
Handling Pointers and Unstructured Statements in

the Forward Computed Dynamic Slice Algorithm

Csaba Faragó∗, Tamás Gergely†

Acta Cybernetica 15 (2002) 489–508.

Abstract

Different program slicing methods are used for debugging, testing, reverse
engineering and maintenance. Slicing algorithms can be classified as a static
slicing or dynamic slicing type. In applications such as debugging the compu-
tation of dynamic slices is more preferable since it can produce more precise
results. In a recent paper [5] a new so-called “forward computed dynamic
slice” algorithm was introduced. It has the great advantage compared to
other dynamic slice algorithms that the memory requirements of this algo-
rithm are proportional to the number of different memory locations used by
the program, which in most cases is much smaller than the size of the execu-
tion history. The execution time of the algorithm is linear in the size of the
execution history. In this paper we introduce the handling of pointers and
the jump statements (goto, break, continue) in the C language.

1 Introduction

Program slicing methods are widely used for debugging, testing, reverse engineer-
ing and maintenance (e.g. [3], [7], [2], [4]). A slice consists of all statements and
predicates that might affect the variables in a set V at a program point p [8]. A
slice may be an executable program or a subset of the program code. In the first
case the behaviour of the reduced program with respect to a variable v and program
point p is the same as the original program. In the second case a slice contains a
set of statements that might influence the value of a variable at point p. Slicing
algorithms can be classified according to whether they only use statically available
information (static slicing) or compute those statements which influence the value
of a variable occurrence for a specific program input (dynamic slice).

In many applications (e.g. debugging) the computation of dynamic slices is more
preferable since it can produce more precise results (i.e. the dynamic slice is smaller
than the static one). In this paper we will focus on dynamic slicing.

∗Research Group on Artificial Intelligence, Hungarian Academy of Sciences, Aradi vértanúk

tere 1., H-6720 Szeged, Hungary, e-mail: csaba@petra.hos.u-szeged.hu
†Research Group on Artificial Intelligence, Hungarian Academy of Sciences, Aradi vértanúk

tere 1., H-6720 Szeged, Hungary, +36 62 544143, e-mail: gertom@inf.u-szeged.hu

489

490 Csaba Faragó, Tamás Gergely

In [5] Tibor Gyimóthy, Gábor Forgács and Árpád Beszédes introduced a method
for the forward computation of dynamic slices (i.e. at each iteration of the process,
slices are available for all variables at the given execution point). However, the
method presented was applicable only to very simple programs (with one procedure,
scalar variables and simple assignment statements only). In [9] the handling of the
procedures and the implementation of the algorithm were shown. In this paper
we show how to handle pointers and the jump statements in the C programs.
In addition to the goto statement it solves the problem of break and continue

statements, which can be regarded as special cases of the goto statement. The
handling of the switch-case-dafault statement is also mentioned.

The paper is organized as follows. After discussing the background of slicing,
the “forward computed dynamic slice” method is introduced. The handling of
pointers and jump statements are then elaborated on in Sections 3 and 4. Finally,
we give a summary of what we have done so far.

2 Forward computing of the dynamic slice

2.1 Original algorithm

In some applications static program slices contain redundant instructions. This
is the case for debugging, for instance, where we have dynamic information as
well. Hence debugging may require smaller slices, which improves the efficiency of
the bug finding process ([1], [6]). The goal of the introduction of dynamic slices
was to determine more precisely those statements that may contain program bugs,
assuming that the failure has occurred for a given input.

Consider the example program in Figure 1. The static slice of this code with
respect to the variable s at vertex 12 contains all the statements.

Prior to the description of a new dynamic slice algorithm we introduce some
basic concepts and notations.

A feasible path that has actually been executed will be referred to as an execu-
tion history and denoted by EH. Let the input be a = 0, n = 2 in the case of our
example. The corresponding execution history is 〈1, 2, 3, 4, 5, 7, 8, 10, 11, 7,
8, 10, 11, 7, 12〉. We can see that the execution history contains instructions which
come in the same order as they have been executed, so EH(j) gives the serial num-
ber of the instruction executed at the jth step, referred to as execution position
j.

To distinguish between multiple occurrences of the same instruction in the exe-
cution history we make use of the notion of action. It is a pair (i, j) which is written
as ij , where i is the serial number of the instruction at the execution position j. For
example 1215 is the action for the output statement of our example for the same
input as above.

The dynamic slicing criterion is a triplet (x, ij , V) where x denotes the input,
ij is an action in the execution history, and V is a set of the variables. For a slicing
criterion a dynamic slice can be defined as the set of statements which may affect

Handling Pointers and Unstructured Statements in Dynamic Slice Algorithm 491

#include <stdio.h>

int n, a, i, s;

void main()

{

1. scanf("%d", &n);

2. scanf("%d", &a);

3. i = 1;

4. s = 1;

5. if (a > 0)

6. s = 0;

7. while (i <= n) {

8. if (a > 0)

9. s += 2;

else

10. s *= 2;

11. i++;

}

12. printf("%d", s);

}

Figure 1: Example program

the values of the variables in V .
We apply a program representation which only considers the definition of a

variable, and use of variables, and direct control dependences. We refer to this
program representation as a D/U program representation. An instruction of the
original program has a D/U expression of the form:

i. d : U,

where i is the serial number of the instruction, and d is the variable that gets
a new value from the instruction in the case of assignment statements. For an
output statement or a predicate d denotes a newly generated “output variable”- or
“predicate-variable”-name of this output or predicate, respectively (see the example
below). Let U = {u1, u2, ..., un} such that any uk ∈ U is either a variable that
is used at i or a predicate-variable from which instruction i is (directly) control
dependent. Note that there is at most one predicate-variable in each U . (If the
entry statement is defined, there is exactly one predicate-variable in each U .)

Our example has a D/U representation shown in Figure 2.
Here p5, p7 and p8 are used to denote predicate-variables and o12 denotes

the output-variable, whose value depends on the variable(s) used in the output
statement.

Now we are ready to derive the dynamic slice with respect to an input and

492 Csaba Faragó, Tamás Gergely

i. d : U

1. n : ∅
2. a : ∅
3. i : ∅
4. s : ∅
5. p5 : {a}
6. s : {p5}
7. p7 : {i, n}
8. p8 : {p7, a}
9. s : {s, p8}

10. s : {s, p8}
11. i : {i, p7}
12. o12 : {s}

Figure 2: D/U representation of the program

the related execution history based on the D/U representation of the program as
follows. First, we process each instruction in the execution history starting from
the first executed statement. Then after processing an instruction i. d : U , we
derive a set DynSlice(d) that contains all those statements which affect d when
instruction i has been executed. By applying the D/U program representation the
effect of data and control dependences may be treated in the same way. After
an instruction has been executed and the related DynSlice set has been derived,
we determine the last definition (serial number of the instruction) for the newly
assigned variable d denoted by LS(d). Put simply, the last definition of variable
d is the serial number of the instruction where d is last defined (considering the
instruction i. d : U , LS(d) = i). Clearly, after processing the instruction i. d : U at
the execution position j each LS(d) has the value i for each subsequent executions
until d is redefined next time. We also use LS(p) for predicates, which denotes the
last definition (evaluation) of predicate p. For example, if EH(10) = 7 (the current
action is 710) then LS(d) = 7.

Now the dynamic slices can be determined as follows. Assume that we are
running a program having an input t. After an instruction i. d : U is executed
at position p, DynSlice(d) contains just those statements involved in the dynamic
slice for the slicing criterion C = (t, ip, U). DynSlice sets are determined by using
the relation below:

DynSlice(d) =
⋃

uk∈U

(

DynSlice(uk) ∪ {LS(uk)}
)

After DynSlice(d) has been evaluated we determine LS(d) for assignment and
predicate instructions, i.e.

LS(d) = i

Handling Pointers and Unstructured Statements in Dynamic Slice Algorithm 493

Note that this computation order is strict since when we determine DynSlice(d),
we have to consider whether LS(d) occurred at a former execution position instead
of p (like the program line x = x + y in a loop).

program DynamicSlice
begin

Initialize LS and DynSlice sets
ConstructD/U
ConstructEH
for j = 1 to number of elements in EH

the current D/U element is ij . d : U

DynSlice(d) =
⋃

uk∈U

(

DynSlice(uk) ∪ {LS(uk)}
)

LS(d) = i

endfor

Output LS and DynSlice sets for the last definition of all variables
end

Figure 3: Dynamic slice algorithm

A formal version of the forward dynamic slice algorithm is presented in Figure
3. Note that the construction of the execution history is achieved by instrumenting
the input program and executing this instrumented code. The instrumentation
procedure is discussed in [9].

We will illustrate how the above method works by applying it to our example
program in Figure 1 with the execution history 〈 1, 2, 3, 4, 5, 7, 8, 10, 11, 7, 8, 10,
11, 7, 12 〉.

During the execution the following values are returned:

Action d U DynSlice(d) LS(d)

11 n ∅ ∅ 1
22 a ∅ ∅ 2
33 i ∅ ∅ 3
44 s ∅ ∅ 4
55 p5 {a} {2} 5
76 p7 {i, n} {1,3} 7
87 p8 {p7, a} {1,2,3,7} 8
108 s {s, p8} {1,2,3,4,7,8} 10
119 i {i, p7} {1,3,7} 11
710 p7 {i, n} {1,3,7,11} 7
811 p8 {p7, a} {1,2,3,7,11} 8
1012 s {s, p8} {1,2,3,4,7,8,10,11} 10
1113 i {i, p7} {1,3,7,11} 11
714 p7 {i, n} {1,3,7,11} 7
1215 o12 {s} {1,2,3,4,7,8,10,11} 12

The final slice is the union of DynSlice(o12) and {LS(o12)}. (See Figure 4)

494 Csaba Faragó, Tamás Gergely

#include <stdio.h>

int n, a, i, s;

void main()

{

1. scanf("%d", &n);

2. scanf("%d", &a);

3. i = 1;

4. s = 1;

5. if (a > 0)

6. s = 0;

7. while (i <= n) {

8. if (a > 0)

9. s += 2;

else

10. s *= 2;

11. i++;

}

12. printf("%d", s);

}

Figure 4: The framed statements give the dynamic slice

2.2 Analysis of the algorithm

Let’s analyze the duration and the memory requirement of the algorithm! It’s
very hard to figure out the exact requirements. We’ll try to make an average-case
analysis with referring to the worst-case, too.

First let’s consider the duration. The initializations are approximately linear
to the different memory locations. The DU construction is linear to the length of
the executable source code. One can ask why don’t we say that it is linear to
the statements? The reason is that the duration of one step is dependendent to
the length of the statement. For example it takes less time to build up the DU

for a=b+c than for a=b*c-f(b,b+c)-c. The construction of the EH is linear to the
execution of the original program. Unfortunately the constant multiplier hidden
by ”theta-notation” (it is used in analysis of the algorithms) is hardly predictable:
it is dependent to the number of pointers etc., which can vary from zero up to the
whole program. The duration of the first and the third pseudo-statement within
the main for cycle is constant. The union statement’s duration is critical within
the algorithm, but unfortunately it is very hardly predictable. In worst case the
U set can hold all the variables (i.e. different memory locations + pseudo-variables

Handling Pointers and Unstructured Statements in Dynamic Slice Algorithm 495

(e.g. labels etc.)), and all the dynamic slices holds all the statements within the
program. It this case the main cycle’s duration is proportional to <execution

history> * <memory locations> * <number of statements>. But in the most
normal programs the size of the U set is not so big, in most cases it holds about
4-5 elements. There exist not too much such statement where the U set contains
more than 10 elements. A dynamic slice in most cases contains not too much
statement, but it seems in many cases it is linear to the size of the program. The
duration of the output depends to the numbers of slice criteria etc., but it is less
than the countation, of course. According to these the average execution time of
the algorithm is O(|EH|*|statements|+|memory|).

Now let’s analyze the memory requirements. The most relevant memory re-
quirement takes the storage of the temporal slice results, i.e. the U sets; the oth-
ers (e.g. memory requirements of the initialization part etc.) can be ignored.
In the worst case every variable (i.e. every memory location) contains all the
statements, so in this case the memory requirement is O(<number of different

memory locations> * <number of statements>). In fact it is very unlikely to
use such a big memory, it is rather linearly proportional to the different memory
locations used during the program with a bigger constant. At bigger programs in
the most cases the memory requirement of the dynamic counting algorithm is linear
to the memory requirement of the original program (with a bigger constant).

2.3 Extending the basic algorithm

In order to handle the pointers, the variables are identified by their addresses and
not by their names. This approach has several good advantages.One is that it solves
the problem of the variables with the same name but different program scope.

The address of a variable can only be determined dynamically after its declara-
tion, but the DU is derived from the static source code. Hence there are two DU
structures: a static DU which contains variable names, and a dynamically resolved
DU (dynamic DU) which contains addresses. (Note that the dynamic DU may
change during the program execution due to a change in variable address, pointer
value, etc. The neccessary parts of the dynamic DU are computed at each step
using the static DU and the (extended) execution history.)

In a C program there may be several variables present with the same name but
in different scopes. The address of a variable with a specific name may depend on
the scope of the expression where the variable is used. So the algorithm must keep
track of the scopes and maintain a stack structure for each function in order to store
the addresses of the variables. Each time a new scope is begun, a new address table
is created at the top of the stack, and when a new variable declaration occurs, the
name and address are recorded in this new table. For the address of a variable the
address tables are searched from the top to the bottom of the stack of the actual
function. When a scope leaved, the top element of the stack is discarded. The first
element at the bottom of each such stack is the same: the address table of global
variables (these can be accessed by every function).

496 Csaba Faragó, Tamás Gergely

3 Handling pointers

In this subsection the handling of the pointers, arrays and structures are described.
The methods we introduce are for the C language, but the general idea may be
applied to other languages too. When code is shown, the ”common” parts of the
code (such as function headers, includes) are hidden, as well as some function calls
from the instrumented code.

3.1 Pointers

The address of a variable does not change in its scope, so after it is determined it
can be used any number of times. But the value of a pointer can change at any
time and must be determined every time the pointer occurs. Consider the following
program code:

int x, *p;

1. x=1;

2. p=&x;

3. *p=2;

4. print(x);

It is readily seen that only lines 2 and 3 affect the value of x in line 4, while
the first one doesn’t. Statically it is almost impossible to detect these kind of
dependencies. Most of the static algorithms either include the whole program, or
exclude lines 2 and 3 and include only those like the first line, which will produce
incorrect slices.

Statically, only the following dependencies can be determined:

line def : USE

1 x : ∅
2 p : ∅
3 PTR1 : {p}
4 OUT : {x}

where PTR1 indicates that a memory location is defined via a pointer. Of course,
this memory location depends on the value of the pointer itself. Using dynamic
information the variables can be converted into memory locations. This means
that addresses 01 and 02 can be used instead of variables x and p, respectively.
Dynamically, the value of PTR1 is also known. Extracting the information from
the execution history, the result is the following (dynamically resolved) DU:

Handling Pointers and Unstructured Statements in Dynamic Slice Algorithm 497

step line def : USE DynSlice(def)

1 1 01 : ∅ ∅
2 2 02 : ∅ ∅
3 3 01 : {02} {2}
4 4 OUT : {01} {2, 3}

The technical procedure for the extraction of the addresses is called program
instrumentation. This means modifying the program code in such way that the
program retains its original behaviour, but also generates some extra information
(eg. execution history, runtime addresses, block information). The instrumented
code is similar to the following (actually, it is slightly more involved):

int x, *p;

remember("x", &x);

remember("p", &p);

1. x=1;

2. p=&x;

3. *dump("PTR1", p)=2;

4. print(x);

The remember function writes the address of the variable into the (extended)
execution history. This information is used during the execution of the slicing
algorithm to create the dynamic DU. The dump function writes the value of its
second parameter (in this case pointer value), and simply returns it. In the static
DU case the third line contains the pointer variable PTR1, which can be resolved
within the algorithm to an address using the previously dumped pointer value.

3.2 Arrays

In the C language the arrays and the pointers are practically the same, and the
conversion from one to the other is quite simple. The ith element of an array t,
denoted by t[i], can be expressed as a pointer *(t+i). Then, when an element of
an array is referenced, it is treated as a pointer in the DU and then its address is
written out. Consider the following example:

int t[5];

int *p;

1. t[0]=1;

2. *(t+1)=2;

3. t[2]=2*t[1];

4. print(t[2]);

The static DU of the previous program is the following:

498 Csaba Faragó, Tamás Gergely

line def : USE

1 PTR1 : ∅
2 PTR2 : ∅
3 PTR3 : PTR4
4 OUT : PTR5

The references to array elements are converted to pointers, as mentioned earlier.
Each pointer or array element occurrence has a unique identifier in the static DU.
The instrumented code is:

int t[5];

remember("t", t);

1. *dump("PTR1",&t[0])=1;

2. *dump("PTR2",t+1)=2;

3. *dump("PTR3",&t[2])=2*(*dump("PTR4",&t[1]));

4. print(*dump("PTR5",&t[2]));

Assume that the array is placed at address 10. In this case the dynamic DU
and the slice are:

step line def : USE DynSlice(def)

1 1 10 : ∅ ∅
2 2 11 : ∅ ∅
3 3 12 : {11} {2}
4 4 OUT : {12} {2, 3}

3.3 Structures

The offset of the members of a structure could be determined statically but the
computation of dynamic addresses would be quite complicated. Instead, the mem-
bers of a structure will also be treated as pointers. In this way the structures are
reduced to pointers. Consider the example:

struct s {

int a;

int b;

};

struct s x,y;

1. x.a=1;

2. x.b=2;

3. y=x;

4. print(y.b);

Handling Pointers and Unstructured Statements in Dynamic Slice Algorithm 499

Here, there are three structure members. The x.a in line 1, x.b in line 2 and
y.a in line 4 are converted to PTR1, PTR2 and PTR3 respectively. Structures x
and y are not converted to pointers, but are scalar variables. The static DU of the
example is:

line def : USE

1 PTR1 : ∅
2 PTR2 : ∅
3 y : {x}
4 OUT : {PTR3}

Let us suppose that the addresses of the structures and elements are the follow-
ing:

item x x.a x.b y y.a y.b

address 01 01 02 03 03 04

As can be seen the address itself does not correctly describes a variable. Al-
though the addresses of x and x.a are the same, they are still different. While x.a
is located in a single memory cell, x occupies two cells: 01 and 02. There is another
reason for recording the structure size: the expression y=x in line 3. If the size of
the structure is ignored the relation between x.b and y.b becomes indeterminable.
In the instrumented code function remember has an additional parameter, the size
of the variable. The addresses of the three structure members are written out by
use of the function used for dump pointer values. The instrumented code is:

struct s {

int a;

int b;

};

struct s x, y;

remember("x", &x, sizeof(x));

remember("y", &y, sizeof(y));

1. *dump(&x.a)=1;

2. *dump(&x.b)=2;

3. y=x;

4. print(*dump(&y.b));

Using the static DU and the dynamic information (addresses), the dynamic DU
and the slice are the following:

500 Csaba Faragó, Tamás Gergely

step line def : USE DynSlice(def)

1 1 01 : ∅ ∅
2 2 02 : ∅ ∅
3 3 03 : {01} {1}

04 : {02} {2}
4 4 OUT : {04} {2, 3}

There are two memory locations defined in step 3, each with its own dependency.
When the expression y=x is evaluated, the value of the structure x is copied into
structure y. This means that two memory cells from the address 01 are copied
into the cells starting at 03. The algorithm recognizes this fact and creates the two
dependencies in the dynamic DU from the (single) dependency y : x in the static
DU.

3.4 Size of pointers

The method still hasn’t been quite refined. As well as recording the size of a
structure, the size of all variables and pointers must be known. It is obvious that
a pointer can point to any structure or the element of an array can be a structure
also. So the function dump has one additional parameter: the size of the pointed
type. In this way the algorithm can compute the correct dynamic DU. It can find
all addresses defined or used.

3.5 Same memory locations used during execution

During a program execution memory locations are allocated and released dynami-
cally for some variables. It may happen that, after releasing such a memory location
(which can be implicit or explicit), another variable gets the same address. Could
this have some detrimental effects on the algorithm? If all variables were initialized
before its first use, the answer is no. If the second variable is used without initial-
ization, the algorithm uses the slice of the previous variable. This behaviour of the
algorithm is also correct since it shows how the (probably bad) program works.

4 Handling unstructured statements

An issue which must be dealt with is how we should handle the jump statements
in the dynamic slicing algorithm. In this section C-specific jump statements are
considered, but the method could be used in other programming languages as well.

In the next part the handling of the goto statement is described, along with
the break, continue, and switch statements.

4.1 The goto statement

Where a goto statement occurs, the D/U structure is built up as follows. First, so-
called “label variables” are introduced. Let the defined variable (d) be the previously

Handling Pointers and Unstructured Statements in Dynamic Slice Algorithm 501

introduced label variable called the real name of the label. It could also be an
ordinal number, but for the sake of simplicity we use the previous name here. The
use set (U) contains no “extra” variables, just the appropriate predicate variable,
and we will find that it can contain label variables too.

The previously defined label variable is inserted into the use set (U) of those
statements which occur after the corresponding label within the function. It is
important to do this to the end of the function, not just in the appropriate block.

i. def : USE

int i,j,k,l;

1. k=0; k : ∅
2. l=0; l : ∅
3. i=0; i : ∅

l1:

4. j=0; j : {l1}
l2:

5. k=k+i+j; k : {k, i, j, l1, l2}
6. l++; l : {l, l1, l2}
7. j++; j : {j, l1, l2}
8. if (j<2) p8 : {j, l1, l2}
9. goto l2; l2 : {p8, l1, l2}
10. i++; i : {i, l1, l2}
11. if (i<2) p11 : {i, l1, l2}
12. goto l1; l1 : {p11, l1, l2}
13. printf("%d",k); o13 : {k, l1, l2}

Figure 5: Handling of the goto statement

If there are more labels, they are all handled in the same way. If the goto

statement appears after the definition of the label, then of course it contains the
just defined label variable. But this is not a problem because in the execution
history it appears as a formerly defined variable. It can be defined by itself or by
another goto statement. If no goto statement that jumps to a specific label is
executed during the program, the last definition of that label remains undefined
so it will not affect the result of the dynamic slice. The result contains all of the
defined labels.

When the goto is executed during the program and the dynamic slice contains
at least one of the statements after the definition of the label, then the result will
at least contain the previous corresponding goto (and of course its predicate de-
pendencies transitively). So it often unnecessarily increases the size of the dynamic
slice and using lots of goto statements will make it hard to analyze the program.

An example is shown on Figure 5, and its results in Figure 6. As one might
except, the use of goto statements resulted in a lot of dependencies.

502 Csaba Faragó, Tamás Gergely

Action (ij) DynSlice()

11 ∅
22 ∅
33 ∅
44 ∅
55 {1, 3, 4}
66 {2}
77 {4}
88 {4, 7}
99 {4, 7, 8}
105 {1, 3, 4, 5, 7, 8, 9}
116 {2, 4, 6, 7, 8, 9}
127 {4, 7, 8, 9}
138 {4, 7, 8, 9}
1410 {3, 4, 7, 8, 9}
1511 {3, 4, 7, 8, 9, 10}

Action (ij) DynSlice()

1612 {3, 4, 7, 8, 9, 10, 11}
174 {3, 4, 7, 8, 9, 10, 11, 12}
185 {1, 3, 4, 5, 7, 8, 9, 10, 11, 12}
196 {2, 3, 4, 6, 7, 8, 9, 10, 11, 12}
207 {3, 4, 7, 8, 9, 10, 11, 12}
218 {3, 4, 7, 8, 9, 10, 11, 12}
229 {3, 4, 7, 8, 9, 10, 11, 12}
235 {1, 3, 4, 5, 7, 8, 9, 10, 11, 12}
246 {2, 3, 4, 6, 7, 8, 9, 10, 11, 12}
257 {3, 4, 7, 8, 9, 10, 11, 12}
268 {3, 4, 7, 8, 9, 10, 11, 12}
2710 {3, 4, 7, 8, 9, 10, 11, 12}
2811 {3, 4, 7, 8, 9, 10, 11, 12}
2913 {1, 3, 4, 5, 7, 8, 9, 10, 11, 12}

Figure 6: The result of program in Figure 5

4.2 The break statement

The break statement is practically equivalent to goto statement, which jumps out
from the block of the appropriate while, do...while, switch or for statement
to the first statement after this block. This statement can be handled as follows.
The defined variable at every occurrence of the break statement should be an
individual label variable. One form might be break<Nr>, where <Nr> is the ordinal
number of the break statement within the program. All of the statements after the
corresponding block are dependent on the previously defined label variable, just
like in the case of goto statement. Note that if a label is placed just after the
corresponding block and the break is replaced with a goto which jumps to that
label, then the effect is the same.

An example of the break statement and results are shown in Figure 7 and Figure
8 respectively.

4.3 The continue statement

Like the break statement, we should define a separate label variable. This might
be denoted by continue<Nr>, where <Nr> is the ordinal number of the continue

statement within the program. It is defined in statements where continue occurs.
The dependent statements are statements from the beginning of the block of the
appropriate for, while or do...while statement to the end of the function. So
the continue statement is always dependent upon itself.

Handling Pointers and Unstructured Statements in Dynamic Slice Algorithm 503

i. def : USE

int a,b,i;

1. a=1; a : ∅
2. b=1; b : ∅
3. i=2; b : ∅
4. while (i>0) { p4 : {i}
5. b--; b : {p4, b}
6. i--; i : {p4, i}
7. if (b==0) p7 : {b}
8. break; break8 : {p7}
9. a++; a : {p4, a}

}

10. printf("%d",a); o10 : {a, break8}

Figure 7: Handling of the break statement

Action (ij) DynSlice()

11 ∅
22 ∅
33 ∅
44 {3}
55 {2, 3, 4}
66 {3, 4}
77 {2, 3, 4, 5}
88 {2, 3, 4, 5, 7}
910 {1, 2, 3, 4, 5, 7, 8}

Figure 8: The results of program in Figure 7

An example of the continue statement and results are shown in Figure 9 and
Figure 10 respectively.

4.4 The switch statement

After the handling of break statement, the handling of the switch statement is
quite straightforward.

At the place where the switch statement occurs a predicate variable is defined,
just like in the case of while or if. All of the statements within the switch block
are dependent on this predicate variable. If at least one statement within the switch
block is included in the slice result, all of the case labels and the default label

504 Csaba Faragó, Tamás Gergely

i. def : USE

int a,b,i;

1. a=1; a : ∅
2. b=1; b : ∅
3. i=2; b : ∅
4. while (i>0) { p4 : {i, continue8}
5. b--; b : {p4, b, continue8}
6. i--; i : {p4, i, continue8}
7. if (b==0) p7 : {b, continue8}
8. continue; continue8 : {p7, continue8}
9. a++; a : {p4, a, continue8}

}

10. printf("%d",a); o10 : {a, continue8}

Figure 9: Handling of the continue statement

Action (ij) DynSlice()

11 ∅
22 ∅
33 ∅
44 {3}
55 {2, 3, 4}
66 {3, 4}
77 {2, 3, 4, 5}
88 {2, 3, 4, 5, 7}
94 {2, 3, 4, 5, 6, 7, 8}
105 {2, 3, 4, 5, 6, 7, 8}
116 {2, 3, 4, 5, 6, 7, 8}
127 {2, 3, 4, 5, 6, 7, 8}
139 {1, 2, 3, 4, 5, 6, 7, 8}
144 {2, 3, 4, 5, 6, 7, 8}
1510 {1, 2, 3, 4, 5, 6, 7, 8, 9}

Figure 10: The results of program in Figure 9

are included. Here the break statements are handled in the same way as described
before.

An example of the switch statement and its results are shown in Figure 11 and
Figure 12, respectively.

Handling Pointers and Unstructured Statements in Dynamic Slice Algorithm 505

i. def : USE

int a,b;

1. b=0; b : ∅
2. a=2; a : ∅
3. switch (a) { p3 : {a}

case 1:

4. b=5; b : {p3}
5. break; break5 : {p3}

case 2:

6. b=3; b : {p3}
case 3:

7. b++; b : {p3, b}
8. break; break7 : {p3}

default:

9. b=6; b : {p3}
}

10. printf("%d",b); o10 : {b, break5, break7}

Figure 11: Handling of the switch statement

Action (ij) DynSlice()

11 ∅
22 ∅
33 {2}
46 {2, 3}
57 {2, 3, 6}
68 {2, 3}
710 {2, 3, 6, 7, 8}

Figure 12: The results of program in Figure 11

5 Experimental results

Several experimental results confirmed that our dynamic slices are more precise
than the static one. Among the test sources there are 3 medium sized: the bzip (a
compression utility), the bc (a scientific calculator) and the less (this is a powerful
text viewer program). The sizes of these programs is shown in the following table.

506 Csaba Faragó, Tamás Gergely

prog lines executable files bytes functions

bzip 4495 1595 1 130 458 73
bc 11555 3220 20 312 722 138
less 21489 5400 43 639 036 363

The first column is the name of the program, the second one means the total
lines of the source, the third is the size of the executable code (i.e. without comments
etc.), the fourth is the number of source files, the fifth is the total length of the
source code in bytes, and the last one means the number of the functions within
the program.

With help of our program we made several executions on several slice criteria
for all the 3 sources. The number of the different slice criteria and the number of
the executions are shown in the next table.

program criteria executions coverage

bzip 154 18 68%
bc 57 49 63%
less 50 14 45%

The last column shows the coverage of the program. A statement is defined to
be covered if at least once is executed during all the tests. The coverage means the
percentage of the covered statements related to the whole program.

With a static slice generator tool (CodeSurfer, [10]) we made static slices, too.
The results are shown in Figure 13.

0

1000

2000

3000

4000

5000

6000

bzip bc less

lin
es

 o
f

co
d

e

Program

Coverage

Static slice

Union slice

Figure 13: The average slice sizes

The first column shows the size of the executable code, the second the coverage,
the third the average static slice (result of the CodeSurfer) and the last one is
average of the so-called union slices generated by our dynamic slice generator tool.
The union slice means the union of the all the generated slices (several executions
+ more results within one execution) to a certain statement.

Handling Pointers and Unstructured Statements in Dynamic Slice Algorithm 507

6 Summary

Different program slicing methods are used for debugging, testing, reverse engineer-
ing and maintenance. Slicing algorithms can be categorized according to whether
they use static slicing or dynamic slicing methods. In applications such as debug-
ging, the computation of dynamic slices is more preferable as it can produce more
precise results.

There are several methods for dynamic slicing available in the literature, but
most of them make use of the internal representation of the program execution
with dynamic dependencies called the Dynamic Dependence Graph (DDG). A big
drawback of these methods is that the size of the DDGs is unbounded, because it
includes a distinct vertex for each occurrence of a statement.

In [9] a new forward global method for computing dynamic slices of C programs
was introduced. The algorithm determines the dynamic slices for any program
instruction, in parallel with program execution, but it was worked out only for a
simple program language.

To make the method usable for real programs, many problems had to be solved.
This paper focused on two of them: the handling of pointers and unstructured jump
statements. A method for handling the pointers, arrays, structures, goto, break,
continue and switch statements of the C programming language was described,
as well.

The main advantage of our algorithm is that it can be applied to real size C

programs as its memory requirements are proportional to the number of different
memory locations used by the program (which is in most cases much smaller than
the size of the execution history—which is, actually, the absolute upper bound).

We have already developed a program where we implemented the forward dy-
namic slicing algorithm for C language programs. According to our preliminary
trials, the memory requirements of the algorithm is indeed proportional to the
number of different memory locations used by the program, which is much less
than the size of the execution history.

References

[1] Agrawal, H., DeMillo, R. A., and Spafford, E. H. Debugging with dynamic
slicing and backtracking. Software—Practice And Experience, 23(6):589-
616, June 1993.

[2] Beck, J., and Eichmann, D. Program and Interface Slicing for Reverse
Engineering. In Proc. 15th Int. Conference on Software Engineering, Bal-
timore, Maryland, 1993. IEEE Computer Society Press, 1993, 509-518.

[3] Fritzson, P., Shahmehri, N., Kamkar, M., and Gyimóthy, T. Generalized
algorithmic debugging and testing. ACM Letters on Programming Lan-
guages and Systems 1, 4 (1992), 303-322.

508 Csaba Faragó, Tamás Gergely

[4] Gallagher, K. B., and Lyle, J. R. Using Program Slicing in Software
Maintenance. IEEE Transactions on Software Engineering 17, 8, 1991,
751-761.

[5] Gyimóthy, T., Beszédes, Á., and Forgács, I. An Efficient Relevant Slicing
Method for Debugging. In Proc. 7th European Software Engineering Con-
ference (ESEC), Toulouse, France, Sept. 1999. LNCS 1687, pages 303-321.

[6] Korel, B., and Rilling, J. Application of dynamic slicing in program debug-
ging. In Proceedings of the Third International Workshop on Automatic
Debugging (AADEBUG’97), Linkoping, Sweden, May 1997.

[7] Rothermer, G., and Harrold, M. J. Selecting tests and identifying test
coverage requirements for modified software. In Proc. ISSTA’94 Seattle.
1994, 169-183

[8] Weiser M. Program Slicing. IEEE Transactions on Software Engineering
SE-10, 4, 1984, 352-357.

[9] Beszédes, Á., Gergely, T., Szabó, Zs. M., Csirik, J., and Gyimóthy T.
Dynamic Slicing Method for Maintenance of Large C Programs. At the 5th
European Conference on Software Maintenance and Reengineering (CSMR
2001). Lisbon, Portugal, March 14-16, 2001.

[10] Homepage of CodeSurfer:
http://www.grammatech.com/products/codesurfer/

