bug, additional details appear (Figure 4), includ-
ing bug-fix types, the patch by the developers, taxonomy category, and failed tests.

3.8. Extending BugsJS

BUGSJS was designed and implemented in a way that is easy to extend with new JS projects; how-
ever, there are some restrictions. The current version of the framework only supports projects that

ﬁ:Hhttps:// github.com/BugsJS/bug-dataset
HHttps://istanbul js.org/
8388 ttps://www.sourcemeter.com/

MMhttps://github.com/program-repair/defects4j-dissection
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Filters
Match ® Any O All filters
> Taxonomy

BugsJS Dissection is showing 453 Bugs ©

#Failing  # Bug-fixing
Q Generic Bug id #Files #Lines # Added # Removed # Modified # Chunks tests types

- Bower 1 2 27 22 2 3 5 50 3
Q Incomplete Feature Implementation

Bower 2 d 8 2 0 6 3 43 3
Q Incorrect Feature Implementation

Bower 3 1 1 0 0 1 1 41 1
Q Perfective Maintenance

Eslint 1 1 1 0 0 1 1 56 1
> Bug-fixing types

Eslint 2 1 13 13 0 0 1 15 1
Q If-related

Eslint 3 1 1 0 0 1 q 15 1
Q Method Call
Eslint 4 1 5 5 0 0 i 62 1

Q Sequence
Eslint 5 1 9 0 4 5 6 56 2

Q Loo
i Eslint 6 1 7 0 1 6 4 62 2

GSssanment Eslint 7 1 3 0 0 3 3 3 2
Q Switch Eslint 8 1 1 0 0 1 1 56 1
Q Ty Eslint 9 1 1 1 0 10 2 24 1
Q Method Declaration Eslint 10 2 6 3 1 2 4 25 0
Q Class Field Eslint 11 1 1 0 0 1 1 56 1
o\ R Eslint 12 1 1 0 1 0 1 0 1

Q Decl Eslint 13 1 20 0 14 6 3 57 2
eclare

Figure 3. BugsJS dissection overview page.

Pencilblue 1
€ Previous Bug | Next Bug 9

Bug-fixing

Taxonomy

Incomplete Feature Implementation — Incomplete Data Processing
Human Patch

B include/localization.js

delete Localization.supportedLookup[Localization. formatlocale(locale.language, locale.countryCode)];

Localization. supported = new Locale.Locales(Object.keys(Localization. supportedLookup));
return keysRemoved > 0;

‘

Failing Test (full title)
Util Util.mkdirs should callback with an error when an absolute file path is not provided
Util Util. mkdirsSync should throw an error when an absolute file path is not provided

Figure 4. BugsJS dissection page for one bug.

are in a gif repository and use the Mocha testing framework. If the project is hosted on GitHub, it
can be also forked under the BUGSIS’s GitHub Organization to preserve the state of the repository.

Mining an appropriate bug to add to BUGSIJS takes four steps as described at the beginning of
Section 3. It is mainly manual work, but some of it could be done programmatically. In our case,
we used GitHub as the source of bug reports, which has a public API; thus, we could automate
the bug collection step. Validating the bug-fixing patches requires manual work, but it can be par-
tially supported by automation, for example, for filtering patches that modify both the production
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code and the tests. However, in our experience during the development of BUGSJS, the location of
test files varies across different projects and sometimes across versions as well. Thus, it is still chal-
lenging to automatically determine it for an arbitrary set of JS projects. Dynamic validation also re-
quires some manual effort. Despite we limited the support only to the most common testing
framework (Mocha), the command that runs the test suite is, in some cases, assembled at run-time
(e.g., with grunt or Makefile) and can change over time. Extracting it programmatically is only
possible for standard cases, for example, when it is located in the default package . json file. Due
to the great variety of JS projects, this process can hardly be automated, as compared to other lan-
guages like Java, where project build systems are more homogeneous.

After a suitable bug is found, some preparatory steps are required before a bug can be added to
BUGSJS. If necessary, irrelevant whitespace and comment modifications can be removed from the
bug-fix patch, which is re-added to the repository as a new commit. Next, the production code mod-
ifications should be separated from the test modifications by committing the changes separately on
top of the buggy version. Then, the commits should be tagged according to the notation described in
Section 3.6. Finally, the new bug can be submitted to BUGSJS using a GitHub pull request. The pull
request has to contain the modified or added CSV files that contain the repository URL, the test run-
ner command, and any additional commands (pre and post) if any. Adding precomputed data is not
mandatory, but beneficial.

4. TAXONOMY OF BUGS IN BUGSJS

In this section, we present a detailed overview of the root causes behind the bugs in our benchmark.
We adopted a systematic process to classify the nature of each bug, which we describe next.

4.1. Manual labeling of bugs

Each bug and associated information (i.e., bug report and issue description) was manually analyzed
by four authors (referred to as ‘taggers’ hereafter) following an open coding procedure [46]. Four
taggers specified a descriptive label to each bug assigned to them. The labeling task was performed
independently, and the disagreements were discussed and resolved through dedicated meetings. Un-
clear cases were also discussed and resolved during such meetings.

First, we performed a pilot study, in which all taggers reviewed and labeled a sample of 10 bugs.
Bugs for the pilot were selected randomly from all projects in BUGSJS. The consensus on the proce-
dure and the final labels was high; therefore, for the subsequent rounds the four taggers were split
into two pairs, which were shuffled after each round of tagging.

The labels were collected in separate spreadsheets; the agreement on the final labels was found by
discussion. During the tagging, the taggers could reuse existing labels previously created, should an
existing label apply to the bug under analysis. This choice was meant to limit introducing nearly
similar labels for the same bug and help taggers to use consistent naming conventions.

When inspecting the bugs, we looked at several sources of information, namely (i) the bug-fixing
commit on the GitHub’s web interface containing the commit title, the description as well as at the
code changes, and (ii) the entire issue and pull request discussions.

In order to achieve internal validation in the labeling task, we performed cross-validation. Specif-
ically, we created an initial version of the taxonomy labeling around 80% of the bugs (353). Then,
to validate the initial taxonomy, the remaining 20% (100) were simply assigned to the closest cat-
egory in the initial taxonomy, or a new category was created, when appropriate. Bugs for the initial
taxonomy were selected at random, but they were uniformly selected among all subjects, to avoid
over-fitting the taxonomy toward a specific project. Analogously, the validation set was retained so
as to make sure all projects were represented. Internal validation of the initial taxonomy is achieved
if few or no more categories (i.e., labels) were needed for categorizing the validation bugs. The la-
beling process involved four rounds: first round (the pilot study) involved labeling 10 bugs, second
round 43 bugs, and 150 bugs were analyzed in both third and fourth rounds.
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4.2. Taxonomy construction

After enumerating all causes of bugs in BUGSJS, we began the process of creating a taxonomy, fol-
lowing a systematic process. During a physical meeting, for each bug instance, all taggers reviewed
the bugs and identified candidate equivalence classes to which descriptive labels were assigned. By
following a bottom-up approach, we first clustered tags that correspond to similar notions into cat-
egories. Then, we created parent categories, in which that categories and their sub-categories follow
specialization relationship.

4.3. Taxonomy internal validation

We performed the validation phase in a physical meeting. Each of the four tagger classified
independently one fourth of the validation set (25 bugs), assigning each of them to the most appro-
priate category. After this task, all taggers reviewed and discussed the unclear cases to reach full
consensus. All 100 validation bugs were assigned to existing categories, and no further categories
were needed.

4.4. The final taxonomy

Figure 5 presents a graphical view of our taxonomy of bugs in the JS benchmark. Nodes
represent classes and subclasses of bugs, and edges represent specialization relationships. Spe-
cializations are not complete, disjoint relationships. Even though during labeling we tried
assigning the most specific category, we found out during taxonomy creation that we had to
group together many app-specific corner cases. Thus, some bugs pertaining to inner nodes were
not further specialized to avoid creating an excessive number of leaf nodes with only a few cor-
ner cases.
At the highest level, we identified four distinct categories of causes of bugs, as follows:

1. Causes related to an incomplete feature implementation. These bugs are related either to an
incomplete understanding of the main functionalities of the considered application or a
refinement in the requirements. In these cases, the functionalities have already been imple-
mented by developers according to their best knowledge, but over time, users or other de-
velopers found out that they do not consider all aspects of the corresponding requirements.
More precisely, given a requirement 7, the developer implemented a program feature
f which corresponds to only a subset ' Cr of the intended functionality. Thus, the
developer has to adapt the existing functionality f Cf to f, in order to satisfy the require-
ment in 7. Typical instances of this bug category are related to one or more specific
corner-cases that were unpredictable at the time in which that feature was initially created,
or when the requirements for the main functionalities are changed or extended to
some extent.

2. Causes related to an incorrect feature implementation. These bugs are also related to the main-
stream functionalities of the application. Differently from the previous category, the bugs in
this category are related to wrong implementation by the developers, for instance, due to an
incorrect interpretation of the requirements. More precisely, suppose that given a requirement
7, the developer implemented a program feature /', to the best of her knowledge. Over time,
other developers found out by the usage of the program that the behavior of /' does not reflect
the intended behavior described in » and opened a dedicated issue in the GitHub repository
(and, eventually, a pull request with a first fix attempt).

3. Causes related to generic programming errors. Bugs belonging to this category are typically
not related to an incomplete/incorrect understanding of the requirements by developers, but
rather to common coding errors, which are also important from the point of view of a taxon-
omy of bugs.

4. Causes related to perfective maintenance. Perfective maintenance involves making functional
enhancements to the program in addition to the activities to increase its performance even
when the changes have not been suggested by bugs. These can include completely new re-
quirements to the functionalities or improvements to other internal or external quality
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Figure 5. Taxonomy of bugs in the benchmark of JavaScript programs of BUGSIS.

attributes not affecting existing functionalities. When composing BUGSJS, we aimed at exclud-
ing such cases from the candidate bugs (see Section 3); however, the bugs that we classified in
the taxonomy with this category were labeled as bugs by the original developers, so we de-
cided to retain them in the benchmark.

We now discuss each of these categories in turn, in each case considering the sub-categories
beneath them.
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1. Incomplete feature implementation

This category contains 45% of the bugs overall and has five sub-categories, which we describe in
the following subsection.

1.1. Incomplete data processing

The bugs in this category are related to an incomplete implementation of a feature’s logic, that is,
the way in which the input is consumed and transformed into output.

Overall, 27 bugs were found to be of this type. An example is Bug#7 of Hexo, " in which an
HTML anchor was undefined, unless correct escaping of markdown characters is used.

— var text = $(this).html();
+ var text = _.escape (S$(this).text());

1.2. Missing input validation

The bugs in this category are related to an incomplete input validation, that is, the way in which the
program checks whether a given input is valid, and can be processed further.

Overall, 16% of the bugs were found to be of this type and a further 16% in more specialized in-
stances. This prevalence was mostly due to the nature of some of our programs. For instance,
ESLint provides linting utilities for JS code, and it is the most represented project in BUGSJS
(73%). Therefore, being its main scope to actually validate code, we found many cases related to
invalid inputs being unmanaged by the library, even though we found instances of these bugs also
in other projects. For instance, in Bug#4 of Karma, . a file parsing operation should not be trig-
gered on URLs having no line number. As such, in the bug-fixing commit, the proposed fix adds
one more condition.

- if (file && file.sourceMap) {
+ if (file && file.sourceMap && line) {

Another prevalent category is due to missing type check on inputs (11%), whereas less frequent
categories were missing check of null inputs, empty parameters, and missing handling of spaces or
other special characters (e.g., in URLS).

1.3. Error handling

The bugs in this category are related to an incomplete handling of errors,that is, the way in which
the program manages erroneous cases, that is, exception handling.

Overall, 3% of the bugs were found to be of this type. For instance, in Bug#14 of Karma,
the program does not throw an error when using a plugin for a browser that is not installed, which is
a corner-case missed in the initial implementation. Additionally, we found two cases specific to
callbacks.

1.4. Incomplete configuration processing

The bugs in this category are related to an incomplete configuration, that is, the values of parameters
accepted by the program.

Overall, 2% of the bugs were found to be of this type. For instance, in Bug#10 of ESLint, ¥+
an invalid configuration is used when applying extensions to the default configuration object. The
bug fix updates the default configuration object’s constructor to use the correct context and to make
sure the config cache exists when the default configuration is evaluated.

'l'i"l'gttps:// github.com/BugsJS/hexo/releases/tag/Bug-7-original
IIIII https://github.com/BugsJS/karma/releases/tag/Bug-4-original

T https://github.com/BugsJS/karma/releases/tag/Bug-14-original
Hihttps://github.com/BugsJS/eslint/releases/tag/Bug-10-original

g
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1.5. Incomplete output message

The last sub-category pertains to bugs related to incomplete output messages by the program.
Only three bugs were found to be of this type. For instance, in Bug#8 of Hessian.js, ***" the pro-
gram casts the values exceeding Number .MAX SAFE INTEGER as string, to allow safe readings

of large floating point values.

2. Incorrect feature implementation

This category contains 48% of the bugs overall and has seven sub-categories, which we describe in
the following subsections.

2.1. Incorrect data processing

The bugs in this category are related to a wrong implementation of a feature’s logic, that is, the way
in which the input is consumed and transformed into output.

Overall, 75 bugs were found to be of this type, with two sub-categories due to a wrong type com-
parison (1 bug), or an incorrect initialization (10 bugs). An example of this latter category is
Bug#238 of ESLint,"" in which developers remove the default parser from CLIEngine options
to fix a parsing error.

— parser: DEFAULT_PARSER
+ parser: ""

2.2. Incorrect input validation

The bugs in this category are related to a wrong input validation, that is, the way in which the pro-
gram checks whether a given input is valid and can be processed further.

Overall, 19% of the bugs were found to be of this type, with three sub-categories due to unnec-
essary type checks (7 bugs), incorrect handling of special characters (16 bugs), or empty input pa-
rameters given to the program (2 bugs). As an example of this latter category, in Bug#171 of
ESLint,""" the arrow-spacing rule did not check for all spaces between the arrow character
(=>) within a given code. Therefore, it is updated as follows:

— while (t.type !== "Punctuator" || t.value !== "=>") {
+ while (arrow.value !== "=>") {

2.3. Incorrect filepath

The bugs in this category are related to wrong paths to external resources necessary to the program,
such as files. For instance, in Bug#6 of ESLint,” " developers failed to check for configuration
files within sub-directories. Therefore, the code was updated as follows:

- if (!directory)
+ if (directory) directory = path.resolve (this.cwd, directory);

2.4. Incorrect output

The bugs in this category are related to incorrect output by the program. For instance, in Bug#7
of Karma, "' the exit code is wrongly replaced by null characters (0x00), which results in
squares ((JJJCICJC]) being displayed in the standard output.

- return exitCode
+ return {exitCode: exitCode, buffer: buffer.slice (0, tailPos)}

S838%pttps://github.com/BugsJS/hessian.js/releases/tag/Bug-8-original
MMMhttps://github.com/BugsJS/eslint/releases/tag/Bug-238-original
ii'!'llp*ttps ://github.com/BugsJS/eslint/releases/tag/Bug-171-original

https://github.com/BugsJS/eslint/releases/tag/Bug-6-original
¥ https://github.com/BugsJS/karma/releases/tag/Bug-7-original
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2.5. Incorrect configuration processing

The bugs in this category are related to an incorrect configuration of the program, that is, the values
of parameters accepted.

Nine bugs were found to be of this type. For instance, in Bug#145 of ESLint, " 3 regression
was accidentally introduced where parsers would get passed additional unwanted default options
even when the user did not specify them. The fix updates the default parser options to prevent
any unexpected options from getting passed to parsers.

— let parserOptions = Object.assign({}, defaultConfig.parserOptions);
+ let parserOptions = {};

2.6. Incorrect handling of regex expressions

The bugs in this category are related to an incorrect use of regular expressions.
Seven bugs were found to be of this type. For instance, in Bug#244 of ESLint,*%%% a regular
expression is wrongly used to check that the function name starts with setTimeout.

2.7. Performance

The bugs in this category caused the program to use an excessive amount of resources (e.g.,
memory). Only four bugs were found to be of this type. For instance, in Bug#85 of ESLint, 111
a regular expression susceptible to catastrophic backtracking was used. The match takes quadratic
time in the length of the last line of the file, causing Node.js to hang when the last line of the file
contains more than 30,000 characters. Another representative example is Bug#1l of Node-
Redis,"""" in which parsing big JSON files takes substantial time due to an inefficient caching
mechanism which makes the parsing time grow exponentially with the size of file.

3. Generic

This category contains 6% of the bugs overall and has six sub-categories, which we describe next.

3.1. Typo.
This category refers to typographical errors by the developers.

We found three such bugs in our benchmark. For instance, in Bug#321 of ESLint,” " a rule
is intended to compare the start line of a statement with the end line of the previous token. Due to a
typo, it was comparing the end line of the statement instead, which caused false positives for
multiline statements.

3.2. Return statement.

The bugs in this category are related to either missing return statements (3 bugs) or incorrect usage
of return statements (1 bug). For instance, in Bug#8 of Mongoose,“ﬂwr the fix involves adding an
explicit return statement.

— this.constructor.update.apply (this.constructor, args);
+ return this.constructor.update.apply(this.constructor, args);

3.3. Variable inizialization.

The bugs in this category are related to either missing initialization of variables statements (8 bugs)
or to an incorrect initialization of variables (4 bugs). For instance, in Bug#9 of Express,i;“ﬁ”ii the
fix involves correcting a wrongly initialized variable.

I-’fmf'thttps: //github.com/BugsJS/eslint/releases/tag/Bug-145-original
$88888 s //github.com/BugsJS/eslint/releases/tag/Bug-244-original
MMM https://github.com/BugsJS/eslint/releases/tag/Bug-85-original

i """https:// github.com/BugsJS/node_redis/releases/tag/Bug-1-original
T https://github.com/BugsIS/eslint/releases/tag/Bug-321-original
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path;

— mount_app.mountpath =
h = mount_path;

+ mount_app.mountpat

3.4. Data processing.
The bugs in this category are related to incorrect processing of information.

Six bugs were found to be of this type. For instance, in Bug#184 of ESLint, %% developers
fixed the possibility of passing negative values to the string.slice function.

— currentText.slice (node.range[0] - (beforeCount || 0)
+ currentText.slice (Math.max (node.range[0] - (beforeCount || 0), 0)

3.5. Missing type conversion.
The bugs in this category are related to missing type conversions.

Three bugs were found to be of this type. For instance, in Bug#4 of Shields,""™ developers
forgot to convert labels to string prior to apply the uppercase transformation.

— data.text[0] = data.text[0].toUpperCase();
+ data.text[0] = ('’ + data.text[0]) .toUpperCase();

3.6. Loop statement. We found only one bug of this type—Bug#304 of Shields, —related

to an incorrect usage of loop statements.
— while ((currentAncestor = currentAncestor.parent))
— if (isConditionalTestExpression (currentAncestor)) {
- return currentAncestor.parent;
-}
-}

do {
if (isConditionalTestExpression (currentAncestor)) {
return currentAncestor.parent;
}

} while ((currentAncestor = currentAncestor.parent));

++ + + +

4. Perfective maintenance

34 3k 3k ok ok ok ok ok

This category contains only 1% of the bugs. For instance, in Bug#209 of ESLint, devel-
opers fix JUnit parsing errors which treat no test cases having empty output message as a failure.

5. ANALYSIS OF BUG-FIXES

To gain a better understanding about the characteristics of bug-fixes of bugs included in BUGSJS, we
have performed two analyses to quantitatively and qualitatively assess the representativeness of our
benchmark. This serves as an addition to the taxonomy presented in Section 4.4 which, by
connecting the bug types to the bug-fix types, can support applications such as automated fault lo-
calization and automated bug repair.

5.1. Code churn

Code churn is a measure that approximates the rate at which code evolves. It is defined as the sum
of the number of lines added and removed in a source code change. The churn is an important mea-
sure with several uses in software engineering studies, for example, as a direct or indirect predictor
in bug prediction models [47,48].

FEEH hips://github.com/Bugs)S/express/releases/tag/Bug-9-original
S888388heepg://github.com/Bugs) S/eslint/releases/tag/Bug-184-original
1HHHHHWhttps:// github.com/BugsJS/shields/releases/tag/Bug-4-original
inn "https:// github.com/BugsJS/eslint/releases/tag/Bug-304-original
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Figure 6. (a—c) Distribution of the churn in bug-fixing commits.

We utilize the distribution of code churn to describe the overall data distribution in the benchmark
and understand to what extent it can be used to support software testing techniques (e.g., fault lo-
calization and program repair) that are directly affected by the size of the source code changes.

Figure 6 illustrates the distribution of code churn in each bug-fixing commit in BUGSJS, before
cleaning the patches (Figure 6a), affer removing changes unrelated to the fix, while retaining related
comments added or removed during the bug fix (Figure 6b), and after cleaning the fixes and also
removing all the comments and whitespaces (Figure 6¢). The box and whisker plots show the quar-
tiles of the data, enhanced by the underlying violin plots to better depict the data distribution.

The median value for the code churn required to fix a bug is 5 and 17 for production and test
code, respectively (excluding irrelevant changes, comments, and whitespaces). This essentially
means that for each line of bug-fixing change in the production code, more than three lines of test
code were changed on average.

We can also observe that nearly half of the changes done to the production code involve more
than five lines of code, suggesting that existing fault localization and repair techniques will fall
short in being applicable on real JS bugs, as they currently deal with one-liner changes only. Previ-
ous work showed that the same conclusion holds for Java projects [49].

In addition, comparing the median values in Figure 6 suggests that developers, on average,
add/remove one line of unrelated code changes (i.e., 8 —7) and two lines of comments/whitespace
(i.e., 7—5) when fixing a bug. This essentially shows the importance of the manual isolation and
cleaning performed on the bugs included in BUGSJS.

The largest value for churn in test code is 3,632 lines (Figure 6¢), occurring in a bug-fixing com-
mit in the ESLint project. This commit corresponds to generated test data committed along with the
production code bug-fixing changes. A closer look at the data revealed that there are five other such
commits in this project, all changing more than 1,000 lines of test code. Such commits in which the
number of changes is exceptionally high (i.e., outliers) should be carefully handled or discarded
when conducting empirical studies.

5.2. Patterns in bug fixes

We further analyzed the bugs in BUGSJS to observe occurrence of low-level bug fixes for recurring
patterns. Previous work [45,49,50] have studied patterns in bug-fixing changes within Java pro-
grams. They suggest that the existence of patterns in fixes reveals that specific kinds of code con-
structs (e.g., if conditionals) could signal weak points in the source code where developers are
consistently more prone to introduce bugs [45].

Methodology.

Four authors of this paper manually investigated all 453 bug-fixing commits in BUGSJS and
attempted to assign the bug-fixing changes to one of the predefined categories suggested in previous
studies. In particular, we used the categories proposed by Pan et al. [45]. These categories, however,
are related to Java bug fixes. Our aim is to assess whether they generalize to JS, or whether, in con-
trast, JS-specific bug-fix patterns would emerge.
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Following the original category definitions [45], we assigned each individual bug fix to exactly
one category. Disagreements concerning classification or potential new categories were resolved
by further discussion between the authors. To identify the occurrences of such patterns, we opted
for a manual analysis to ensure covering potential new patterns, and to add an extra layer of valida-
tion against potential misclassifications (e.g., false positives).

Table V shows the number of bug fix occurrences followed the categories by Pan et al. [45] (for
fixes spanning multiple lines, we possibly assigned more than one category to a single bug-fixing
commit; hence, the overall number of occurrences is greater than the number of bugs).

Note that, since the categories proposed by Pan et al. have been derived from Java programs, we
had to make sure to match them correctly on JS code. In particular, until ECMAScript 2015, JS did
not include syntactical support for classes. Classes were emulated using functions as constructors,
and methods/fields are added to their prototype [51-53]. In addition, object literals could represent
imaginary classes: comma-separated list of name—value pairs enclosed in curly braces, where the
name—value pairs declare the class fields/methods. We have taken all these aspects into account dur-
ing the assignment task, to avoid misclassifications.

Our analysis revealed that, in 88% of bugs in BUGSJS, the fix includes changes falling into one of
the proposed categories. The most prevalent bug fix patterns involve changing an if statement
(i.e., modifying the if condition or adding a precondition), changing assignment statements,
and modifying function call arguments (Table V). The same three categories have been also found
to be most recurring in Java code, but with a different ordering: Pan et al. [45] report that the most
prevalent fix patterns are changes done on method calls, if conditions, and assignment expres-
sions. In addition, we found that changes to class fields are also prevalent. This can be explained
by the fact that in JS, object literals are frequently created without the need for defining a class or
function constructor, and, as far as fixing bugs is concerned, updating their attributes (i.e., fields) is
a common practice.

5.2.1. JavaScript-related bug-fixing patterns. We found three new recurring patterns in our bench-
mark, which we describe next.

Changes to the return statement’s expression. We found a recurring bug-fixing pattern in-
volving changing the return statement’s expression of a function, that is

— return node.type !== "A";
+ return ! (node.type === "A" && lastIlI.type === "R");

Variable declaration. In JS, it is possible to use a variable without declaring it. However, this
has implications which might lead to subtle silent bugs. For example, when a variable is used inside
a function without being declared, it is ‘hoisted’ to the top of the global scope. As a consequence, it
is visible to all functions, outside its original lexical scope, which can lead to name clashes. This fix
pattern essentially includes declaring a variable which has already been in use.

Table V. Bug-fixing change types by Pan et al. [45] and new JavaScript-related patterns found by our study.

Category Example #

Existing 1if-related Changing i f conditions 291
Assignments Modifying the RHS of an assignment 166

Function calls Adding or modifying an argument 151

Class fields Adding/removing class fields 151

Function declarations Modifying a function’s signature 94
Sequences Adding a function call to a sequence of calls, all with the same receiver 42

Loops Changing a loop’s predicate 7

switch blocks Adding/removing a switch branch 6

try blocks Introducing a new try-catch block 1

New  return statements Changing a returnstatement 40
Variable declaration ~ Declaring an existing variable 2
Initialization Initializing a variable with empty object literal/array 3
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Initialization of empty variables. This bug-fixing pattern category corresponds to Hanam
et al.”s [25] first bug pattern, that is, dereferenced non-values. To avoid this type of bug, developers
can add additional if statements, comparing values against ‘falsey’ values (‘undefined’ type or
‘null’). This bug fix pattern provides a shortcut to using an if statement, by using a logical
‘or’ operator, for example, a = a | | {}, which means that the value of a will remain intact if it
already has a ‘non-falsey’ value, or it will be initialized with an empty object otherwise.

5.3. Bug taxonomy and bug-fixing types

We compared the taxonomy with the bug-fixing patterns used to fix the bugs. Figures 7—9 present
Sankey diagrams showing the relationship of the assigned bug categories with the bug-fixing pat-
terns of Pan et al. [45] and the JS-related bug-fixing patterns described in Section 5.3. We focused
our analysis on the first three main bug categories of our taxonomy. For presentational clarity, each
figure shows a diagram for one of such main categories. The left side of the diagrams shows one of
the main bug categories, unfolded into its sub-categories. The right side depicts the associated
bug-fixing patterns. The None node indicates that no patterns were applicable. In the middle, each
bug category is connected to each bug-fixing patterns that are used to fix the bugs belonging to the
bug category. The thickness of the curved lines between the nodes indicates the cardinality of the
association.

For example, in Figure 7, the node incomplete feature implementation is connected to the
sub-category missing input validation with a thick line, due to the majority of the bugs in this main
category belonging to that sub-category. Then, the node of that sub-category is connected to the
node of the /F-CCbug-fixing pattern with a relatively thick line, because a considerable amount
of bugs fixes are classified into that category. The nodes of the bug categories can be wider than
the total width of the lines connected from the right side, because bug fixes can be assigned with
multiple bug patterns, whereas each bug is assigned with exactly one bug category. Also, there
are bugs that are only assigned to a main category, for example, Missing input validation, but not
to any sub-category, which resulted in the direct lines between pattern and main category nodes.

Table VI gives a description about the bug-fixing pattern abbreviations. We now discuss each of
the bug categories in detail.

5.3.1. Incomplete feature implementation. Figure 7 illustrates the connection between the bugs un-
der the Incomplete feature implementation category and the related bug-fixing patterns.

Missing input validation. Table VII shows that the majority of the bugs assigned with this cat-
egory are fixed by if-related (53), assignment-related (29), and method declaration-related (22)
changes. The most common are changing a condition in an if statement (/F-CC), changing an as-
signment expression (4S-CE), or by adding a method declaration (MD-4DD). The most numerous
sub-category is the missing type check, and the related bugs are mainly fixed by i f-related changes
(39), the top two are [F-CC and IF-APCJ, and by changing an assignment expression (18 AS-CE).
The fixes of bugs in the missing handling of special characters sub-category often contain changes
in an assignment expression (6 AS-CE) and in an if statement (5), mainly adding post-condition
checks (I/F-APTC). Bugs belonging to the missing null check and the empty input parameters
sub-categories are mainly fixed by changing an i f condition (5). The missing handling of spaces
sub-category is connected to various bug-fixing patterns and none of them is dominant.

Incomplete configuration processing. The majority of the bug fixes of this category contain
if-related patterns (9), mainly /F-4APC, adding a precondition check. The missing type check
sub-category of Incomplete configuration processing is too small to draw meaningful conclusions.

Error handling. Bugs of this category are typically fixed with i £-related fixes (12), namely /F-
APCJ, IF-APC and IF-CC. The second most common fix patterns are MC-DNP, changing the num-
ber of parameters (3) and MD-ADD, adding a method declaration (4). The callbacks sub-category of
error handling is related to a variety of bug-fixing patterns (4 if-related, 1 assignment related, 1
method call related, and 1 sequence related).

Incomplete output message. Bugs assigned with this category are usually fixed by changing the
parameters of function calls (2 MC-DAP, 1 MC-DNP).
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Figure 7. Bug-fixing patterns used in the Incomplete feature implementation category.

Incomplete data processing. Bugs belonging to this category were fixed in a variety of ways.
The most common pattern are method call related (11), but there is no dominant bug-fixing pattern.

5.3.2. Incorrect feature implementation. Figure 8 illustrates the connection between the bugs un-
der the Incorrect feature implementation category and the related bug-fixing patterns.

Incorrect input validation. The most dominant bug-fixing patterns of this category are i f-re-
lated (56), method call related (27) and assignment related (25). The most numerous i f-related pat-
tern is /F-CC, and the most numerous method call-related pattern is MC-DAP. Furthermore,
return statement related (12 JS-Return) and method declaration related (10 MD-ADD and 5

© 2020 The Authors. Software Testing, Verification & Reliability Softw. Test. Verif. Reliab. (2020)
published by John Wiley & Sons Ltd DOI: 10.1002/stvr



25 of 38 BUGSIJS: A BENCMARK AND TAXAMONY OF JAVASCRIPT BUGS

'/l ,;m Q
iz /url‘v'//‘ ':"h» ===

ﬁr'“ 7 ‘ —
/4 TETAN

-J/IJ}“ N\ N 1
. 4/@7/

n
4

CF-ADD: 1 ——
CF-CHG: 4 mam

Figure 8. Bug-fixing patterns used in the Incorrect feature implementation category.

MD-CHG) patterns are also quite common. In the unnecessary type check sub-category, the most
common pattern is if-related (6 /F-CC and 1 IF-RMYV), and the second most common pattern is
the assignment-related pattern (5 AS-CE). Bugs belonging to the biggest input validation-related
sub-category, the incorrect handling of special characters, are usually fixed with method
call-related changes (10 MC-DAP and 2 MC-DM), with assignment-related changes (9 AS-CE)
and with method declaration-related changes (9 MD-ADD and 1 MD-RMYV). The empty input pa-
rameters sub-category of incorrect input validation is too small to draw meaningful conclusions.
Incorrect data processing. Similarly to the incomplete data processing category, bugs belonging
to this category were fixed in a variety of ways. There is no dominant bug-fixing pattern. The most
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Figure 9. Bug-fixing patterns used in the generic category.

numerous patterns are i f-related (39), method call related (27) and assignment related (24). The
incorrect initialization sub-category is interestingly not connected to i f-related patterns at all.
The bug fixes of this category are connected to only assignment-related (5), sequence-related (5),
and method call-related (4) patterns. The incorrect type comparison sub-category of incorrect data
processing is too small to draw meaningful conclusions.

Incorrect handling of regex expressions. Bugs assigned to this category are mostly fixed with
assignment-related (13 AS-CE) and method call-related (6 MC-DAP) changes.

Incorrect filepath. Here, the most dominant bug-fixing patterns are assignment related (4),
method call related (4), and i f-related (4). The variety of connected patterns is large.

Incorrect output. Bugs of this category are usually fixed by changing method calls BMC-DM
and 2 MC-DAP) and by changing return statements (3 JS-Return). The incorrect output message
sub-category contains bugs with fixes that mostly involve changes to the parameters of method calls
(9 MC-DAP and 1 MC-DNP) and changes to condition expressions in i f statements (5 /F-CC, 2
IF-RMV, and 1 IF-APCJ).

Incorrect configuration processing. The most dominant bug-fixing pattern for this category is
assignment related (5 AS-CFE), but a variety of other patterns occur as well (3 i f-related, 2 method
call related, 1 JS related, 1 loop related, and 1 method declaration related).

Performance. The majority of the bug-fixing patterns used for fixing bugs of this category is SO-
AFO, adding operations in an operation sequence of field settings (7). The second most common
patterns are if-related (5 [F-APC and 1 IF-APCJ).

5.3.3. Generic. Figure 9 illustrates the connection between the bugs under the generic category
and the related bug-fixing patterns.

© 2020 The Authors. Software Testing, Verification & Reliability Sofiw. Test. Verif. Reliab. (2020)
published by John Wiley & Sons Ltd DOLI: 10.1002/stvr



27 of 38 BUGSJS: A BENCMARK AND TAXAMONY OF JAVASCRIPT BUGS

Table VI. Bug-fixing patterns

Category Pattern name

Pan [45]

Assignment (AS)  Change of assignment expression (AS-CE)

Class field (CF) Addition of a class field (CF-ADD)
Change of class field declaration (CF-CHG)
Removal of a class field (CF-RMV)

If-related (IF) Addition of an else branch (IF-ABR)
Addition of precondition check (IF-APC)
Addition of precondition check with jump (IF-APCJ)
Addition of post-condition check (IF-APTC)
Change of if condition expression (IF-CC)
Removal of an else branch (IF-RBR)
Removal of an if predicate (IF-RMV)

Loop (LP) Change of loop condition (LP-CC)
Change of the expression that modifies the loop variable (LP-CE)

Method call (MC) Method call with different actual parameter values (MC-DAP)
Different method call to a class instance (MC-DM)
Method call with different number or types of parameters (MC-DNP)

Method Change of method declaration (MD-CHG)

declaration (MD) Addition of a method declaration (MD-ADD)

Removal of a method declaration (MD-RMV)

Sequence (SQ) Addition of operations in an operation sequence of field settings (SQ-AFO)
Addition of operations in an operation sequence of Method calls to an object (SQ-AMO)
Addition or removal method call operations in a short construct body (SQ-AROB)
Removal of operations from an operation sequence of field settings (SQ-RFO)
Removal of operations from an operation sequence of method calls to an object (SQ-RMO)

Switch (SW) Addition/removal of switch branch (SW-ARSB)
Try (TY) Addition/removal of a catch block (TY-ARCB)
Addition/removal of a try statement (TY-ARTC)
BugsJS

JavaScript (JS) Changing a return statement (JS-return)
Initializing a variable with empty object literal/array (JS-initialization)
Declaring an existing variable (JS-declaration)

Variable initialization. The bug fixes of the missing variable initialization sub-category contain
five types of bug-fixing patterns. The most dominants are the JS-related patterns (2 JS-Return, 2 JS-
Initialization, and 1 JS-Declaration) and the class field-related patterns (2 CF-CHG and 2 CF-
ADD). In the other sub-category, incorrect variable initialization, changing an assignment expres-
sion (3 AS-CE) is the most dominant.

Data processing. Similarly to the other two cases of data processing bugs, the associated bug
fixes contain a variety of patterns (2 JS related, 2 method call related, 1 if-related, 1 assignment
related, and 1 sequence related), and there is no dominant bug-fixing pattern.

Missing type conversion. The bug fixes of this category mostly involve changes in an assign-
ment expression (2 4S-CE), but adding a precondition check to an if statement (1 /F-4PC) and
removing an operation from an operation sequence of method calls (1 SQ-RMO) also appears.

Typo. For this category, there is no dominant bug-fixing pattern (2 i f-related, 2 method call re-
lated, 1 assignment related, and 1 method declaration related) which essentially means typos can
occur at any place in the code.

Return statement. This category contains too few bug-fixing patterns to draw meaningful con-
clusions. Surprisingly, the bug fixes do not fall into the JS-Return category.

Loop statement. There is only one bug in this category, and its fix does not contain any
bug-fixing patterns; therefore, we cannot draw meaningful conclusions here.

5.3.4. Highlights. Table VII provides statistics about the occurrences of each bug-fix type corre-
sponding to the bug types. The table can serve to analyze the emergence of correlations between
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Table VII. Taxonomy and bug fixing types

AS CF IF JS LP MC MD None SQ SW TY
Incomplete feature implementation

Configuration processing 1 0o 9 1 0 2 1 1 1 0 0
Missing type check 1 o 0 0 o0 1 0 0 0 0 0
Error handling 1 0 12 1 0 3 4 3 1 0 1
Callbacks 1 0 4 0 O 2 0 0 1 0 0
Incomplete data processing 4 2 9 1 0 11 7 3 1 1 0
Incomplete output message 0 0 10 0 3 0 0 0 0 0
Missing input validation 29 8 53 4 1 11 22 2 2 2 0
Empty input parameters 1 0 30 O 1 0 0 1 0 0
Missing handling of spaces 2 0 2 1 0 1 2 0 0 0 0
Missing handling of special characters 6 0 5 1 0 1 0 0 0 0 0
Missing null check 0 0 5 2 0 0 0 0 0 0 0
Missing type check 18 2 39 2 1 10 10 2 1 1 0
Incorrect feature implementation

Configuration processing 5 0o 3 1 1 2 1 3 0 0 0
Incorrect data processing 24 2 39 5 1 27 13 3 9 1 0
Incorrect initialization 5 0 0o 0 0 4 0 3 5 0 0
Incorrect type comparison 0 0 1 0 0 0 0 0 0 0 0
Incorrect filepath 4 0o 4 2 0 4 1 0 2 0 0
Incorrect handling of regex expressions 13 0o 4 0 0 6 3 0 0 0 0
Incorrect input validation 25 1 56 12 0 27 15 2 4 1 0
Empty input parameters 0 0 1 0 0 0 0 1 0 0 0
Incorrect handling of special characters 9 0 7 0 1 12 9 1 3 0 0
Unnecessary type check 5 0 7 0 0 0 2 0 0 0 0
Incorrect output 1 0 0 3 0 5 0 1 0 0 0
Incorrect output message 2 2 8 1 0 10 2 3 0 0 0
Performance 1 0 5 0 0 1 0 0 7 0 0
Generic

—_
o
—_
[\S)
o
[\
(e
—
—_
(=]
(e

Data processing

Loop statement
Incorrect loop statement
Missing type conversion
Return statement

N O
o O
— O
o O
o O
o O
S O
—
—_
S O
S O

Incorrect return statement 0 0 0 0 0 1 0 0 0 0 0
Missing return statement 0 0 1 0 0 0 0 2 0 0 0
Typo 1 0 0 0 2 1 0 0 0 0
Variable initialization

Incorrect variable initialization 3 1 0 0 0 0 0 0 0 0 0
Missing variable initialization 0 4 0 5 0 2 0 0 2 0 0
Perfective maintenance 1 0 9 1 0 1 1 0 0 0 0

bug-fix types and bug types. Overall, the most common bug-fixes types are i f-related (291), the
second most common are assignment-related (166), and the third most common are method
call-related (152) bug-fixes. These bug-fixes types are mostly related to the most prominent bug cat-
egories, namely missing input validation, incorrect input validation, and incorrect data processing.
Another correlation is that assignment-related fixes are also the preferred way to fix regexes. These
are perhaps the only correlations between bug-fix types and bug types that are observable in our
benchmark.

6. DISCUSSION
Our results might drive devising novel software analysis and repair techniques for JS, with BUGSJS
being a suitable real-world bug benchmark for their evaluation, as well as inform developers of the

most error-prone constructs.
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In the rest of this section, we discuss some of the potential uses of our taxonomy, together with
possible use cases of our benchmark in supporting empirical studies in software analysis and test-
ing, as well as its limitations and threats to validity of our study.

6.1. Directing research efforts

Our taxonomy and associated data can be useful in several contexts related to JS analysis and test-
ing contexts. Our study reveals that the majority of bugs are related to mistakes by the developers.
This finding is in line with those of the previous study by Ocariza et al. [9] on client-side JS pro-
grams. Overall the bug fixes included in BUGSJS cover a diverse range of categories, some of which
being specific only to JS (Section 5.3). For instance, incorrect/missing input validation and
incorrect/incomplete data processing caused the majority of bugs we observed, 50% T and
23%, HHHHH respectively. It has to be said that this prevalence is due to the ESLint project, which
is a linting tool, essentially a code validator. While ESLint may be not representative of the majority
of JS web services, it is a very popular JS linting tool, being recommended by multiple comparative
ported by JetBrains in the WebStorm IDE and by Vue.js to validate their templates and by
Facebook’s React to help enforce their coding rules. This adoption suggests that major companies
recognize input validation/data processing tasks as vital throughout the software development.

Another relevant source of bugs is due to missing type checks, a construct which is particularly
problematic due to the dynamically typed nature of JS, which makes it easier for developers to in-
troduce bugs if they are, for instance, more familiar or used to strongly typed languages [9,25]. Re-
searchers have proposed approaches for addressing this class of errors and finding ways to prevent
them [1,4,54-57], which suggests that this class of errors deserves considerable attention.

6.1.1. Benchmark for testing techniques. Various fields of testing research can benefit from
BUGSIS. First, our benchmark includes more than 25k JS test cases, which makes it a rather large
dataset for different regression testing studies (e.g., test prioritization, test minimization, or test se-
lection). Second, BUGSJS can play a role to support research in software oracles (e.g., automated
generation of semantically meaningful assertions), as it contains all test suites’ evolution as well
as examples of real fixes made by developers. Additionally, these can be used to drive the design
of automated test repair techniques [58,59]. Finally, test generation or mutation techniques for JS
can be evaluated on BUGSJS at a low cost, since precomputed coverage information are available
for use.

6.1.2. Bug prediction using static source code analysis. To construct reliable bug prediction
models, training feature sets are extracted from the source code, comprising instances of buggy
and healthy code, and static metrics. BUGSJS can support these studies since it streamlines the
hardest part of constructing the training and testing datasets, that is, determining whether a given
code element is affected by a bug. As such, the cleaned fixes included in BUGSJS make this task
much easier. Also, the availability of both uncleaned and cleaned bug-fixing patches in the dataset
can allow assessing the sensitivity of the proposed models to the noise. In addition, some of the
most important static code metrics are readily available as precomputed data.

6.1.3. Bug localization. BUGSJS can support devising novel bug localization techniques for JS.
Approaches that use natural language processing can take advantage of our benchmark since bugs
are readily available to be processed. Indeed, text retrieval techniques are used to formulate a nat-
ural language query that describes the observed bug. To this aim, BUGSJS contains pointers to the
natural language bug description and discussions for several hundreds of real-world bugs. Similarly,
BUGSJS will be of great benefit for other popular bug localization approaches, for example, the

T (72451424 7+4+7+61+7+16+2)/453%

I 07464+ 1+10)/453%

S8988888 ¢4 //www.sitepoint.com/comparison-javascript-linting-tools/
M ¥ https://codekitapp.com/help/jslint/
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spectrum-based techniques [60-63] because all the necessary data—test case outcomes, code cov-
erage, and bug information—are readily available.

6.1.4. Automated program repair. Automated program repair techniques aim at automatically
fixing bugs in programs, by generating a large pool of candidate fixes, to be later validated.
The manually cleaned patches available in BUGSJS can be used as learning examples for patch
generation in novel automated program repair for JS. Also, BUGSJS provides an out-of-the-box
solution for automatic dynamic patch validation. Detailed classification of the bugs according
to our bug-taxonomy and the bug-fix types provides to this kind of research additional useful
information.

6.2. Directing developer efforts

6.2.1. Improving manual repair processes. In the absence of automated program repair techniques,
knowledge about the causes of bugs could help developers manually fix programs, both by increas-
ing their awareness to bugs causes and helping them prioritize the inspection of possible causes
based on the relative importance of such causes in our taxonomy.

6.2.2. Avoiding bugs. Bugs avoidance pertain to cases in which programmers are provided with
information to assist them in avoiding bugs, and it is up to them to choose what information to uti-
lize and how. One way to promote bugs avoidance involves educating developers and maintainers
of JS applications as to the causes and probabilities of bugs. Such education could be supported by
information present in our taxonomy and the data that underlie it. First, consider code changes ac-
tivities. We observed that many of the bugs involving missing type checks resulted from simple
code changes, that is, missing an IF-condition in a statement. Second, consider code creation tasks.
When creating new code, programmers can enforce the practice of adding input validation as a
must-do of their daily activities. Finally, consider test case creation. Testers can use our taxonomy
to focus their test case creation to avoid the most bug-prone categories.

6.2.3. Preventing bugs. Bugs prevention, in contrast to bugs avoidance, involves the use of auto-
mated approaches for ensuring that bugs do not occur, even though humans might be included in
the feedback loop. For example, programmers may take advantage of tools like checkers and linting
tools that enable static and dynamic analysis automatically [64], and our taxonomy could help im-
prove on certain constructs that are particularly challenging for developers.

6.2.4. IDE enhancements. Another class of bugs prevention approaches involves improvements in
web programming and testing IDEs. Analysis techniques that operate concurrently with program
development and maintenance may be quite effective, and such techniques could also be guided
by our taxonomy. Modern IDEs for code development typically employ such approaches: As pro-
grammers edit, they point out problems or provide useful information based on the programmers’
actions. JS application development IDEs employ such approaches also, but to our knowledge,
no such IDEs also build in assistance related to testing efforts. Such IDEs could aid in bugs avoid-
ance by alerting developers to possible effects or bad practices and letting them choose whether or
not to act on them. They could aid in prevention by prohibiting certain actions or by recommending
the creation of constructs. Let us take as example the return statement-related issues. Our taxonomy
highlighted that developers often fix bugs by changing the return statement. Thus, IDEs can be im-
proved with new data flow testing techniques that check that JS objects’ states are preserved during
the execution before they are returned or that inform a change-impact analysis technique to show
how the change to an object affects the final output.

6.3. Limitations
BUGSJS includes only server-side JS applications developed with the Node.js framework. As such,
experiments evaluating the client-side (e.g., the DOM) are not currently supported. While our

© 2020 The Authors. Software Testing, Verification & Reliability Sofiw. Test. Verif. Reliab. (2020)
published by John Wiley & Sons Ltd DOLI: 10.1002/stvr



31 of 38 BUGSJS: A BENCMARK AND TAXAMONY OF JAVASCRIPT BUGS

survey revealed a large number of subjects being used for evaluating such techniques, the majority
of these programs could not be directly included in our proposed benchmark.

Indeed, in the JS realm, the availability of many implementations, standards, and testing
frameworks poses major technical challenges with respect to devising a uniform and cohesive bugs
infrastructure. Similar reasoning holds for selecting Mocha as a reference testing framework.

Running tests for browser-based programs may require complex and time-consuming configura-
tions. When dealing with a large and diverse set of applications, achieving isolation would require
automating each single configuration for all possible JS development and testing frameworks,
which is a cumbersome task. Clearly, this is a potential limitation and bias for experiments that
use BUGSJS, and we are considering for a future revision of the benchmark to support other environ-
ments as well. We must note, however, that due to the mentioned specialities of the JS ecosystem,
we do not expect to be able to fully cover the plethora of the different execution environments. Nev-
ertheless, all the subjects included in BUGSJS have been previously used by at least one work in our
literature survey (e.g., BOWER, SHIELDS, KARMA, NODE-REDIS, and MONGOOSE are all used in
bug-related studies).

6.4. Threats to validity

The main threat to the internal validity of this work is the possibility of introducing bias when
selecting and classifying the surveyed papers and the bugs included in the benchmark.

Our paper selection was driven by the keywords related to software analysis and testing for JS
(Section 2). We may have missed relevant studies that are not captured by our list of terms. We mit-
igate this threat by performing an issue-by-issue, manual search in the major software engineering
conference proceedings and journals, followed by a snowballing process. We, however, cannot
claim that our survey captures all relevant literature; yet, we are confident that the included papers
cover the major related studies.

Concerning the bugs, we manually classified all candidate bugs into different categories (Section
3.3) and the retained bugs into categories pertaining to existing bug and fix taxonomies (Section
5.2). To minimize classification errors, multiple authors simultaneously analyzed the source code
and performed the classifications individually, and disagreements were resolved by further
discussions among the authors. Concerning the bug’s classification for taxonomy construction,
the first four authors classified the bugs manually. This task, however, requires reasoning that
cannot be automated, so it is difficult to envision less threat-prone approaches. To reduce the
subjectivity involved in the task, the authors followed a systematic and structured procedure, with
multiple interactions.

Threats to the external validity concern the generalization of our findings. We, by no means,
claim that our benchmark represents all relevant web apps. We selected only 10 applications and
our bugs may not generalize to different projects. Also, other relevant classes of bugs might be un-
represented or underrepresented within our benchmark, which is to date quite overfitted toward
ESLint, that is, the most represented project. Nevertheless, we tried to mitigate this threat by
selecting applications with different sizes and pertaining to different domains. We hope that our
framework will provide an entry point and a reference for future improvements as other subject
systems are necessary to fully confirm the generalizability of our results and corroborate our
findings.

Another generalization threat concerns our taxonomy. Taxonomies are conceptual maps de-
rived from empirical observations; as such they typically evolve as additional observations of
the world are made. We expect the same to be true of our taxonomy, and thus, it is not neces-
sarily the case that any attempt to apply the taxonomy to subsequent programs will allow every
type of bug in those applications to be categorized. In such cases, the taxonomy will require
adjustments. This work attempts to reduce this threat by applying a validation phase to our
initial taxonomy.

With respect to reproducibility of our results, all classifications, subjects, and experimental data
are available online, making the analysis reproducible.
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7. RELATED WORK

7.1. Benchmarks

7.1.1. C, C++, and C# Benchmarks. The Siemens benchmark suite [65] was one of the first
datasets of bugs used in testing research. It consists of seven C programs, containing manually
seeded faults. The first widely used benchmark of real bugs and fixes is the SIR [14], which in-
cludes the Siemens benchmark and extends it with nine additional large C programs and seven Java
programs. SIR also features test suites, bug data, and automation scripts. The benchmark contains
both real and seeded faults, the latter being more frequent.

Le Goues et al. [16] proposed two benchmarks for C programs called ManyBugs and
IntroClass,"""" which include 1,183 bugs in total. The benchmarks are designed to support the
comparative evaluation of automatic repair, targeting large-scale production (ManyBugs) as well
as smaller (IntroClass) programs. ManyBugs is based on nine open-source programs (5.9MLOC
and over 10k test cases) and it contains 185 bugs. IntroClass includes 6 small programs and 998
bugs.

Rahman et al. [66] examined the OpenCV project mining 40 bugs from seven out of 52 C++
modules into the benchmark Pairika. The seven modules analyzed contain more than 490k LOC,
about 11k test cases and each bug is accompanied by at least one failing test.

Lu et al. [67] propose BugBench, a collection of 17 open-source C/C++ programs containing 19
bugs pertaining to memory and concurrency issues.

Codeflaws [68] contains nearly 4k bugs in C programs, for which annotated ASTs with annotated
syntactic differences between buggy and patch code are provided.

7.1.2. Java benchmarks. Just et al. [15] presented Defects4J, a bug database and extensible frame-
work containing 357 validated bugs from five real-world Java programs. BUGSJS shares with
Defects4] the idea of mining bugs from the version control history. However, BUGSIS has some ad-
ditional features: Subject systems are accessible in the form of git forks on a central GitHub repos-
itory, which maintains the whole project history. Further, all programs are equipped with prebuilt
environments in form of Docker containers. Moreover, in this paper, we also provide a more de-
tailed analysis of subjects, tests, and bugs.

Bugs.jar [69] is a large-scale dataset intended for research in automated debugging, patching, and
testing of Java programs. Bugs.jar consists of 1,158 bugs and patches, collected from eight large,
popular open-source Java projects.

iBugs [70] is another benchmark containing real Java bugs from bug-tracking systems originally
proposed for bug localization research. It is composed of 390 bugs and 197kLOC coming from
three open source projects.

7.1.3. Multi-language benchmarks. QuixBugs [18] is a benchmark suite of 40 confirmed bugs
used in program repair experiments targeting Python and Java with passing and failing test cases.

BugSwarm [17] is a recent dataset of real software bugs and bug fixes to support various testing
empirical experiments such as test generation, mutation testing, and fault localization.

Code4Bench [71] is another cross-language benchmark comprising C/C++, Java, Python, and
Kotlin programs among others. Code4Bench also features a coarse-grained bug classification based
on an automatic fault localization process for which faults were classified only in three groups,
namely addition, modifications, and deletion. In contrast, BUGSJS focuses on JS bugs, for which
we provide a fine-grained analysis based on a rigorous manual process.

7.1.4. Benchmarks comparison. We summarize the related benchmarks and compare their main
features to BUGSJS in Table VIII. The table includes the language(s) in which the programs were
written and the kind of bugs the benchmarks contain. Further, the table indicates whether the mod-
ified versions have been cleaned from irrelevant changes, for example, achieving the isolation prop-
erty, whether the benchmark includes quantitative or qualitative analyses of the faults. These
information were retrieved in the papers in which the benchmarks were proposed first.
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Table VIII. Properties of the benchmarks

Benchmark Language(s) Faulttype  # Bugs Isolation Quantitative analysis Qualitative analysis
Siemens/SIR [14] C/Java Real/seeded 662 v X X
ManyBugs [16] C Real 185 v v v
IntroClass [16]  C Real 998" v v v
Pairika [68] C++ Real 40 v v X
BugBench [69] C/C++ Real 19 X b 4 v
Defects4] [15] Java Real 357+ v v v
Bugs.jar [71] Java Real 1,158 v X x
iBugs [72] Java Real 390 b 4 v 4
QuixBugs [18] Java/Python Seeded 40 v 4 v
Codeflaws [66] C Real 3,902 v X v
BugSwarm [17]  Java/Python Real 3,165 X v x
Code4Bench [73] Multiple Real N/AS X v X
BUGSIJS JavaScript ~ Real 453 v v v

"The total number of bugs is 1,623, of which 998 are those in common between two test suites.

i_T his is reported in the original publication, the newer versions of the benchmark include additional bugs.
SCreated by independent authors [44].

“Only the number of faulty program versions is reported.

The table highlights that BUGSJS is the only benchmark that contains JS programs. This paper also
provides both a quantitative analysis of the benchmark and a qualitative analysis of the bugs (from
which a taxonomy was derived) and the bug fixes (by comparing them with existing taxonomies).
For instance, in the case of Defect4J, the original paper proposed only the benchmark [15], whereas
a quantitative analysis was added in a subsequent paper by Sobreira et al. [44]. More qualitative
analyses were also made by Sobreira et al. [44] and Motwani et al. [72], who independently propose
two orthogonal classification of repairs.

To summarize, BUGSIS is the first benchmark of bugs and related artifacts (e.g., source code and
test cases) that targets the JS domain. In addition, BUGSIS differentiates from the previously men-
tioned benchmarks in the following aspects: (i) The subjects are provided as git forks with complete
histories, (2) a framework is provided with several features enabling convenient usage of the bench-
mark, (3) the subjects and the framework itself are available as GitHub repositories, (4) Docker con-
tainer images are provided for easier usage, (5) the bug descriptions are accompanied by their
natural language discussions, as well as (6) a manually derived bug taxonomy and a comparison
with an existing bug-fixes taxonomy.

7.2. Bug taxonomies

There are several industry standards for categorizing software bugs, such as the IEEE Standard
Classification for Software Anomalies [73] or IBM’s Orthogonal Defect Classification [74]. How-
ever, these are either too generic or more process-related and are not suitable for categorizing bugs
in BUGSJS. Also, there are countless categorization schemes proposed by various testing and defect
management tool and service vendors, which are also less relevant for our research.

Hanam et al. [25] discuss 13 cross-project bug patterns occurring in JS pertaining to six catego-
ries, which are the following: Dereferenced non-values (e.g., Uninitialized variables), Incorrect API
config (e.g., Missing API call configuration values), Incorrect comparison (e.g., === and == used
interchangeably), Unhanded exceptions (e.g., Missing try-catch block), Missing arguments
(e.g., Function call with missing arguments), and /ncorrect this bounding (e.g., Accessing a
wrong thisreference).

Since this is probably the closest related work to our taxonomy presented in Section 4.4, we tried
to assign all 453 bugs of BUGSJS to one of these categories as well. Our analysis found 42 occur-
rences of the categories proposed by Hanam et al., most of them (35) belonging to Dereferenced
non-values. This shows that these patterns do exist in the bugs that we have in BUGSJS, but they only
cover a small subset of them. The majority of the rest of the bugs are indeed logical errors made by
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developers during the implementation which do not necessarily fall into recurring patterns. This
shows that the bugs included in BUGSIS are rather diverse in nature, making it ideal for evaluating
a wide range of analysis and testing techniques. Our taxonomy seemed more appropriate for the cat-
egorization of such logical errors in BUGSJS, with the price that our categories are more high level
and independent of the language and the domain of the subject systems.

The most common pattern according to the Hanam et al. scheme, Dereferenced non-values, can
also be identified in other related work. Previous work showed that this pattern occurs frequently
also in client-side JS applications [9]. Developers could avoid these syntax-related bugs by
adopting appropriate coding standards. Moreover, IDEs can be enhanced to alert programmers to
possible effects or bad practices. They could also aid in prevention by prohibiting certain actions
or by recommending the creation of stable constructs.

Catolino et al. [75] analyzed 1,280 bug reports of 119 popular projects with the aim of build-
ing a taxonomy of the types of reported bugs. They devised and evaluated the automated clas-
sification model which is able to classify the reported bugs according to the defined taxonomy.
The authors defined a three-step manual method to build the taxonomy, which was similar to
our approach. The final taxonomy defined in this work contains nine main common bug types
over the considered systems: configuration, network, database-related, GUI-related, performance,
permission/deprecation, security, program anomaly, and test code-related issues. This classifica-
tion is less suitable to apply to BUGSJS because it is a very high level one and is not related
to JS but to web applications in general.

Li et al. [76] used natural language text classification techniques to automatically analyze 29,000
bugs from the Bugzilla databases of Mozilla and Apache HTTP Server. The authors classified the
bugs in three dimensions: root cause (RC), impact (I) and software component (SC). According
to RC, bugs can be classified into three disjoint groups (and sub-groups): semantic, memory, and
concurrency. Some of the root cause sub-categories are similar to the categories in our taxonomy.

Tan et al. [77] proposed a work that is related to the previous study. They examined more than
2,000 randomly sampled real-world bugs in three large projects (Linux kernel, Mozilla, and
Apache) and manually analyzed them according to the three dimensions defined by Li et al. [78].
They created a bug type classification model, which used machine learning techniques to automat-
ically classify the bug types.

Zhang et al. [78] investigated the symptoms and root causes of TensorFlow bugs. They identified
the bugs from the GitHub issue tracker using commit and pull request messages. The authors col-
lected the common root causes (which were based on structure, model tensor, and API operation)
and symptoms (based on error, effectiveness, and efficiency) into categories and classified each
bug accordingly.

Thung et al. [79] presented a semi-supervised defect prediction approach (Learning with Diverse
and Extreme Examples) to minimize the manual bug labeling. The researchers used a benchmark
that contains 500 defects from three projects that have been manually labeled based on IBM’s Or-
thogonal Defect Classification (ODC). In their approach, hand-labeled samples were used to learn
and build the model, which uses non-labeled elements to refine the model.

In another study, Thung et al. [80] proposed a classification-based approach used to categorize
the bugs into control and data flow, structural or non-functional groups. They performed natural
language processing preprocessing and feature extraction operations on the text mined from JIRA.
The resulting data was used to build the model based on support vector machine.

Nagwani et al. [81] used the bug-tracking system to collect textual information and several attri-
butes on bugs. They presented a methodology to bug classification, which are based on a generative
statistical model (latent Dirichlet allocation) in natural language processing.

8. CONCLUSIONS

The increasing interest of developers and industry around JS has fostered a huge amount of software
engineering research around this language. Novel analysis and testing techniques are being pro-
posed every year; however, without a centralized benchmark of subjects and bugs, it is difficult
to fairly evaluate, compare, and reproduce research results.
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To fill this gap, in this paper, we presented BUGSJS, a benchmark of 453 real, manually validated
JS bugs from 10 popular JS programs. Our quantitative and qualitative analyses, including a cate-
gorization of bugs in a dedicated taxonomy, show the diversity of the bugs included in BUGSIS that
can be used for conducting highly reproducible empirical studies in software analysis and testing
research related to, among others, regression testing, bug prediction, and fault localization for JS.
Using BUGSJS in future studies is further facilitated by a flexible framework implemented to auto-
mate checking out specific revisions of the programs’ source code, running each of the test cases
demonstrating the bugs, and reporting test coverage.

As part of our ongoing and future work, we plan to include more subjects (and corresponding
bugs) to the benchmark. Our long-term goal is to also include client-side JS web applications in
BUGSJS. Furthermore, we are planning to develop an abstraction layer to allow easier extensibility
of our infrastructure to other JS testing frameworks.
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