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Highlights

• We examine hundreds of manual refactoring commits from large-scale in-
dustrial systems.

• We study the effects of these commits on source code using a maintain-
ability model.

• Developers preferred to fix concrete coding issues rather than fix code
smells.

• A single refactoring had only a small impact (sometimes even negative
effect).

• Whole refactoring process has significant beneficial effect on the maintain-
ability.
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Abstract

Software evolves continuously, it gets modified, enhanced, and new requirements
always arise. If we do not spend time occasionally on improving our source code,
its maintainability will inevitably decrease. The literature tells us that we can
improve the maintainability of a software system by regularly refactoring it. But
does refactoring really increase software maintainability? Can it happen that
refactoring decreases the maintainability? Empirical studies show contradicting
answers to these questions and there have been only a few studies which were
performed in a large-scale, industrial context. In our paper, we assess these
questions in an in vivo context, where we analyzed the source code and measured
the maintainability of 6 large-scale, proprietary software systems in their manual
refactoring phase. We analyzed 2.5 million lines of code and studied the effects
on maintainability of 315 refactoring commits which fixed 1,273 coding issues.
We found that single refactorings only make a very little difference (sometimes
even decrease maintainability), but a whole refactoring period, in general, can
significantly increase maintainability, which can result not only in the local, but
also in the global improvement of the code.

Keywords: refactoring; software quality; maintainability; coding issues;
antipatterns; ISO/IEC 25010

1. Introduction

It is typical of software systems that they evolve over time, so they get
enhanced, modified, and adapted to new requirements. As a side-effect of this
evolution, the source code usually becomes more complex and drifts away from
its original design, hence the maintainability of the software erodes as time
passes. This is one reason why a major part of the total software development
cost (about 80%) is spent on software maintenance tasks [1]. One solution
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to prevent the negative effects of this software erosion, and to improve the
maintainability is to perform refactoring tasks regularly.

After the term refactoring was introduced in the PhD dissertation of Opdyke
[2], Fowler published a catalog of refactoring transformations, where he defined
refactoring as “a change made to the internal structure of software to make
it easier to understand and cheaper to modify without changing its observable
behavior ” [3]. Researchers quickly recognized that this technique can also be
applied to other areas, such as improving performance, security, and reliability
[4]. Many researchers have started to studying the relation between refactoring
and maintainability too, and they usually investigate different refactoring meth-
ods (mostly from Fowler’s catalog [3]) and their effect on code metrics, such as
complexity and coupling [5, 6, 7].

Kim et al. [8] found in their study that, in practice, developers’ views on
refactoring usually differ from the academic ones. As our previous study [9]
indicates it too, developers often tend to do refactoring to fix coding issues
(e.g. coding rule violations identified by static analyzers) that clearly affect the
maintainability of the system, instead of refactoring code smells or antipatterns.

Empirical studies show contradicting findings on the benefits of refactoring.
E.g., Ratzinger et al. [10] say that increasing the number of refactoring edits can
decrease the number of defects, while Weißgerber [11] and Diehl say that a high
ratio of refactoring edits is often followed by an increasing ratio of bug reports.
Most of these studies were performed on open-source systems or in controlled in
vitro environment, and there are relatively few studies in a large-scale, industrial
context.

In this study, we investigate refactorings from the developers’ point of view,
in an in vivo environment by studying the developers of software development
companies working on large-scale, proprietary software systems. In a project,
we had a chance to work together with five software development companies who
faced maintenance problems every day and wanted to improve the maintainabil-
ity of their products. By taking part in this project, they got an extra budget
to refactor their own source code. The systems of these companies, which we
selected for our study, consisted of about 2.5 million lines of code altogether and
in the end, their developers committed 1,273 source code fixes where they used
manual refactoring techniques to make the modifications.

The primary contribution of this article is the experience report of what
we learned from our large-scale experiment, which was carried out in this in
vivo industrial environment on refactoring.1 We explore the data set that we
gathered by addressing the following motivating research questions:

• Is it possible to recognize the change in maintainability caused by a single
refactoring operation with a probabilistic quality model based on code
metrics, coding issues and code clones?

1Parts of the results of this study were first presented in our conference paper [12]. Here,
we almost double the number of subject systems, show more details, draw further conclusions,
and provide an online appendix to make our study reproducible.
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• Does refactoring increase the overall maintainability of a software system?

• Can it happen that refactoring decreases maintainability?

In the following, we present the background of the motivating refactoring
project in Section 2, where we also briefly introduce the main concepts of the
ColumbusQM probabilistic maintainability model that we used to measure the
maintainability changes in the source code. Then, in Section 3, we present the
results of our analysis including some interesting observations that we obtained
during the experiments. After, we discuss threats to validity in Section 4. In
Section 5 we present related work, and finally, in Section 6 we draw some con-
clusions and describe plans for future work.

2. Overview

2.1. Motivating Project
This research work was part of an R&D project supported by the EU and

the Hungarian State. The goal of the two-year project was to develop a software
refactoring framework, methodology and software tools to support the ‘continu-
ous reengineering’ methodology, hence provide support to identify problematic
code parts in a system and to refactor them to enhance maintainability. During
the project, we developed an automatic/semi-automatic refactoring framework
and tested it on the source code of industrial partners, having an in vivo envi-
ronment and live feedback on the tools. Hence partners not only participated in
this project by helping to develop the refactoring tools, but they also tested and
used the toolset on the source code of their own product. This provided a good
opportunity for them to refactor their own code and improve its maintainability.

Five experienced software companies were involved in this project. They
were founded in the last two decades and they started developing some of their
systems before the millennium. The systems that we selected for this study
consist of about 2.5 million lines of code altogether, are written mostly in Java,
and cover different ICT areas like ERPs, ICMs and online PDF Generators (see
Table 1).

Table 1: Companies involved in the project

Company Primary domain

Company I Enterprise Resource Planning (ERP)
Company II Integrated Business Management
Company III Integrated Collection Management
Company IV Specific Business Solutions
Company V Web-based PDF Generation

In the initial steps of the project we asked the companies to manually refactor
their code, and provide detailed documentation of each refactoring, explaining
the main reasons and the steps of how they improved the targeted code fragment.
We gave them support by using static code analyzers to help them identify code
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parts that should be refactored in their code (antipatterns or coding issues,
for instance). Developers had to fill out a survey for each refactoring commit.
This survey contained questions targeting the initial identification steps and
they also had to explain why, how and what they changed in their code. There
were around 40 developers involved in this phase of the project (5-10 on average
from each company) who were asked to fill out the survey and carry out the
modifications in the code. Based on the results of this manual refactoring, we
designed and implemented a refactoring framework with the companies. This
framework helped them in the final phase of the project to perform automatic
refactorings. In this study, we report data that we gathered during the manual
refactoring phase.

In our previous study [9], we examined the questionnaires that were filled
out by the developers before and after they manually refactored the code. We
investigated which attributes drove the developers to select coding issues for
refactorings, and which of these performed best. We found that these companies,
when they had extra time and a budget, actually optimized their refactoring
process to improve the maintainability of their systems (i.e., what they thought
would improve maintainability). Here, we take a closer look at what they really
did in the source code, and examine the impact of their refactoring commits on
the maintainability of the system through static analysis.

We selected 6 systems, and for each system2 we analyzed the maintainability
of the revisions where developers committed refactorings and the revisions before
these commits. For the maintainability analysis we used the SourceAudit tool,
which is a member of the QualityGate3 product family of FrontEndART Ltd.
This tool measures the source code maintainability based on the ColumbusQM
probabilistic quality model [13], where the maintainability of the system is de-
termined by several lower level characteristics (e.g. metrics and coding issues).
SourceAudit is a software quality management tool that allows the automatic
and objective assessment of the maintainability of a system.

These maintainability analyses were performed after the manual refactoring
phase of the systems, and were independent of the above mentioned reports
of the static analyzers. The changes in maintainability were not shown to the
developers during the refactoring phase. The goal was to observe the changes
without affecting how the developers planned their manual refactorings.

2.2. Quality Model
We briefly introduce the ColumbusQM quality model4, which is based on

the ISO/IEC 25010 [14] international standard for software product quality.

2We ended up having only six system because Company V bankrupted after the manual
refactoring phase and we were not able to get access to their code for the analysis, just the
surveys. For this, we omit Company V from the rest of the article.

3QualityGate product home page – http://quality-gate.com/
4Detailed description of the ColumbusQM quality model is available in the work of Bakota

et al. [13]
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Thanks to the probabilistic approach, this model integrates the objective, mea-
surable characteristics of the source code (e.g. code metrics) and expert knowl-
edge, which is usually ambiguous. At the lowest level, the following properties
are considered by the model:

• source code metrics (e.g. some C&K metrics),
• source code duplications (copy&pasted code fragments),
• coding rule violations (e.g. coding style guidelines, coding issues).

NLE NUMPAR

NOA

NOI

McCC

CBONII

LLOC WarningP1WarningP2 WarningP3

CC

Coupling

CodeComplexity

CodeFaultProneness Comprehensibility

Analyzability ChangeabilityStabilityTestability

Effectiveness

Maintainability

Figure 1: An overview of the attribute dependency graph of ColumbusQM [13]. Unfilled nodes
represent the sensor nodes (code metrics, number of coding rule violations, number of code
clones, etc.) in the model. Aggregated nodes (both light and dark gray nodes) are calculated
from these sensor nodes or other aggregated nodes. They were either defined by the ISO/IEC
25010 standard (dark gray) or introduced for showing further external maintainability at-
tributes (light gray).

The computation of the standard’s high-level quality characteristics is based
on a directed acyclic graph (DAG), whose nodes correspond to quality proper-
ties that can be considered low-level or high-level attributes (see Figure 1). The
nodes without input edges are low-level nodes (sensor nodes – shown in white).
These characterize a software system from the developers’ view, so their cal-
culation is based on source code metrics, or other source code properties (e.g.
violating coding conventions). These properties can be calculated by static
source code analysis. For this analysis, QualityGate uses the free SourceMeter5
tool (by FrontEndART Ltd.), which builds an abstract semantic graph (ASG)
from the source code, and it uses this graph to calculate metrics, find code clones
(duplications) and to find coding issues such as unused code and empty catch
blocks.

5SourceMeter product home page – http://sourcemeter.com/
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High-level nodes (called aggregate nodes) characterize a software system from
the end user’s view. They are calculated as an aggregation of the low-level and
other high-level nodes. In addition to the aggregate nodes which are defined
by the standard (dark gray nodes), there are also some new ones that were
introduced for showing further external maintainability attributes (light gray
nodes). These nodes have input and output edges as well. The edges of the graph
show the dependencies between sensor nodes and aggregated nodes. Evaluating
all the high-level nodes is performed by an aggregation along the edges of the
graph, which is called the attribute dependency graph (ADG).

Typically, we want to know how good or bad an attribute is in terms of
maintainability. We use the term goodness to express this with the help of the
model. To include some degree of uncertainty in the value of goodness, it is
represented as a random variable with a probability density function, which
is called the goodness function. The goodness function is based on the met-
ric histogram over the code elements, as it characterizes the system from the
aspect of one metric (from one aspect). As goodness is a relative term, it is
expected to be measured by means of comparison with other histograms. After
applying the distance function between two histograms, we get a goodness value
for the subject histogram. This value will be relative to the other histogram,
but the goal is to be independent. Although, the result will always depend on
the histograms in the benchmark (see below), we can get a better estimate by
repeating the comparison with a larger set of systems in the benchmark. For
every comparison, we get a goodness value which can be basically regarded as
a sample of a random variable over the range [−∞,∞]. Interpolation of the
empirical density function leads us to the goodness function of the low-level
nodes. There is also a way to aggregate the sensor nodes along the edges of
the ADG. Bakota et al. [13] held an online survey, where they asked academic
and industrial experts for their opinions about the weights of the quality at-
tributes. The number assigned to an edge is considered to be the degree of
contribution of source goodness to target goodness. Taking into account every
possible combination of goodness values and weights, and the probability values
of their result, they defined a formula to compute the goodness function for each
aggregate node. Finally, the top-level node in the ADG, maintainability, will
have an aggregated value over the interval [0, 10].

As we mentioned before, each histogram gets compared to several other
histograms. In order to do this, it is necessary to have a reference database
(benchmark) which contains source code properties and histograms of numer-
ous software systems. This benchmark is the basis for the comparison of the
software system to be evaluated. By applying the same benchmark, quality
becomes comparable among different software systems, or different versions of
one system.

This qualification methodology is general and independent of the ADG and
the votes of the experts. But the latter is language specific, resulting in the need
for language-specific ADGs. The ADG for Java is shown in Figure 1, which
was constructed based on the opinions of over 50 experts. The benchmark for
Java contains the analysis results of over 100 industrial and open-source Java
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systems.

3. Evaluation

3.1. Methodology
Figure 2 gives a brief overview of the manual refactoring phase of the project.

In this phase, developers of participating companies were asked to manually
refactor their systems. For this manual refactoring, we provided support by an-
alyzing their systems using a static source code analyzer, namely the SourceMe-
ter tool (which is based on the Columbus technology [15]). Developers were
aware of the results of these analyses and they had access to the reports includ-
ing a list of problematic code fragments. This list pointed out concrete coding
issues, antipatterns (e.g. duplicated code and long functions) and source code
elements with problematic metrics at different levels (e.g. classes/methods with
excessive complexity and classes with bad coupling or cohesion metric values).

Figure 2: Overview of the refactoring process. SourceMeter provided a list of potential prob-
lems in the code. Developers could freely choose one of these, or identify a new one, which
they fixed and committed to the version control system. They also had to fill out a survey for
each refactoring in the ticketing system (Trac).

In the project, the companies’ programmers were required to refactor their
own code, hence improve its maintainability, but they were free to choose how
they wanted to do it. They could freely choose any coding issues or metrics from
the reported problems, and they were also free to identify additional problems
in the code by themselves. However, the project required that they filled out the
survey (in a Trac ticketing system) and that they gave a thorough explanation
on what, why and how they refactored during their maintenance work. Besides
filling out the survey, we asked them to provide revision information so we could
map one refactoring to a Trac ticket and a revision in the version control system
(Subversion, Mercurial).

After the manual refactoring phase, we analyzed the marked revisions to
assess the change in the maintainability of the systems caused by refactoring
commits. Figure 3 gives an overview of this process. It was not a requirement of
the developers that they commit only refactorings to the version control system,
or that they create a separate branch for this purpose. It was more realistic, and
some developers asked us in particular to commit these changes to the trunk
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or development branches so they could develop their system in parallel with
the refactoring process. Hence, for each system we identified the revisions (rt1 ,
..., rti , ..., rtn) that were reported in the Trac system as refactoring commits,
and we analyzed all these revisions along with the revisions prior to them. As
a result, we considered the set of revisions rt1−1, rt1 , ..., rti−1, rti , ..., rtn−1, rtn ,
where rti is a refactoring commit and rti−1 is the revision prior to this commit,
which is actually not a reported refactoring commit.

We performed an analysis of these revisions of the source code via the Quali-
tyGate SourceAudit tool, mentioned earlier in Section 2.1, which uses the main-
tainability model described in Section 2.2. To be able to calculate the changes
in the maintainability, we had to analyze the whole code base for each revision.
That is, a commit with a small local change may also have an impact on some
other parts of the source code. E.g., a small modification in a method may
result in the appearance of a new clone instance, or changes in coupling metric
values of some other classes. Besides analyzing the maintainability of these re-
visions, we collected data from the version control system as well, like diffs and
log messages.

Figure 3: Overview of the analysis process. We identified the refactoring commits based
on the tickets in Trac, and analyzed maintainability of the revisions before/after refactoring
commits.

We will now illustrate the use of a simple refactoring through a coding issue
that was actually fixed by the developers. In this example, we show the ‘Position
Literals First In Comparisons’ coding issue. In Listing 1, there is a Java code
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example with a simple String comparison. This code works perfectly until we
call the ‘printTest’ method with a null reference. By doing so, we would call a
method of a null object, and the JVM would throw a NullPointerException.

1 public class MyClass{
2 public static void printTest(String a){
3 if(a.equals("Test")) {
4 System.out.println("This is a test!");
5 }
6 }
7 public static void main(String [] args) {
8 String a = "Test";
9 printTest(a);

10 a = null;
11 printTest(a); // What happens?
12 }
13 }

Listing 1: A code with a Position Literals First In Comparisons issue

To avoid this problem, we have to compare the String literal with the variable
instead of comparing the variable with the literal. So to fix this issue, we simply
swap the literal and the variable in the code, as can be seen in Listing 2. Thanks
to this fix, one can safely call the ‘printTest’ method with a null object and we do
not have to worry about a null pointer exception. This and similar refactorings
are simple, but we can avoid critical or even blocker errors.

1 public class MyClass{
2 public static void printTest(String a){
3 if("Test".equals(a)) {
4 System.out.println("This is a test!");
5 }
6 }
7 public static void main(String [] args) {
8 String a = "Test";
9 printTest(a);

10 a = null;
11 printTest(a); // What happens?
12 }
13 }

Listing 2: Sample refactoring of the code in Listing 1

3.2. Overall Change of Maintainability of the Systems
Table 2 shows the size of the six selected systems and the number of an-

alyzed revisions including the number of refactoring commits. Recall that we
determined the refactoring revisions from the ticketing system as those revisions
which were marked by the developers as refactoring commits. In addition, we
analyzed the non-refactoring revisions prior to the refactoring revisions in or-
der to calculate the change in maintainability (see Section 3.1). All in all, we
analyzed around 2.5 million lines of code with 732 revisions, out of which 315
were refactoring commits. Developers made 1,273 refactoring operations with
these commits. Notice that the project allowed the developers to commit more
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refactorings together in one patch, but one commit had to consist of the same
type of refactoring operations. So one commit possibly included the necessary
code transformations to fix more Position Literals First issues, but it could not
happen that a different type of coding issue was also fixed in it.

Table 2: Main characteristics of the selected systems: lines of code, total number of analyzed
revisions, number of refactoring commits, number of refactoring operations.

System Company kLOC Analyzed Refactoring RefactoringsRevisions Commits

System A Comp. I. 1,740 269 136 470
System B Comp. II. 440 180 38 78
System C Comp. III. 170 78 15 597
System D Comp. IV. 38 37 16 18
System E Comp. IV. 11 57 40 40
System F Comp. IV. 50 111 70 70

Total 2,449 732 315 1,273

The first diagram in Figure 4 shows the change in the maintainability (be-
tween each pair of refactoring and its predecessor) of System A during the refac-
toring period. The diagram shows that maintainability of the system increased
over time; however, this tendency includes the normal development commits as
well and not only the refactoring commits.

Figure 4: Maintainability of System A over the refactoring period and a selected subperiod
where we highlighted in red the changes in maintainability caused by refactoring commits

The second diagram in Figure 4 shows a sub-period and highlights in red
those revisions that were marked as refactoring commits, while the green part
indicates the rest of the revisions (i.e, the ones preceding a refactoring commit)
which were the normal development commits. It can be seen that those com-
mits that were marked as refactorings noticeably increased the maintainability
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of the system, but in some cases the change does not seem to be significant
and the maintainability remains unchanged. However, commits of normal de-
velopment sometimes increase and sometimes decrease the maintainability with
larger variance.

Table 3: Number of commits which increased or decreased the maintainability of the systems

System Negative Zero Positive

System A 17 94 25
System B 3 18 17
System C 2 5 8
System D 1 7 8
System E 13 9 18
System F 8 30 32
Total 44 163 108

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

System A

System B

System C

System D

System E

System F

Negative Zero Positive

Figure 5: Normalized percentages of commits with a negative/zero/positive impact on main-
tainability (negative - red, zero - gray, positive - green)

Table 3 lists the number of commits for each system which had a positive
(or negative) impact on maintainability. If a commit increased the maintain-
ability value it had a positive (beneficial) impact; if it decreased, it had a nega-
tive (detrimental) impact; otherwise it did not affect the sensors of the quality
model and its impact is considered zero (neutral). As can be seen in Figure 5,
the results show that for all of the systems the beneficial effects outnumber the
detrimental ones. Interestingly, it also indicates that a large proportion of the
commits did not have an observable impact on maintainability. The main rea-
son for this is that ColumbusQM does not recognize all the coding issues that
were fixed by the developers. As the developers were not aware of the Colum-
busQM model, their aim was simply to improve their code. This included some
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fixes of coding issues that were detected by the ColumbusQM only when the
refactoring affected some source code metrics. (Section 3.3.3 elaborates on these
refactorings.)

3

3.5

4

4.5

5

5.5

6

6.5

7

System A System B System C System D System E System F

Maintain. Before Maintain. After

Figure 6: Maintainability of the projects before and after the refactoring period

Figure 6 shows the maintainability values that we measured before and after
the refactoring period of each system in question, and Table 4 lists details on
how the maintainability increased or decreased for these systems. Recall that
the value of maintainability can be between 0 and 10, where 0 describes a system
with the hardest maintainability, and 10 indicates a system which is very easy
to maintain. The ‘Metrics’, ‘Antipatterns’ and ‘Coding Issues’ columns show for
each system the number of different kinds of refactorings that were fixed. Note
that they could have fixed more issues with one commit, so it might happen that
the aim of a fix was to improve some metrics and eliminate antipatterns together.
The ‘Total Impr.’ column shows the difference; that is, the maintainability
improvement at the end of the project. ‘Ref. Impr.’ shows the total of the
maintainability changes caused by refactoring commits only; hence it shows
how refactoring commits improved the maintainability.

Table 4: Maintainability of the systems before and after the refactoring period

System Metrics Anti- Coding Maintain. Maintain. Total Ref.
patterns Issues Before After Impr. Impr.

System A 0 0 470 5.4699 5.3193 -0.1506 -0.0030
System B 32 34 43 5.8095 5.8762 0.0667 0.0135
System C 15 13 595 3.4629 3.7354 0.2725 0.0767
System D 3 0 17 5.4775 5.6594 0.1819 0.0151
System E 14 8 31 6.4362 6.8190 0.3828 0.0436
System F 15 11 42 6.4972 6.5926 0.0954 0.0716

We measured positive change in the maintainability of five systems out of
six and in the case of System F, 75.05% of the maintainability improvement
was caused by refactoring commits. Notice, however, that for System A, main-
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tainability decreased by the end of the refactoring period (it had the biggest
detrimental impact ratio in Table 3). Also, this system had the largest code
base among the systems analyzed and its developers decided to fix only coding
issues.

3.3. Effect of Different Types of Refactorings on the Maintainability
To further investigate the changes made during the refactoring period, we

will study the impact of each type of refactoring. For each refactoring ticket, we
asked the developers to select what they wanted to improve with the commit:

• Did they try to improve a certain metric value?

• Did they try to fix an antipattern?

• Did they try to fix a coding issue?

In practice, it may happen that a developer wants to fix a coding issue and
he may improve a metric value as well in the same commit. Also, many metrics
correlate with antipatterns (e.g. large class/long method correlate with LOC).
However, in the project developers mostly handled these separately. For coding
issues, we asked them in particular to commit refactorings of only one certain
kind of issue per commit. But this also means that they were allowed to refactor
more from the same kind of coding issue in one commit.

3.3.1. Metrics
Table 5 shows the change in maintainability caused by refactoring commits,

where the goal of the developers was to improve certain metrics. (See Table 6
for a detailed description of these metrics.) The first thing that we notice here
is that the number of these refactorings (74) is very small compared to the
total number of refactorings (1,273). It was definitely not the primary goal of
the developers to improve the metric values of their systems, although we told
them about all the well-known complexity, coupling, and cohesion metrics at
the package, class and method levels. One might doubt how well trained these
developers were and whether they were really familiar with the meaning of these
metrics. To eliminate this factor, for each company, we held a training where
we introduced the main concepts of refactoring and code smells, and then gave
them an advanced introduction to metrics. Most of the participating developers
attended this training session, including juniors and senior developers as well.

Among those refactorings which fix metrics, it can be seen that complexity
metrics (e.g. McCabe’s cyclomatic complexity and Number of parameters) and
size metrics (e.g. Lines of code) were the most familiar ones that developers
intended to improve. The Average column of Table 5 lists the average of the
measured changes in the maintainability caused by these commits. The first
entry in the table shows a refactoring which was performed because of the
high value of the Number of defined methods metric. In this case, developers
realized that they had similar methods in a few of their classes (methods for
serialization and deserialization). They did a Pull-up method refactoring, which
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Table 5: Change in maintainability caused by commits improving metrics

Metrics # Average Min Max Deviation

NMD 1 0.005252 0.005252 0.005252 0.000000
COF 3 0.002691 0.000000 0.006546 0.003425
McCC + NOA 3 0.002299 0.002299 0.002299 0.000000
CLB 10 0.001662 -0.007803 0.017286 0.006616
NII 1 0.001645 0.001645 0.001645 0.000000
McCC 2 0.001323 0.000000 0.002647 0.001872
NA 1 0.001231 0.001231 0.001231 0.000000
LOC 38 0.001007 -0.007617 0.011233 0.003687
NUMPAR 5 0.000382 -0.000108 0.001113 0.000578
NM 1 0.000257 0.000257 0.000257 0.000000
NLE 4 0.000047 0.000047 0.000047 0.000000
NA 1 0.000000 0.000000 0.000000 0.000000
U 2 -0.000083 -0.000165 0.000000 0.000117
NOS 1 -0.000167 -0.000167 -0.000167 0.000000
NOI 1 -0.004062 -0.004062 -0.004062 0.000000

Table 6: Description of metrics

Abbreviation Description

NMD Number of defined methods
COF Coupling factor
McCC McCabe’s cyclomatic complexity
NOA Number of ancestors
CLB Comment lines before class/method/function
NII Number of incoming invocations
NA Number of attributes (without inheritance)
LOC Lines of code
NUMPAR Number of parameters
NM Number of methods (without inheritance)
NLE Nesting level
NA Number of attributes
U Reuse ratio (for classes)
NOS Number of statements
NOI Number of outgoing invocations

reduced the number of defined methods in the code and had a beneficial impact
on the maintainability. Developers also tried to decrease the Coupling factor
in their systems with Move method and Move field refactorings (second row of
the table). There were three refactorings where developers attempted to fix a
class with high complexity and bad inheritance hierarchy at the same time. In
38 cases, developers wanted to decrease the LOC metric, and five times they
fixed methods with too many parameters. It is also interesting to observe that
once they targeted the reuse ratio (e.g. to simplify the inheritance tree) and this
resulted in a decrease in maintainability. One explanation is that if they wanted
a better reuse ratio, they probably needed to introduce a new class (inheriting
from a superclass), which might increase the complexity or in the worst case
introduce new coding issues or code clones.
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3.3.2. Antipatterns
Table 7 shows the average of changes in maintainability when developers

fixed antipatterns. Some antipatterns were identified with automatic analyz-
ers (e.g. Long Function and Long Parameter List), but developers could spot
antipatterns manually as well and report them to the ticketing system. (Data
Clumps is an example for an antipattern identified by a developer.)

Table 7: Change in maintainability caused by commits fixing antipatterns

Antipattern # Average Min Max Deviation

Duplicated Code 11 0.003527 -0.007803 0.011233 0.005195
Long Function, Duplicated Code 3 0.002299 0.002299 0.002299 0.000000
Large Class Code 5 0.001586 0.000000 0.006670 0.002872
Shotgun Surgery 1 0.001526 0.001526 0.001526 0.000000
Data Clumps 1 0.001231 0.001231 0.001231 0.000000
Long Parameter List 5 0.000382 -0.000108 0.001113 0.000578
Long Function 40 -0.000084 -0.007617 0.007097 0.002703

As in the case of metrics, fixing antipatterns was not the primary concern
of developers. Typically, they fixed Duplicated Code, Long Functions, Large
Class Code or Long Parameter List. Most of these antipatterns could be also
identified via metrics. In practice, the greatest influence on the maintainability
among antipatterns was caused by fixing Duplicated Code segments. Removing
code clones can be done for example by using Extract Method, Extract Class
or Pull-up Method refactoring techniques. Removing duplications reduces the
LOC of the system, increases reusability and improves the overall effectiveness.
Interestingly, fixing Duplicated Code sometimes reduced maintainability, as can
be seen in the Min column of Table 7. For instance, in one case, it decreased
the maintainability by 0.0078. Developers of Company IV performed an Extract
Superclass refactoring on two of their classes to remove clones. At first it was not
clear why it had a detrimental effect on the maintainability because in most of
the other cases it had a beneficial effect. Further investigation showed that they
fixed the Duplicated Code, which in fact increased the maintainability as usual,
but they introduced two new OverrideBothEqualsAndHashcode coding issues,
which together had a bigger detrimental effect than the fix itself. (Fortunately,
they fixed the new coding issues in later commits.)

Developers fixed Duplicated Code antipatterns 11 times, Long Function with
Duplicated Code 3 times altogether, Large Class Code 5 times, and Long Func-
tion antipattern 40 times. Fixing these antipatterns require a larger, global
refactoring of the code (e.g. using Extract Method refactoring). These global
refactorings induced a larger change in maintainability compared to others. It
is also interesting that the deviation of the effects on maintainability were the
largest in the case of fixing Duplicated Code, Large Class Code and Long Func-
tion antipatterns.
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3.3.3. Coding Issues
Tables 8 and 9 list the average of measured maintainability changes where

developers fixed coding issues. The relatively big number of refactorings tells us
that this was what developers really wanted to fix when they refactored their
code base. As we previously noted, it is ambiguous whether a code transforma-
tion which was intended to improve the maintainability, but slightly modifies
the behavior, should be classified as a refactoring or not. Fixing a coding issue,
for instance, a null pointer exception issue may perhaps change the execution (in
a positive way), but it is questionable whether this change (fixing an unwanted
bug) should be considered a change in the observed external functionality of the
program. However, it is obvious that the purpose of fixing coding issues is to
improve the maintainability of the code and not to modify its functionality. We
will classify all these fixes as refactorings following the refactoring definition of
Kim et al.[8], in which they say that refactoring does not necessarily preserve
the semantics in all aspects. Nevertheless, we group the coding issues into two
groups; namely (1) issues that can be fixed via semantic preserving transforma-
tions, and (2) issues which can be fixed only via transformations which do not
preserve the semantics of the original code. The SP columns in Tables 8 and 9
show this information.

Table 8: Positive maintainability changes caused by commits fixing coding issues. (SP column
shows whether a refactoring did a semantic preserving transformation or not.)

SP Coding issue # Avg Min Max Dev

7 UseLocaleWithCaseConversions 4 0.008748 0.005894 0.012439 0.002938
7 UnsynchronizedStaticDateFormatter 1 0.008618 0.008618 0.008618 0.000000
3 AvoidInstanceofChecksInCatchClause 5 0.003825 0.000000 0.017286 0.007549
3 ExceptionAsFlowControl 1 0.003139 0.003139 0.003139 0.000000
7 NonThreadSafeSingleton 1 0.002977 0.002977 0.002977 0.000000
3 AvoidCatchingNPE 3 0.002341 0.001627 0.003484 0.001000
7 EmptyCatchBlock 11 0.002175 0.000000 0.007559 0.002849
7 OverrideBothEqualsAndHashcode 8 0.001768 0.000000 0.005922 0.004241
3 EmptyIfStmt 1 0.001286 0.001286 0.001286 0.000000
3 UnusedPrivateField 9 0.000729 -0.004062 0.007533 0.003016
3 PreserveStackTrace 11 0.000457 -0.000389 0.001942 0.000904
7 SignatureDeclareThrowsException 23 0.000348 0.000000 0.001526 0.000692
7 SwitchStmtsShouldHaveDefault 4 0.000323 -0.000167 0.000642 0.000364
3 UseStringBufferForStringAppends 17 0.000289 -0.009357 0.012077 0.007609
3 ArrayIsStoredDirectly 2 0.000273 0.000183 0.000363 0.000127
3 UnusedLocalVariable 4 0.000223 -0.000247 0.000828 0.000463
3 LooseCoupling 16 0.000212 0.000000 0.002647 0.000830
3 AvoidDuplicateLiterals 454 0.000121 0.000121 0.000121 0.000000
3 UnnecessaryLocalBeforeReturn 43 0.000108 0.000000 0.000585 0.000459
3 UnnecessaryWrapperObjectCreation 118 0.000083 0.000083 0.000083 0.000000
7 AvoidPrintStackTrace 32 0.000069 0.000000 0.000185 0.000304
3 SimplifyConditional 39 0.000010 0.000000 0.000125 0.000061

Tables 8 and 9 show the measured average, minimum, and maximum changes
and the standard deviation. The coding issues in the rows are those issues
which had at least one patch in the manual refactoring period of any sys-
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Table 9: Zero or negative changes in maintainability by commits fixing coding issues. (SP
column shows whether a refactoring did a semantic preserving transformation or not.)

SP Coding issue # Avg Min Max Dev

3 AvoidSynchronizedAtMethodLevel 8 0.000000 0.000000 0.000000 0.000000
3 ConsecutiveLiteralAppends 1 0.000000 0.000000 0.000000 0.000000
3 MethodReturnsInternalArray 8 0.000000 0.000000 0.000000 0.000000
3 ReplaceHashtableWithMap 1 0.000000 0.000000 0.000000 0.000000
3 UseIndexOfChar 48 0.000000 0.000000 0.000000 0.000000
3 UnusedModifier 31 0.000000 0.000000 0.000000 0.000000
3 BooleanInstantiation 47 -0.000016 -0.000273 0.000235 0.000305
3 IntegerInstantiation 84 -0.000019 -0.000247 0.000014 0.000247
3 IfElseStmtsMustUseBraces 117 -0.000111 -0.000456 0.000186 0.001406
3 BigIntegerInstantiation 21 -0.000156 -0.003587 0.000974 0.001110
3 InefficientStringBuffering 12 -0.000264 -0.002649 0.000128 0.000846
3 UnusedPrivateMethod 2 -0.000863 -0.002729 0.001002 0.002638
7 AvoidCatchingThrowable 2 -0.001654 -0.003307 0.000000 0.002339
3 AddEmptyString 9 -0.001833 -0.004527 0.000677 0.002117

tem. Some of these coding issues are simple coding style guidelines which
can be relatively easily fixed (e.g. IfElseStmtsMustUseBraces), while there are
some issues which may indicate serious bugs and need to be carefully fixed
(e.g. MethodReturnsInternalArray or OverrideBothEqualsAndHashCode). Is-
sues that are easier to fix were refactored in larger quantities such as Integer-
Instantiation and BooleanInstantiation. It is not that surprising that these is-
sues had a relatively low impact on maintainability; however, it is interesting to
observe that some of them induced a detrimental change in the maintainability.

The coding issue with the highest average maintainability improvement was
UseLocaleWithCaseConversions. This issue warns the developer to use a Locale
instead of simple String.toLowerCase()/toUpperCase() calls. This avoids com-
mon problems encountered with some locales, e.g. Turkish. The second highest
average is the UnsynchronizedStaticDateFormatter issue, where the problem is
that the code contains a static SimpleDateFormat field which is not synchro-
nized. SimpleDateFormat is not thread-safe and Oracle recommends separate
format instances for each thread. Company IV fixed this issue by creating a new
SimpleDateFormat instance to guarantee thread-safety. However, using Thread-
Local would have been a better solution for both readability and performance.

In the case of the IfElseStmtsMustUseBraces issues, the reason for the detri-
mental change in maintainability is the increased number of the code lines in the
modified methods. The sensors of the maintainability model will change at a low
level; that is, the number of issues and the LOC metric. These changes will affect
the higher level, aggregated maintainability attributes like CodeFaultProneness
and Comprehensibility and also the Maintainability. A simple demonstration
of this situation is shown in Listings 3 and 4. A simple method with 5 lines
could grow to 14 lines if we apply all the necessary refactorings. What is more,
this kind of issue has only minor priority so there is a good chance that the
beneficial change in the number of issues will have a smaller influence on the
maintainability than the detrimental change caused by the increased amount of
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lines of code.

1 public static int doQuant(int n) {
2 if ( n >= 0 && n < 86) return 0;
3 else if (n > 85 && n < 170) return 128;
4 else return 255;
5 }

Listing 3: Sample code with an IfElseStmtsMustUseBraces issue. LOC: 5

1 public static int doQuant(int n) {
2 if ( n >= 0 && n < 86)
3 {
4 return 0;
5 }
6 else if (n > 85 && n < 170)
7 {
8 return 128;
9 }

10 else
11 {
12 return 255;
13 }
14 }

Listing 4: A sample refactoring of the code in Listing 3. LOC: 14

In the case of InefficientStringBuffering, the reason for the detrimental change
in maintainability is also the modified number of lines of code. Listing 5 demon-
strates this kind of issue in a code sample that needs to be refactored. Some of
the developers decided to fix this issue, as can be seen in Listing 6. This way,
there are no new lines added to the code, and the effect of the refactoring is
simple; namely, one coding issue vanishes.

1 String toAppend = "blue";
2 StringBuffer sb = new StringBuffer ();
3 sb.append("The sky is" + toAppend);

Listing 5: A code with InefficientStringBuffering issue

1 String toAppend = "blue";
2 StringBuffer sb = new StringBuffer ();
3 sb.append("The sky is").append(toAppend);

Listing 6: A sample refactoring of the code in Listing 5

Other developers preferred to fix the problem, as can be seen in Listing 7.
This way, the issue vanishes as well, but there is a side effect: at least one new
code line appears in the code, which again affects the lines of code metric, hence
it has a slight impact on the maintainability.
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1 String toAppend = "blue";
2 StringBuffer sb = new StringBuffer ();
3 sb.append("The sky is");
4 sb.append(toAppend);

Listing 7: Another way of refactoring Listing 5

Another interesting refactoring was the one where Company III refactored
Avoid Duplicate Literals coding issues. This kind of issue tells us that a code
fragment containing duplicate String literals can usually be improved by declar-
ing the String as a constant field. Refactoring these flaws helps to eliminate
dangerous duplicated strings, which should improve stability and readability.
Although this was the manual phase of the project (where the companies could
not yet use the refactoring tool that we intended to develop later), we spotted
an interesting commit message where Company III refactored this coding issue
with the help of the Netbeans IDE. Netbeans was able to assist them in finding
and extracting duplicated string literals into constant fields. The fix was simple
and straightforward so we decided keep these refactorings as valuable commits,
and not to filter out them from the study. The developers eliminated 454 issues
in one commit which covered more than 20,000 lines of code. The quality in-
crease of this commit is quite large; and it improved the maintainability index
of the whole system by 0.055.

In some cases, the measured change in maintainability was 0. The reason for
this lies in a pitfall of the maintainability model, as these minor priority issues
were not taken into account by the maintainability model. Hence, when these
issues were fixed, the model did not recognize the change in the number of issues.
Fixing these issues required only small local changes that did not influence
other maintainability attributes either, so complexity and lines of code remained
unaltered, for instance. As a result, the measured change in maintainability was
apparently, 0.

3.4. Impact of Non-Refactoring Commits
We could analyze the systems only in their refactoring period when devel-

opers performed some refactoring tasks on their code. As a result, we have
the analysis data for each system before and after a refactoring commit was
submitted to the version control system. We did not analyze other commits,
so we do not have analysis data for other non-refactoring commits. However,
we have some possibilities here to study the impact of non-refactoring commits
and compare them to refactorings. We analyzed the revisions before refactor-
ing commits to explore the maintainability of a system between two refactoring
commits. Suppose that ri and rj revisions are consecutive refactoring commits
of a system and j > i. In this case, we analyzed the revisions ri−1, ri, rj−1

and rj , following the same sequence of the commits. Change in the maintain-
ability between the revisions (ri−1, ri) and (rj−1,rj) are caused by two different
refactoring commits, but the change in the maintainability between (ri,rj−1)
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is because of several non-refactoring commits. These changes measured be-
tween two consecutive refactoring commits, (which are caused by other, non-
refactoring commits) makes it possible to compare the impact of refactoring
and non-refactoring commits. Although these group together several smaller
(non-refactoring) commits, we can consider them as normal development tasks.
For simplicity, we will refer to these as development commits in the rest of this
section.

It seems to be a reasonable assumption that refactoring commits often have
a positive effect on maintainability, while this would not be true for develop-
ment commits. To investigate this assumption, we count the commits which
increased/decreased or had zero effect on maintainability. We use this data to
study their independence with a Pearson’s chi-square test. The input data is
presented in Table 10.

Table 10: Number of refactoring and development commits which had negative/zero/positive
effect on maintainability

Commit type Negative Zero Positive

Refactoring 44 163 108
Development 63 167 139

We define the following null hypothesis: “for each commit, its effect on
maintainability is independent of the type of the commit (refactoring or devel-
opment)”. Then the alternative hypothesis is: “for each commit, its effect on
maintainability is dependent on the type of the commit (refactoring or develop-
ment)”. As a result of a chi-square test, we get a p-value of 0.2156, which is
greater than the 0.05 significance level. Hence, we accept the null-hypothesis
that the type of the commit and its effect on maintainability are independent.

Figures 7, 8, 9 show how the maintainability of the systems changed over
time during the refactoring period. Revision numbers are obfuscated, but their
order follows the original order of the commits. In the case of System A, devel-
opers refactored four submodules of the system, and we show these submodules
separately in the diagram. The diagrams acknowledge that refactoring and
non-refactoring results in varying changes in the maintainability. Just like we
can spot refactoring/development commits which suddenly improve the mea-
sured values, we can spot their counterparts as well which suddenly decrease
these values. It is easy to see, however, that the maintainability of the systems
followed an improving tendency in the refactoring period.

We also have to notice that most of the refactorings presented in our study
may be considered as small local changes and these commits are likely to have
a small impact on the global maintainability. So the question arises whether
the improving tendency is because developers take quality more into account
in their new code, or the ColumbusQM model is more sensitive to larger code
changes.

Besides maintainability, we measured the lines of code metric of the systems.
Simply from the lines of code we can see the final difference in the newly added
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Figure 7: Maintainability of systems A and B during the refactoring period (revision numbers
are obfuscated, but they are in their original order)
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Figure 8: Maintainability of systems C and D during the refactoring period (revision numbers
are obfuscated, but they are in their original order)
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Figure 9: Maintainability of systems E and F during the refactoring period (revision numbers
are obfuscated, but they are in their original order)

or deleted lines, but we cannot see the exact number of modified lines. Nev-
ertheless, the difference in added/deleted lines is a good estimation of the size
of the commit. Tables 11 and 12 show the average change in maintainability
of refactoring and development commits normalized by the change in lines of
code for each system. Recall that ‘development commits’ group together more
commits. Hence, these are likely to be larger structural changes. Table 13
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Table 11: Average change in maintainability of refactoring commits normalized by the change
in lines of code for each system

System Maint. Change Change in LOC Maint. Change
Avg. Avg. Avg. per LOC

System A -0.000087 30.55 0.000006
System B 0.000589 24.38 0.000099
System C 0.008362 64.73 0.000163
System D 0.000837 2.56 0.000266
System E 0.000092 6.12 -0.000504
System F 0.001441 6.28 0.000677

Table 12: Average change in maintainability of development commits normalized by the change
in lines of code for each system

System Maint. Change Change in LOC Maint. Change
Avg. Avg. Avg. per LOC

System A 0.009068 -117.88 -0.000001
System B 0.000693 215.69 0.000018
System C 0.005652 19.31 0.000665
System D 0.009329 -48.00 0.000365
System E 0.001922 -5.75 0.000808
System F 0.001203 12.04 0.000088

shows the Pearson’s r correlation coefficients and p significance levels between
the change in lines of code and the change in maintainability for all the commits
of each system. These results indicate a strong correlation between the size of
the commit and its effect on maintainability. Hence, we have to acknowledge
that the ColumbusQM model is more sensitive to larger code changes. Still,
the smaller changes of the refactoring commits had a measurable impact on the
global maintainability as well. Notice also, that for some systems the correla-
tions are negative (also when we consider them all together). Moreover, in the
case of System D, they indicate a perfect negative linear relationship between
variables. The change in the lines of code can be negative (when they delete
lines). Hence, this means that sometimes when they remove more lines, they
improve the maintainability more notably. Indeed, in the case of System D, they
had five commits (out of 36) where in the ‘largest’ commit they removed 906
lines reaching their best maintainability improvement of 0.1679 (see the online
appendix for details).

On the other hand, when Bakota et al. evaluated the ColumbusQM model
[13] on industrial software systems, they found that “the changes in the results
of the model reflect the development activities, i.e. during development the
quality decreases, during maintenance the quality increases.” Here, we studied
a refactoring period and in contrast to Bakotat et al. we found that normal
development commits rather improved the quality. This acknowledges that de-
velopers tended to take quality more into account in their new code. What they
also admitted us later at the end of the project.
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Table 13: Pearson’s r correlation coefficient and p significance levels between the change in
lines of code and the change in maintainability

System r p

System A -0.5 <0.01
System B 0.48 <0.01
System C 0.17 0.127
System D -0.99 <0.01
System E 0.18 0.171
System F -0.07 0.432

All -0.42 <0.01

3.5. Discussion of Motivating Research Questions
Is it possible to recognize the change in maintainability caused by a single refac-
toring operation with a probabilistic quality model based on code metrics, coding
issues and code clones?

We applied the ColumbusQM maintainability model to measure changes
in the maintainability of large-scale industrial systems before/after refactoring
commits. Our measurements revealed that the maintainability changes induced
by refactoring operations can be seen in most of the cases. One particular
change usually caused only a small change, which is quite natural considering
that we analyzed 2.5 million lines of code altogether, and a particular refactoring
operation usually affects only a small part of it. However, with some refactorings
(mostly those involving fixing local coding issues) the model did not display any
changes in the maintainability. This was due to the fact that these refactorings
were very local, resulting that the sensors of the model did not recognize any
changes in the metric values. By fine tuning the maintainability model, these
cases might become detectable.

Does refactoring increase the overall maintainability of a software system?
After the refactoring period, the overall maintainability of the software sys-

tems improved and the maintainability model was able to measure this improve-
ment in five out of the six systems. Commits which fixed more coding issues
had a relatively higher impact on maintainability. Similarly, we observed in the
tables that when developers fixed more metrics or antipatterns together, they
induced a bigger change compared to others. Hence, a larger refactoring has
a noticeable, positive impact on the maintainability, which is measurable using
static analysis techniques.

Can it happen that refactoring decreases maintainability?
Measurements reveal that some refactoring operations might have a negative

impact on the maintainability of the system, although its main purpose is to
improve it. It is not easy to decide how to fix an issue and balance its effects as
it might happen that we want to improve one maintainability attribute, but we
debase others.
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3.6. Additional Observations
Overall, based on our results and analyses, there are some additional inter-

esting observations that deserve to be discussed further.

Developers went for the easy refactorings
Although each participating company could take their time to perform large,

global refactorings on their own code, numbers show that they did not decide to
do so. They went for the easy tasks, like the small code smells, which they could
fix quickly. There might be several reasons for it, as fixing these code smells
was relatively easy compared to others. Fixing a small issue which influences
just the readability does not require a thorough understanding of the code so
developers can readily see the problem and fix it even if it was not written by
themselves. In addition, testing is easier in these cases too. On the other side, a
larger refactoring may have more difficulties: it requires better knowledge and
understanding of the code; it must be designed and applied more carefully; or it
may happen that permission is needed to change things across components/ar-
chitecture. It remains a future research question as to which choice is better in
the long term in such a situation. Should we fix as many small issues as we can,
or perform only a few, but large, global refactorings and restructure the code?

Developers did not refactor just to improve metrics or avoid antipatterns
Our results suggest that developers did not really want to improve the metric

values or avoid certain antipatterns in their code; they simply went for the
concrete problems and fixed coding issues. One reason that we must consider
here is that developers may not really be aware of the meaning of metrics and
antipatterns. Though we are certain that they were aware of the definition of
some metrics and code smells (because we trained them for the project), they
probably had no experience in recognizing and fixing problematic classes with
bad cohesion or coupling values, for instance. They were not maintainability
experts who were experienced in studying reports of static analyzers. This seems
to tie in with the previous finding that developers went for the low-hanging
fruits, and chose the easier way of improving maintainability.

Fixing more complex design flaws (e.g. antipatterns or more complex coding
issues) might have a better impact on the maintainability

In Figure 10, we show the effect of the average impact of different refactoring
types (metrics, antipatterns, coding issues) on the maintainability among all the
refactoring commits, and we list the corresponding min/max/deviation values in
Table 14. As we saw previously, developers fixed mostly coding issues, but notice
that those coding issues which required a fix that modified the semantics of the
code had a larger impact on maintainability, just like that for antipatterns or
metrics. Taking into account how the ColumbusQM calculates maintainability,
this is mainly because fixing a more complex issue (antipattern) has a bigger
impact on the full code base and not just some local parts of it. Another
observation here is that we see developers fixed the Duplicated Code antipattern
the most often, which is No. 1 in Martin Fowler’s dangerous bad-smell list [3].
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Table 14: Average, minimum and maximum impact on maintainability of different refactoring
types

Average Minimum Maximum Deviation
Types Change Change Change of Change

Metrics 0.000995 -0.007803 0.017286 0.003854
Antipattern 0.000832 -0.007803 0.011233 0.003524

Coding Issues 0.001080 -0.003307 0.012439 0.003393
Coding Issues (SP) 0.000074 -0.009357 0.017286 0.004392

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

Metrics

Antipattern

Coding Issues

Coding Issues (SP)

Figure 10: Average impact on maintainability of different refactoring types

Developers learned to write better code during the refactoring period
All the systems that we studied in the refactoring period displayed an im-

provement in source code maintainability, even if we only take into account the
revisions where they did not refactor the code, but just committed normal devel-
opment patches. Our analysis revealed us, that the number of newly introduced
issues in the new code decreased. Indeed, developers admitted to us at the end
of the project that they had learned a lot from performing a static analysis and
from refactoring coding issues. They had learned how to avoid different types of
potential coding issues. As a result they paid more attention to writing better
code and avoiding new issues.

4. Threats to Validity

We made our observations based on hundreds of refactoring commits in six
large-scale industrial systems. As in similar case studies which were not carried
out in a controlled environment, there are many different threats which should
be considered when we discuss the validity of our findings. Here, we give a brief
overview of the most important ones.

Size of the sample set of refactoring commits investigated
The sample set was taken from a large-scale industrial environment com-

pared to other studies, but, it is still limited to the systems that we analyzed.
With a larger sample set of refactorings we might have an even better basis for
conclusions and a more precise view on refactorings. In the future, we intend
to extend the sample set with an analysis of automatic refactorings as well.
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Maintainability analysis relies only on the Columbus Quality Model and Java
The maintainability model is an important part of the analysis as it also

determines what we consider as an effect on maintainability of refactorings.
Currently, we rely on the ColumbusQM model with all of its advantages and
disadvantages. On the positive side this model has been published, validated and
reflects the opinion of developers [13]; however, we saw in the evaluation section
that the model might miss some aspects which would reflect some changes caused
by refactorings. In particular, the model did not deal with some low priority
local coding issues. The version of ColumbusQM used during the analysis relies
on Java source code analysis. However, the same sensors could be applied to
other object-orientated languages too.

Refactoring suggestions and quality analysis tool used to evaluate their effect
come from the same toolkit

The Columbus technology was used for both the refactoring suggestions and
by the quality analysis tool. I.e, the toolkit thinks that the changes made
according to its own suggestions improve quality. This leads to the threat that
the quality model used the same quality indicators as it suggested earlier as
refactoring opportunities.

Limitations of the project
We claim that our experiment was carried out in an in vivo industrial con-

text. However, this project might had unintentional effects on the study. For
example, the budget for refactoring was not ‘unlimited’ and companies mini-
mized the efforts that they spent on refactoring. Also, the actual state of a
system, such as the size and quality of its test suite may influence the risk that
a company would like to take during refactoring.

Limitations of the static analysis
We gave support to the developers in identifying coding issues with the help

of a static analyzer. Naturally, this was a great help for them in identifying prob-
lematic code fragments, but might have led the developers to just concentrate
on the issues we reported. There is a risk here that by using other analyzers or
by not using any at all, we might get different results.

5. Related Work

Since Opdyke introduced the term refactoring in his PhD dissertation [2]
and Fowler published a catalog of refactoring ‘bad smells’ [3], many researchers
have studied this technique to improve the maintainability of software systems.
Just a few years later, Wake [16] published a workbook on the identification of
‘smells’, and indicated practices to recognize the most important ones and some
possible ways to fix them by applying the appropriate refactoring techniques.
Five years after the appearance of Fowler’s book, Mens et al. [17] published a
survey with over 100 related papers in the area of software refactoring.
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There are several interesting topics studied today by researchers in which
they examine refactoring techniques, such as program comprehension [18], im-
pact of refactoring on regression testing [19], developers’ opinion on refactoring
tools [20], etc. Among these papers, there are some which investigate the pos-
itive or negative effects of refactorings on maintainability and software quality,
but there are only a few empirical studies, especially studies that were per-
formed on large-scale industrial systems. Below, we will present an overview of
research work related to our study.

5.1. Guidelines on how to apply refactoring methods
One reason why researchers study the relations between maintainability and

refactoring is to guide developers on when and how to apply refactorings.
Sahraoui et al. [5] investigated the use of object-oriented metrics to detect

potential design flaws and to suggest transformations that handle the identified
problems. They relied on a quality estimation model to predict how these trans-
formations improve the quality. By validating their technique on some classes
of a C++ project, they showed that their approach could assist a designer/pro-
grammer by suggesting transformations.

A visualization approach was proposed by Simon et al. [21]. Their technique
was based on source code metrics of classes and methods to help developers in
identifying candidates for refactoring. They showed that metrics can support
the identification of ‘bad smells’ and thus can be used as an effective and efficient
way to support the decision of where to apply refactoring.

Tahvildari et al. [22, 23] investigated the use of object-oriented metrics to
detect potential design flaws and suggested transformations for correcting them.
They analyzed the impact of each refactoring on object-oriented metrics (com-
plexity, cohesion and coupling).

Yu et al. [24] adopted a process-oriented modeling framework in order to
analyze software qualities and to determine which software refactoring trans-
formations are most appropriate. In a case study of a simple Fortran program,
they showed that their approach was able to guide the refactoring towards high
performance and code simplicity while keeping implementing more functionali-
ties.

Meananeatra [25] proposed the use of filtering conditions to help develop-
ers in refactoring identification and program element identification. They also
proposed an approach to choose an optimal sequence of refactorings.

5.2. Refactoring and its effect on software defects
One way how researchers attempt to assess the effects of refactorings on

maintainability is to study its effects on software defects.
Ratzinger et al. [10] analyzed refactoring commits in five open-source systems

written in Java and investigated via bug prediction models the relation between
refactoring and software defects. They found an inverse correlation between
refactorings and defects: if the number of refactoring edits increases in the
preceding time period, the number of defects decreases.
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Görg andWeißgerber [26, 27] detected incomplete refactorings in open-source
projects and they found that incorrect refactoring edits can possibly cause bugs.

Later, Weißgerber et al. [28, 11] analyzed version histories of open-source
systems and investigated whether refactorings are less error-prone than other
changes. They found that in some phases of their projects a high ratio of
refactorings was followed by a higher ratio of bugs. They found also phases
where there was no increase at all.

5.3. Refactoring and its effect on code metrics
Some researchers assess the effects of refactorings on source code metrics.
Stroulia and Kapoor [6] presented their experiences with a system that fol-

lowed a so-called refactoring-based development. They found that size and
coupling metrics of their system decreased after the refactoring process.

Du Bois and Mens [29] studied the effects of selected refactorings (Extract-
Method, EncapsulateField and PullUpMethod) on internal quality metrics such
as the Number of Methods, Cyclomatic Complexity, Coupling Between Objects
and Lack of Cohesion. Their approach is based on a formalism to describe the
impact of refactorings on an AST representation of the source code, extended
with cross-references. Later, Du Bois et al. [7] proposed refactoring guidelines
for enhancing cohesion and coupling metrics and they got promising results by
applying these transformations to an open-source project. The Ph.D. thesis
of Du Bois was also about the effects of refactoring on internal and external
program quality attributes [30].

5.4. Empirical studies about refactoring and its effects on software quality/-
maintainability

Empirical studies are those which are the closest to study. However, there
are only a few large-scale empirical studies here.

Kataoka et al. [31] published a quantitative evaluation method to measure
the maintainability enhancement effect of refactorings. They analyzed a single
project and compared the coupling before and after the refactoring in order
to evaluate the degree of maintainability enhancement. They found coupling
metrics were effective for quantifying the refactoring effect and for choosing
suitable refactorings. Their validation relied on a five-year-old C++ project of
a single developer.

Moser et al. [32] studied the impact of refactoring on quality and productiv-
ity. They observed small teams working in similar, highly volatile domains and
assessed the impact of refactoring in a ‘close to industrial environment’. Their
case study was about a Java project with 30 Java classes having 1,770 source
code statements. Their findings indicated that refactoring not only increases
software quality, but it also improves productivity.

Ratzinger et al. [33] observed the evolution of a 500 KLOC industrial Pic-
ture Archiving and Communication System (PACS) written in Java before and
after a change coupling-driven refactoring period. They found that after the
refactoring period, the code had low change coupling characteristics.

29



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Demeyer [34] pointed out that refactoring is often blamed for performance re-
duction, especially in a C++ context, where the introduction of virtual function
calls introduces an extra indirection via the virtual function table. He discov-
ered, however, that C++ programs refactored this way often perform faster
than their non-refactored counterparts (e.g. compilers can optimize better on
polymorphism than on simple if-else statements).

Stroggylos et al. [35] assessed a similar question to ours, namely whether
refactoring improves software quality or not. They analyzed version control
system logs (46 revision pairs) of open-source projects (Apache, Log4j, MySQL
connector and Hibernate core) to detect changes marked as ‘refactoring’ and
how software metrics were affected. They found that “the expected and actual
results often differ ”, and although “people use refactoring in order to improve
the quality of their systems, the metrics indicate that this process often has the
opposite results.”

Alshayeb et al. [36] studied the effects of refactorings on different exter-
nal quality attributes, namely adaptability, maintainability, understandability,
reusability, and testability. They analyzed a system developed by students and
two open-source systems with at most 60 classes and less than 12,000 lines of
code. They investigated how C&K metrics had changed after applying refac-
toring techniques taken from Fowler’s catalog and estimated their effects on
the external quality attributes. They found that refactoring did not necessarily
improve these quality attributes.

Geppert et al. [37] studied the refactoring of a large legacy business communi-
cation product where protocol logic in the registration domain was restructured.
They investigated the strategies and effects of the refactoring effort on aspects
of changeability and measured the outcomes. The findings of their case study
revealed a significant decrease in customer reported defects and in efforts needed
to make changes.

Wilking et al. [38] investigated the effect of refactoring on maintainability
and modifiability through an empirical evaluation carried out with 12 students.
They tested maintainability by randomly inserting defects into the code and
measuring the time needed to fix them; and they tested modifiability by adding
new requirements and measuring the time and LOC metric needed to implement
them. Their maintainability test displayed a slight advantage for refactoring,
but regarding modifiability, the overhead of applying refactoring appeared to
undermine other, positive effects.

Negara et al. [39] presented an empirical study that considered both manual
and automated refactorings. They claimed that they analyzed 5,371 refactorings
applied by students and professional programmers, but they did not provide
further information on the systems in question.

A large-scale study, with similar findings, was carried out by Murphy-Hill et
al. [40]. They applied refactorings taken from Fowler’s catalog, and their data
sets spanned over 13,000 developers with 240,000 tool-assisted refactorings of
open-source applications. Our study is complementary, as we analyzed indus-
trial systems instead of open-source ones and we mostly dealt with coding issues
instead of refactorings from the catalog.
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Kolb et al. [41] reported on the refactoring of a software component called
Image Memory Handler (IMH), which was used in Ricoh’s current products
of office appliances. The component was implemented in C and it had about
200 KLOC. They evaluated software metrics of the product before and after a
refactoring phase and found that the documentation and implementation of the
component had been significantly improved.

Kim et al. [42] reported on an empirical investigation of API-level refactor-
ings. They studied API-level refactorings and bug fixes in three large open-
source projects, totaling 26,523 revisions of evolution. They found an increase
in the number of bug fixes after API-level refactorings, but the time taken to fix
bugs was shorter after refactorings than before. In addition, they noticed that a
large number of refactoring revisions included bug fixes at the same time or were
related to later bug fix revisions. They also noticed frequent ‘floss refactoring’
mistakes (refactorings interleaved with behavior modifying edits).

In their study, Kim et al. [8] presented a study of refactoring challenges at
Microsoft through a survey, interviews with professional software engineers and
a quantitative analysis of version history data (of Windows 7). Among several
interesting findings, their survey showed that refactoring definition in practice
seemed to differ from a rigorous academic definition of behavior-preserving pro-
gram transformations and that developers perceived that refactoring involved
substantial cost and risks.

5.5. Code smells and maintenance
Another topic close to ours is the effect of (fixing) code smells on maintenance

problems.
Yamashita and Moonen [43] found that the effect of code smells on the

overall maintainability is relatively small. They observed 6 developers working
on 4 Java systems and only about 30% of the problems that they faced were
related to files containing code smells.

In another study, Yamashita and Counsell [44] found that code smells were
not good indicators for comparing the maintainability of systems differing greatly
in size. They evaluated four medium-sized Java systems using code smells and
compared the results against previous evaluations on the same systems based
on expert judgment and C&K metrics.

In a recent study, Yamashita [45] assessed the capability of code smells to
explain maintenance problems on a Java system which was examined for the
presence of twelve code smells. They found a strong connection between the
Interface Segregation Principle and maintenance problems.

Similarly, Hall et al. [46] found that some smells do indeed indicate fault-
prone code in some circumstances, but that the effects that these smells had on
faults were small. As they said, “arbitrary refactoring is unlikely to significantly
reduce fault-proneness and in some cases may increase fault-proneness”.

Ouni et al. [47] claimed that most of the existing refactoring approaches
treated the code-smells to be fixed with the same importance; and they proposed
a prioritization of code-smell correction tasks. Another prioritization approach
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was proposed by Guimaraes et al. [48] based on software metrics and architecture
blueprints.

Khomh et al. [49] investigated the impact of antipatterns on classes in object-
oriented systems and found that classes participating in antipatterns were more
change and fault-prone than others.

Abbes et al. [50] investigated the effect of Blob and Spaghetti Code antipat-
terns on comprehension in 24 subjects and on three different systems developed
in Java. Their results showed that the occurrence of one antipattern did not
significantly make its comprehension harder, hence they recommend to avoid a
combination of antipatterns via refactoring.

D’Ambros et al. [51] studied the relationship between software defects and
a number of design flaws. They also found that, while some design flaws were
more frequent, none of them could be considered more harmful in terms of
software defects.

Chatzigeorgiou et al. [52] studied the evolution of code smells in JFlex and
JFreeChart. They noticed that only few code smells were removed from the
projects and in most cases their disappearance was not the result of targeted
refactoring activities, but rather a side-effect of adaptive maintenance.

Tsantalis et al. [53] examined refactorings in JUnit, HTTPCore, and HTTP-
Client. Among several interesting findings, they found that there was very little
variation in the types of refactorings applied on test code, since most of the
refactorings were about reorganization and the renaming of classes.

5.5.1. Summary
In contrast to the above-mentioned studies, in ours (1) we observed a large

amount of manual refactorings (1,273 refactoring operations in 315 commits,
counting also a commit with 454 operations); (2) we studied the effect of refac-
torings on maintainability in real-life, large-scale industrial systems with over
2.5 million total lines of code; (3) these commits fixed different design flaws
including code smells, antipatterns and coding issues; (4) lastly, we applied a
probabilistic quality model (ColumbusQM) which integrates different properties
of the system like metrics, clones, coding issues. Our study was carried out in
a large-scale in vivo (industrial) environment.

A detailed feature comparison matrix of the above research papers is shown
in Table 15. The rows of the table represent the studies and the columns indicate
different features and research topics. The columns open-source, industrial, and
students show the scope of the study in question. The next three columns refer
to the code size of the studied projects, while the following two columns com-
pare the number of metrics the authors involved in their work. The remaining
columns show the research topics of the articles.

Figure 11 shows a graphical representation of the articles in our comparison.
The blue diamond shapes represent the selected topics. An arrow between an
article (indicated by gray ellipses or rectangles) and a topic (blue diamond)
means that the article covers that topic. Ellipses without borders show works
where the research was conducted with students or where this information was
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Table 15: Comparison matrix of related studies
based on public features and research topics
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Yamashita2013a [44] - 3 - - 3 - - 3 3 - - 3 -
Yamashita2013 [43] - 3 - - 3 - - - 3 - - 3 -
Yamashita2014 [45] - - - - - - - - 3 - - 3 -

Hall2014 [46] - - - - - - - - - - 3 3 -
Ouni2015 [47] 3 - - - 3 - - - - 3 - 3 -

Guimaraes2013 [48] - - - - - - - - - - - 3 -
Khomh2012 [49] 3 - - - 3 - - - - - - 3 -
Abbes2011 [50] 3 - - - 3 - - - - - - 3 3

DAmbros2010 [51] 3 - - - 3 3 - - - - 3 3 -
Chatzigeorgiou2014 [52] 3 - - 3 - - - - - - - 3 -

Tsantalis2013 [53] - - - 3 - - - - - 3 - - -
Opdyke1992 [2] - - - - - - - - - 3 - - -
Fowler1999 [3] - - - - - - - - - 3 - 3 -
Wake2003 [16] - - - - - - - - - 3 - 3 -
Mens2004 [17] - - - - - - - - - 3 - - -

DuBois2005 [18] - - - - - - - - - 3 - - -
Rachatasumrit2012 [19] - - - - - - - - - 3 - - -

Pinto2013 [20] - - - - - - - - - 3 - - 3
Sahraoui2000 [5] - - - 3 - - - 3 3 3 3 - 3
Simon2001 [21] - - - 3 - - 3 - - 3 - 3 3

Tahvildari2003 [22] - - - - - - 3 - - - 3 - 3
Yu2003 [24] - - - 3 - - - - - 3 - - 3

Meananeatra2012 [25] - - - - - - - - - 3 - - 3
Ratzinger2008 [10] 3 - - - 3 - - - - 3 3 - -

Goerg2005 [26] 3 - - 3 - - - - - 3 3 - -
Weissgerber2006 [11] 3 - - 3 - - - - - 3 3 - -

Stroulia2001 [6] - - - 3 - - 3 3 - 3 - - -
DuBois2003 [29] - - - - - - - 3 - 3 - - -
DuBois2004 [7] 3 - - - - - - 3 - 3 - - -

DuBois2006 [30] - - - - - - - 3 - 3 - - -
Kataoka2002 [31] - - 3 3 - - 3 - 3 3 - - -
Moser2008 [32] - - 3 3 - - - - 3 3 - - -

Ratzinger2005 [33] - 3 - - - 3 3 - - 3 - - -
Demeyer2005 [34] - - - - - - 3 - - 3 - - -

Stroggylos2007 [35] 3 - - - 3 - - 3 3 3 - - -
Alshayeb2009 [36] 3 - 3 3 - - - 3 3 3 - - -
Geppert2005 [37] - 3 - - - - - - - 3 3 - -
Wilking2007 [38] - - 3 3 - - 3 - 3 3 - - -
Negara2013 [39] - - 3 - - - - - - 3 - - -

Murphy-Hill2009 [40] 3 - - - - 3 - - - 3 - - -
Kolb2006 [41] - 3 - - 3 - - 3 - 3 - - -
Kim2011 [42] 3 - - - - 3 - - - 3 3 - -
Kim2012 [8] - 3 - - - 3 - - - 3 - - -

Our study - 3 - - - 3 - 3 3 3 - 3 -
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Figure 11: Graphical view of articles based on extracted features and relations to topics.

missing from the papers. Bordered ellipses show articles that investigate open-
source projects. A bordered rectangle shows that the research was based on
industrial projects. The height of the nodes represents the code size of the
investigated project. Small-scale projects have smaller shapes, and large-scale
projects have larger.

The graph was created with the Organic Layout tool of the yEd Graph
Editor. This layout created a nice landscape where articles take place depending
on their research topic. As it can be seen, our work (indicated with green color)
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fills a big hole among smells, maintainability and refactoring, and does this in a
large-scale industrial setting which is rather unique among the related works.

6. Conclusions and Future Work

Bakota et al. claim that the maintainability of a software product erodes
over the years and if developers do not periodically and intentionally refactor
the source code, then its maintainability will not improve [54].

In this study, we investigated hundreds of refactoring commits from the refac-
toring period of six large-scale industrial systems developed by four companies,
and we investigated the effects of these commits on source code maintainability
using maintainability measurements based on the ColumbusQM maintainabil-
ity model [13]. We obtained interesting observations based on what and how
developers refactored in the project. Among these observations, we found that
developers preferred to fix concrete coding issues rather than fix code smells
indicated by metrics or automatic smell detectors. It reinforces the conclusion
of our previous study [9], where we found that when developers had the extra
time and budget to refactor their code, they optimized their process so as to
improve the maintainability of a system.

In summary, we claim that the outcome of one refactoring on the global
maintainability of the software product is hard to predict; moreover, it might
sometimes have a detrimental effect. However, a whole refactoring process can
have a significant beneficial effect on the maintainability, which is measurable
using a maintainability model. The reason for this is not only because the
developers improve the maintainability of their software, but also because they
will learn from the process and pay more attention to writing more maintainable
new code.

The six systems in our study and their manual refactorings represented only
a portion of the full research project. We gathered additional data from the
developers and from the automatic tool guided refactoring period as well. This
information came from an in vivo environment and we can learn a lot from it.
In the future, we plan to further investigate and seek answers to more questions
that arise when developers start working on refactoring. Such questions include:
’What should I refactor?’, ’How should I do it?’, ’Can I automate it somehow?’,
’What should I take care of or be afraid of?’ and ’How much time will it take?’

Online Appendix

The data set which serves as the basis for this paper is available as an on-
line appendix at: http://www.inf.u-szeged.hu/~ferenc/papers/JSS2014-
Is-It-Worth-Refactoring/

This data set contains for all projects the analysis results of the refactoring
commits. For each commit, it includes the type of the fixed issue, and the
change in the maintainability caused by the commit.
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