
Noname manuscript No.
(will be inserted by the editor)

Di�erences Between a Static and a Dynamic

Test-to-Code Traceability Recovery Method

Tamás Gergely · Gerg® Balogh · Ferenc
Horváth · Béla Vancsics · Árpád
Beszédes · Tibor Gyimóthy

Received: date / Accepted: date

Abstract Recovering test-to-code traceability links may be required in virtually
every phase of development. This task might seem simple for unit tests thanks to
two fundamental unit testing guidelines: isolation (unit tests should exercise only
a single unit) and separation (they should be placed next to this unit). However,
practice shows that recovery may be challenging because the guidelines typically
cannot be fully followed. Furthermore, previous works have already demonstrated
that fully automatic test-to-code traceability recovery for unit tests is virtually
impossible in a general case.

In this work, we propose a semi-automatic method for this task, which is based
on computing traceability links using static and dynamic approaches, comparing
their results and presenting the discrepancies to the user, who will determine the
�nal traceability links based on the di�erences and contextual information. We de-
�ne a set of discrepancy patterns, which can help the user in this task. Additional
outcomes of analyzing the discrepancies are structural unit testing issues and re-
lated refactoring suggestions. For the static test-to-code traceability, we rely on the
physical code structure, while for the dynamic, we use code coverage information.
In both cases, we compute combined test and code clusters which represent sets
of mutually traceable elements. We also present an empirical study of the method
involving 8 non-trivial open source Java systems.

This work was partially supported by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences and project number EFOP-3.6.3-VEKOP-16-2017-0002, which is
co-funded by the European Social Fund.
The �nal publication is available at Springer via http://dx.doi.org/10.1007/
s11219-018-9430-x.

Tamás Gergely · Gerg® Balogh · Ferenc Horváth · Béla Vancsics · Árpád Beszédes · Tibor
Gyimóthy
Department of Software Engineering, University of Szeged, Szeged, Hungary
E-mail: {gertom,geryxyz,hferenc,vancsics,beszedes,gyimothy}@inf.u-szeged.hu

Gerg® Balogh · Tibor Gyimóthy
MTA-SZTE Research Group on Arti�cial Intelligence, University of Szeged, Szeged, Hungary
E-mail: {geryxyz,gyimothy}@inf.u-szeged.hu

http://dx.doi.org/10.1007/s11219-018-9430-x
http://dx.doi.org/10.1007/s11219-018-9430-x

2 T. Gergely, G. Balogh, F. Horváth et al.

Keywords Test-to-code traceability, traceability link recovery, unit testing, code
coverage, structural test smells, refactoring.

1 Introduction

Unit testing is an important element of software quality assurance (Black et al
(2012)). In software maintenance and evolution, unit tests also play a crucial role:
during regression testing unit tests are constantly re-executed and further evolved
in parallel to the system under test (Feathers (2004)). Hence, their quality in
general, and maintainability in particular are important. One aspect of maintain-
ability is to establish reliable traceability links between unit test cases and units
under test � which is the main theme of the present research.

There are a number of design patterns as well as testing frameworks available to
aid programmers and testers to write good and easily traceable unit tests (Hamill
(2004)). In particular, there are two unit testing guidelines that deal with the
structural consistency between test and production code, which enable full trace-
ability. The �rst one is isolation, which means that unit tests should exercise only
the unit they were designed for, the second one being separation, meaning that
the tests should be placed in the same logical or structural group (e.g. package) as
the units they are testing. However, there are some practical aspects that act as
barriers to design tests that completely conform to these text book de�nitions (e.g.
calls to utility functions or other general parts of the system, see Bertolino (2007);
Myers et al (2011)). The result is that unit test-to-code traceability information
often cannot be directly derived from the code, and speci�c recovery e�ort needs
to be made.

Recovering traceability links between unit test cases and units under test may
be necessary in virtually every phase of development. For example, in the cod-
ing and testing phases, �nding low level code related defects early is essential
using appropriate unit tests, and in evolution, up to date unit tests are necessary
for e�cient regression testing. Several approaches have been proposed for this
task (e.g. Qusef et al (2014); Gaelli et al (2005); Kanstrén (2008); Bruntink and
Van Deursen (2004); Bouillon et al (2007)). However, practice shows that the fully
automatic recovery of traceability links is di�cult, and the di�erent approaches
might produce di�erent results (Rompaey and Demeyer (2009); Qusef et al (2010)).
Hence, combined or semi-automatic methods are often proposed for this task.

In this work, we present a semi-automatic method for unit test traceability
recovery. In the �rst phase, we compute the traceability links based on two funda-
mentally di�erent but very basic aspects: (1) the static relationships of the tests
and the tested code in the physical code structure and (2) the dynamic behavior
of the tests based on code coverage. In particular, we compute clusterings of tests
and code for both static and dynamic relationships, which represent coherent sets
of tests and tested code. These clusters represent sets whose elements are mu-
tually traceable to each other, and may be bene�cial over individual traceability
between units and tests, which is often harder to precisely express. For computing
the static structural clusters we use the packaging structure of the code (referred
to as package based clusters), while for the dynamic clustering we employ commu-
nity detection (Blondel et al (2008)) on the code coverage information (called the
coverage based clusters).

Static and Dynamic Test-to-Code Traceability Recovery 3

In the next phase, these two kinds of clusterings are compared to each other.
If both approaches produce the same clusterings we conclude that the traceability
links are reliable. However, in many cases there will be discrepancies in the pro-
duced results which we report as inconsistencies. There may be various reasons
for these discrepancies but they are usually some combination of violating the
isolation and/or separation principles mentioned above.

The �nal phase of the approach is then to analyze these discrepancies and,
based on the context, produce the �nal recovered links. During this analysis, it
may turn out that there are structural issues in the implemented tests and/or
code, hence refactoring suggestions for the tests or code may be produced as well.

Because it usually involves other contextual information, the analysis phase
needs to be done manually. To aid this process, we perform an automatic compar-
ison and report the discrepancies in form of concrete patterns. In this paper, we
introduce several such patterns, the details of their identi�cation, and potential
implications on the �nal traceability recovery.

We report on an empirical study, in which we manually investigated the trace-
ability discrepancies of eight non-trivial open source Java systems to explain their
context and provide suggestions for the �nal traceability recovery and eventual
refactorings.

The practical usability of the results is manifold. Existing systems with in-
tegrated unit tests can be analyzed to recover traceability links more easily and
reliably as the method is based on automatic approaches which compute the links
from di�erent viewpoints, and their comparison can be done semi-automatically.
The method can also help in identifying problematic, hard to understand and
maintain parts of the test code, and it might help in preventive maintenance as
well by providing corresponding refactoring options.

This paper is an extension of our previous study, Balogh et al (2016), which
introduced our concept on traceability recovery. This paper extends the previous
study by a detailed manual analysis phase, additional discrepancy patterns and
their enhanced detection method using Neighbor Degree Distribution vectors.

The rest of the paper is organized as follows. The next section overviews some
background information and related work, while Section 3 details our traceabil-
ity recovery method. The empirical study employing our method is presented in
Section 4, with the analysis of the detected discrepancy patterns in Section 5. We
provide conclusions about the presented work and sketch possible future directions
in Section 6.

2 Background and related work

There are di�erent levels of testing, one of which is unit testing. Unit tests are very
closely related to the source code and they aim to test separate code fragments
(Black et al (2012)). This kind of test helps to �nd implementation errors early in
the coding phase, reducing the overall cost of the quality assurance activity.

4 T. Gergely, G. Balogh, F. Horváth et al.

2.1 Unit testing guidelines and frameworks

Several guidelines exist that give hints on how to write good unit tests (e.g.
Hamill (2004); Breugelmans and Van Rompaey (2008); Van Rompaey and De-
meyer (2008); Meszaros (2007)). The two basic principles telling that unit tests
should be isolated (test only the elements of the target component) and separated
(physically or logically grouped, aligned with the tested unit), are mentioned by
most of them. In practice, this means that unit tests should not (even indirectly)
execute production code outside the tested unit, and they should follow a clear
naming and packaging convention, which re�ects the structure of the tested sys-
tem. Several studies have examined various characteristics of the source code with
which the above mentioned two aspects can be measured and are veri�able to some
extent, e.g. by Rompaey and Demeyer (2009).

These two properties are important for our approach too. Namely, if both
are completely followed, the package and coverage based automatic traceability
analysis algorithms will produce the same results. However, this is not the case
in realistic systems, so our approach relies on analyzing the di�erences in the two
sets to draw conclusions about the �nal traceability links.

A very important aspect to involve when unit testing research is concerned
is the framework used to implement unit test suites. The most widely used is
probably the xUnit family; in this work we consider Java systems and the JUnit
toolset1. The features o�ered in the used framework highly determine the way unit
testing is actually implemented in the project.

2.2 Traceability recovery in unit tests

Several methods have been proposed to recover traceability links between software
artifacts of di�erent types, including requirements, design documentation, code,
test artifacts, and so on (Spanoudakis and Zisman (2005); De Lucia et al (2008)).
The approaches include static and dynamic code analysis, heuristic methods, in-
formation retrieval, machine-learning, and data mining based methods.

In this work, we are concerned with test-to-code traceability. The purpose of
recovering this is to assign test cases to code elements based on the relationship
that shows which code parts are tested by which tests. This information may be
very important in development, testing or maintenance, as already discussed.

In this work, we concentrate on unit tests, in which case the traceability in-
formation is mostly encoded in the source code of the unit test cases, and usually
no external documentation is available for this purpose. Traceability recovery for
unit test may seem simple at �rst (Beck (2002); Demeyer et al (2002); Gaelli et al
(2007)), however, in reality it is not (Gaelli et al (2005); Kanstrén (2008)).

Bruntink and Van Deursen (2004) illustrated the need and complexity of the
test-to-code traceability. They investigated factors of the testability of Java sys-
tems. The authors concluded that the classes dependent upon other classes re-
quired more test code, and suggested the creation of composite test scenarios for
the dependent classes. Their solution heavily relies on the test-to-code traceability
relations.

1 http://junit.org/ (last visited: 2018-06-26)

http://junit.org/

Static and Dynamic Test-to-Code Traceability Recovery 5

Bouillon et al (2007) presented an extension to the JUnit Eclipse plug-in. It
used static call graphs to identify the classes under test for each unit test case and
analyzed the comments to make the results more precise.

Rompaey and Demeyer (2009) evaluated the potential of six traceability resolu-
tion strategies (all are based on static information) for inferring relations between
developer test cases and units under test. The authors concluded that no single
strategy had high applicability, precision and recall. Strategies such as Last Call
Before Assert, Lexical Analysis or Co-Evolution had a high applicability, but lower
accuracy. However, combining these approaches with strategies relying on devel-
oper conventions (e.g. naming convention) and utilizing program speci�c knowl-
edge (e.g. coding conventions) during the con�guration of the methods provided
better overall result.

Qusef et al (2014, 2010) proposed an approach (SCOTCH+ � Source code and
COncept based Test to Code traceability Hunter) to support the developers during
the identi�cation of connections between unit tests and tested classes. It exploited
dynamic slicing and textual analysis of class names, identi�ers, and comments to
retrieve traceability links.

In summary, most of the mentioned related works emphasize that reliable test-
to-code traceability links are di�cult to derive from a single source of information,
and combined or semi-automatic methods are required. Our research follows this
direction as well.

2.3 Test smells

The discrepancies found in the two automatic traceability analysis results can be
seen as some sort of smells, which indicate potential problems in the structural
organization of tests and code. For tests that are implemented as executable code,
Deursen et al (2002) introduced the concept of test smells, which indicate poorly
designed test code, and listed 11 test code smells with suggested refactorings. We
can relate our work best to their Indirect Testing smell. Meszaros (2007) expanded
the scope of the concept by describing test smells that act on a behavior or a project
level, next to code-level smells. Results that came after this research use these ideas
in practice. For example, Breugelmans and Van Rompaey (2008) present TestQ
which allows developers to visually explore test suites and quantify test smelliness.
They visualized the relationship between test code and production code, and with
it, engineers could understand the structure and quality of the test suite of large
systems more easily (see Van Rompaey and Demeyer (2008)).

Our work signi�cantly di�ers from these approaches as we are not concerned
in code-oriented issues in the tests but in their dynamic behavior and relationship
to their physical placement with respect to the system as a whole. We can iden-
tify structural test smells by analyzing the discrepancies found in the automatic
traceability analyses.

2.4 Clustering in software

One of the basic components of the approach presented in this work is the identi�-
cation of interrelated groups of tests and tested code. Tengeri et al (2015) proposed

6 T. Gergely, G. Balogh, F. Horváth et al.

an approach to group related test and code elements together, but this was based
on manual classi�cation. In the method, various metrics are computed and used
as general indicators of test suite quality, and later it has been applied in a deep
analysis of the WebKit system (Vidács et al (2016)).

There are various approaches and techniques for automatically grouping dif-
ferent items of software systems together based on di�erent types of information,
for example, code metrics, speci�c code behavior, or subsequent changes in the
code (Pietrzak and Walter (2006)). Mitchell and Mancoridis (2006) examined the
Bunch clustering system which used search techniques to perform clustering. The
ARCH tool by Schwanke (1991) determined clusters using coupling and cohesion
measurements. The Rigi system by Müller et al (1993) pioneered the concepts of
isolating omnipresent modules, grouping modules with common clients and sup-
pliers, and grouping modules that had similar names. The last idea was followed
up by Anquetil and Lethbridge (1998), who used common patterns in �le names
as a clustering criterion.

Our coverage-based clustering method uses a community detection algorithm,
which was successfully used in other areas (like biology, chemistry, economics and
engineering) previously. Recently, e�cient community detection algorithms have
been developed which can cope with very large graphs (see Blondel et al (2008)).
Application of these algorithms to software engineering problems is emerging.
Hamilton and Danicic (2012) introduced the concept of dependence communities
on program code and discussed their relationship to program slice graphs. They
found that dependence communities re�ect the semantic concerns in the programs.
�ubelj and Bajec (2011) applied community detection on classes and their static
dependencies to infer communities among software classes. We performed commu-
nity detection on method level, using dynamic coverage information as relations
between production code and test case methods, which we believe is a novel ap-
plication of the technique.

2.5 Comparison of clusterings

Our method for recovering traceability information between code and tests is to
compute two types of clusterings on test and code (these represent the traceability
information) and then compare these clusterings to each other. In literature, there
were several methods proposed to perform this task. A large part of the meth-
ods use various similarity measures, which express the di�erences using numerical
values. Another approach to compare clusterings is to infer a sequence of transfor-
mation actions which may evolve one clustering into the other. In our approach,
we utilize elements of both directions: we use a similarity measure to express the
initial relationships between the clusters and then de�ne discrepancy patterns that
rely on these measures, which can �nally lead to actual changes (refactorings) in
the systems. In this section, we overview the most imporant related approaches in
these areas.

Wagner and Wagner (2007) provide a list of possible measures for comparing
clusters, noting that di�erent measures may prefer or disregard various properties
of the clusters (e.g. their absolute size). There are several groups of these measures
based on whether they are symmetric (e.g. Jaccard index) or non-symmetric (e.g.
Inclusion measure), count properties of the element relations (Chi Squared Coef-

Static and Dynamic Test-to-Code Traceability Recovery 7

�cient) or that of the clusters (F-Measure), etc. We decided to use the Inclusion
measure in this work because, in our opinion, it is the most intuitive one which
can help in the validation of the results, and can provide more information about
the speci�c cases. We experimented with other measures as well but the empirical
measurements showed similar results.

Palla et al (2007) analyzed community evolution of large databases, while Bóta
et al (2011) investigated the dynamics of communities, which are essentially ways
to describe the evolution of clusterings in general. In addition to the cluster com-
parison, the authors described what types of changes can occur in the clusters that
will eventually lead to a sequence of transformation actions between the di�erent
clusterings. These actions are very similar to the refactorings related to tests and
code we propose in this work, which can potentially resolve discrepancies found
between the two examined traceability information types.

3 Method for semi-automatic traceability recovery

In this section, we describe our semi-automatic method for unit test traceability
recovery and structural test smell identi�cation.

3.1 Overview

Figure 1 shows an overview of the process, which has several sequential phases.
First, the physical organization of the production and test code into Java packages
is recorded, and the required test coverage data is produced by executing the tests.
In our setting, code coverage refers to the individual recording of all methods
executed by each test case. Physical code structure and coverage will be used in
the next phase as inputs to create two clusterings over the tests and code elements.

These will represent the two types of relationships between test and code: the
two sets of automatically produced traceability links from two viewpoints, static
and dynamic. Both clusterings produce sets of clusters that are composed of a
combination of tests (unit test cases) and code elements (units under test). In our
case, a unit test case is a Java test method (e.g. using the @Test annotation in the
JUnit framework), while a unit under test is a regular Java method.

In our approach, the elements of a cluster are mutually traceable to each other,
and no individual traceability is established between individual test cases and
units. The bene�t of this is that in many cases it is impossible to uniquely assign
a test case to a unit, rather groups of test cases and units can represent a cohesive
functional unit (Horváth et al (2015)). Also, minor inconsistencies, such as helper
methods that are not directly tested, are �smoothed away� with this procedure.

Details about the clustering based traceability algorithms are provided in Sec-
tion 3.2.

The automatically produced traceability links will be compared using a helper
structure, the Cluster Similarity Graph (CSG) introduced by Balogh et al (2016).
This is a directed bipartite graph whose nodes represent the clusters of the two
clusterings. Edges of the graph are used to denote the level of similarity between
the two corresponding clusters. For this, a pairwise similarity measure is used as a
label on each edge. In particular, we use the Inclusion measure for two clusters of

8 T. Gergely, G. Balogh, F. Horváth et al.

preparation

production code test code method level test coverage

?
-

? ? ?
traceability analysis

package based clustering coverage based clustering

? ?
traceability comparison

Cluster Similarity Graph

IdealBusy Package Dirty Packages Other

Dirty Subfeature Extractable Feature

?? ? ?

? ?

discrepancy patterns agreement

?
discrepancy analysis (manual)

? ?
results

recovered traceability refactoring suggestions

Fig. 1 Overview of the method

di�erent type, K1 and K2, to express to what degree K1 is included in K2. Value
0 means no inclusion, while 1 means that K2 fully includes K1. We initially omit
edges with 0 inclusion value, which makes the CSG much smaller than a complete
bipartite graph.

Figure 2 shows an example CSG, taken from one of our subject systems, oryx.
In it, the package based clusters can be identi�ed by dark grey rectangles with
the name of the corresponding package, while the coverage based clusters are light
grey boxes with a unique serial number. To simplify the example, we removed
the labels denoting the weights of the edges. In a package based cluster, the code
and test items from the same package are grouped together. For example, there
is a package called com/cloudera/oryx/common with several subpackages, such
as . . . /math and . . . /collection, which can be found in the CSG graph as well.
Coverage based clusters are labeled by simple ordinal identi�ers because no speci�c
parts of the code can be assigned to them in general, which would provide a better
naming scheme. The details on comparing clusters are given in Section 3.3.

The next step in our process is the analysis of the CSG to identify the distinct
patterns, which describe various cases of the agreement and the discrepancies
between the two automatic traceability results. Clearly, agreement between the two
sets of results (an ideal correspondence between some parts of the two clusterings)
can be captured as a pair of identical package and coverage based clusters that are
not related to any other cluster by similarity (called the Ideal pattern). In essence,
all other patterns in the CSG can be seen as some kind of a discrepancy needing
further analysis.

Static and Dynamic Test-to-Code Traceability Recovery 9

Fig. 2 A part of the CSG of the oryx program

Each discrepancy type can be described using a pattern consisting of at least
two interconnected cluster nodes of the CSG, for which some additional properties
also hold. For example, the coverage based cluster 9 in Figure 2 is connected to
the package based cluster com/cloudera/oryx/common, but this has connections
to other coverage based clusters as well. This is an instance of the Extractable Fea-
ture pattern, which means that cluster 9 captures some kind of a subfeature, but
this is not represented as a separate package. In this case, the dynamic traceabil-
ity analysis provides more accurate traceability links than the static one. It may
suggest a possible refactoring as well, namely to move the identi�ed subfeatures
to a separate package.

The corresponding block in Figure 1 shows a classi�cation of the proposed
discrepancy patterns. The detailed elaboration of the patterns will be given in
Section 3.4.

The �nal phase of our method is the analysis of the traceability comparison
with the goal to produce the �nal recovered traceability. Clearly, in the case of
agreement we obtain the results instantly, but in many cases the detected dis-
crepancies need to be analyzed to make informed decisions. The goal of analyzing
the discrepancies is to provide explanations to them, select the �nal recovered
traceability links and possibly give refactoring suggestions.

The decision �which of the traceability links are more reliable in the case of a
particular discrepancy� is typically context dependent. This is because a discrep-
ancy may re�ect that either the isolation or the separation principles are violated,
or both. In some cases these violations can be justi�ed, and then one of the trace-
ability types better re�ects the intentions of the developers. In other cases they
can actually re�ect structural issues in the code that need to be refactored. In any
case, the analysis needs to be manual because it requires the understanding of the
underlying intentions of the programmers to some extent. It is left for future work
to investigate if this process can be further automated in some way.

The results of our empirical study with the analysis of our benchmark systems
is presented in Section 5.

10 T. Gergely, G. Balogh, F. Horváth et al.

3.2 Clustering based traceability analysis

Our approach for unit test traceability recovery includes a step in which traceabil-
ity links are identi�ed automatically by analyzing the test and production code
from two perspectives: static and dynamic. In both cases, clusters of code and
tests are produced which jointly constitute a set of mutually traceable elements.
In this work, we are dealing with Java systems and rely on unit tests implemented
in the JUnit test automation framework. In this context, elementary features are
usually implemented in the production code as methods of classes, while the unit
test cases are embodied as test methods. A system is then composed of methods
aggregated into classes and classes into packages. All of our algorithms have the
granularity level of methods, i.e. clusters are composed of production and test
methods. We do not explicitly take into account the organization of methods into
classes.

3.2.1 Package based clustering

Through package based clustering, our aim is to detect groups of tests and code
that are connected together by the intention of the developer or tester. The place-
ment of the unit tests and code elements within a hierarchical package structure
of the system is a natural classi�cation according to their intended role. When
tests are placed within the package the tested code is located in, it helps other
developers and testers to understand the connection between tests and their sub-
jects. Hence, it is important that the physical organization of the code and tests
is reliable and re�ects the developer's intentions.

Our package based clustering simply means that we assign the fully quali�ed
name of the containing package to each production and test method, and treat
methods (of both types) belonging to the same package members of the same
cluster. Class information and higher level package hierarchy are not directly taken
into account or, in other words, the package hierarchy is �attened. For example,
the package called a.b.c and its subpackages a.b.c.d and a.b.c.e are treated
as unique clusters containing all methods of all classes directly contained within
them, respectively. Furthermore, we do not consider the physical directory and �le
structure of the source code elements as they appear in the �le system (although
in Java, these usually re�ect package structuring).

3.2.2 Coverage based clustering

In order to determine the clustering of tests and code based on the actual dynamic
behavior of the test suite, we apply community detection (Blondel et al (2008);
Fortunato (2010)) on the code coverage information.

Code coverage in this case means that, for each test case, we record what
methods were invoked during the test case execution. This forms a binary matrix
(called coverage matrix), with test cases assigned to its rows and methods assigned
to the columns. A value of 1 in a matrix cell indicates that the method is invoked
at least once during the execution of the corresponding test case (regardless of the
actual statements and paths taken within the method body), and 0 indicates that
it has not been covered by that test case.

Static and Dynamic Test-to-Code Traceability Recovery 11

Community detection algorithms were originally de�ned on (possibly directed
and weighted) graphs that represent complex networks (social, biological, tech-
nological, etc.), and recently have also been suggested for software engineering
problems (e.g. by Hamilton and Danicic (2012)). Community structures are de-
tected based on statistical information about the number of edges between sets
of graph nodes. Thus, in order to use the chosen algorithm, we construct a graph
from the coverage matrix, whose nodes are the methods and tests of the analyzed
system (referred to as the coverage graph in the following). This way, we de�ne
a bipartite graph over the method and test sets because no edge will be present
between two methods or two tests. Note, that for the working of the algorithm,
this property will not be exploited, i.e. each node is treated uniformly in the graph
for the purpose of community detection.

The actual algorithm we used for community detection is the Louvain Mod-
ularity method (Blondel et al (2008)). It is a greedy optimization method based
on internal graph structure statistics to maximize modularity. The modularity of
a clustering is a scalar value between −1 and 1 that measures the density of links
inside the clusters as compared to links among the clusters. The algorithm works
iterative, and each pass is composed of two phases. In the �rst phase it starts with
each node isolated in its own cluster. Then it iterates through the nodes i and its
neighbors j, checking whether moving node i to the cluster of j would increase
modularity. If the move of node i that results in the maximum gain is positive, then
the change is made. The �rst phase ends when no more moves result in positive
gain. In the second phase, a new graph is created hierarchically by transforming
the clusters into single nodes and creating and weighting the edges between them
according to the sum of the corresponding edge weights of the original graph. Then
the algorithm restarts with this new graph, and repeats the two phases until no
change would result in positive gain.

3.3 Comparing clusterings

At this point, we have two sets of traceability links in form of clusters on the tests
and code items: one based on the physical structure of the code and tests (package
based clusters, denoted by P clusters in the following), and another one based
on the coverage data of the tests showing their behavior (coverage based clusters,
denoted by C clusters). To identify deviations in the two sets, the corresponding
clusterings need to be compared. As mentioned earlier, there are two major ways
to compare clusterings: by expressing the similarity of the clusters or by capturing
actions needed to transform one clustering to the other. We follow the similarity
measure based approach in this phase.

We use a non-symmetric similarity measure, the Inclusion measure. We em-
pirically veri�ed various other similarity measures, like Jaccard, and found that
they were similar to each other in expressing the di�erences. Finally we choose the
Inclusion measure, because, in our opinion, it is more intuitive, helping the vali-
dation of the results, and it provides more information that could be potentially
utilized in the future.

Inclusion measure expresses to what degree a cluster is included in another
one. A value v ∈ [0, 1] means that the v-th part of a cluster is present in the
other cluster, 0 meaning no inclusion (empty intersection) and 1 meaning full

12 T. Gergely, G. Balogh, F. Horváth et al.

inclusion (the cluster is a subset of the other one). The measure is computed for
two arbitrary clusters of di�erent type, K1 and K2, as:

I(K1,K2) =
|K1 ∩K2|
|K1|

.

Using the measure, we can form a weighted complete bipartite directed graph
(the cluster similarity graph, CSG). We decided to use a graph representation
because it is, being visual, more readable by humans. This was an important
aspect because our approach includes a manual investigation of the automatically
identi�ed traceability information. Nodes of CSG are the C and P clusters, and
an edge from Pi to Cj is weighted by I(Pi, Cj), while the reverse edge from Cj

to Pi has I(Cj , Pi) as its weight. Edges with a weight of 0 are omitted from the
graph.

3.4 Discrepancy patterns

Now, we can use the CSG to check the similarity or search for discrepancies be-
tween the two clusterings. We have de�ned six di�erent patterns: one pattern
showing the ideal cluster correspondence (hence, traceability agreement, called
the Ideal pattern) and �ve types of discrepancies, Busy Package, Dirty Packages,
Other, and the two special cases of Other, Extractable Feature and Dirty Subfeature.
Examples for these are shown in Figure 3.

Each pattern describes a setting of related C and P clusters with a speci�c set
of inclusion measures as follows:

Ideal Here, the pair of C and P clusters contain the same elements, and there
are no other clusters that include any of these elements (the inclusion measures
are 1 in both directions). This is the ideal situation, which shows that there is an
agreement between the two traceability analysis methods.

Busy Package This discrepancy describes a situation in which a P cluster splits
up into several C clusters (the sum of inclusion measures I(P,Ci) is 1), and each
C cluster is included completely in the P cluster (their inclusions are 1). This is
a clear situation in which the coverage based clustering captures isolated groups
of code elements with distinct functionality, while the physical code structure is
more coarse-grained. In practice, this means that package P could be split into
subpackages that re�ect the distinct functionalities, and that probably the coverage
based traceability links are more appropriate.

Dirty Packages This pattern is the opposite of the previous one: one C cluster
corresponds to a collection of P clusters, and there are no other clusters involved
(sum of I(C,Pi) is 1 and each I(Pi, C) is 1). In practice, this means that the
dynamic test-to-code relationship of a set of packages is not clearly separable,
they all seem to represent a bigger functional unit. This might be due to improper
isolation of the units or an overly �ne-grained package hierarchy, and could be
remedied either by introducing mocking or package merging. Another explanation
for this situation could be that the tests are higher level tests that involve not

Static and Dynamic Test-to-Code Traceability Recovery 13

only one unit and are, for example, integration tests. Depending on the situation,
either package based or coverage based traceability links could be more reliable in
this case.

Other The last category is practically the general case, when neither of the above
more speci�c patterns could be identi�ed. This typically means a mixed situation,
and requires further analysis to determine the possible cause and implications.
The inclusion measures can help, however, to identify cases which are not pure
instances of Busy Package or Dirty Packages but are their partial examples. The
�nal two patterns we de�ne are two speci�c cases of this situation:

Extractable Feature This pattern refers to a case when there are C clusters that are
parts of a pattern which resembles Busy Package, but the related P package has
some other connections as well, not qualifying the pattern for Busy Package. Since
these C clusters capture some kind of a subfeature of the connected packages, but
they are not represented in a distinct package, we call them Extractable Feature.
Our example from Figure 2 includes a few instances of this pattern, namely C
clusters 9, 16, 19, 24, 25, 27 and 28.

Dirty Subfeature Similarly, Other patterns can have a subset, which can be treated
as special cases of P clusters in the Dirty Packages pattern. They are connected to
a C cluster which forms an imperfect Dirty Packages pattern. The name Dirty Sub-
feature suggests that this P cluster implements a subfeature but its tests and code
are dynamically connected to external elements as well. The example in Figure 2
includes one instance of this pattern: com/cloudera/oryx/common/random.

3.4.1 Pattern search

Searching for the patterns themselves is done in two steps. First, a new helper data
structure is computed for each cluster, the Neighbor Degree Distribution (NDD)
vector. This vector describes the relationships of the examined CSG node to its di-
rect neighbors. For an arbitrary cluster K of any type, the ith element of NDD(K)
shows how many other clusters with degree i are connected to K:

NDD(K) = (d1, d2, . . . , dn), where

n = max (|{P clusters}| , |{C clusters}|)
di =

∣∣{K′ : I(K,K′) > 0 ∧ deg(K′) = i
}∣∣

Here, the degree of a cluster, deg(K), is the number of incoming non-zero
weighted edges of the cluster, i.e. the number of other clusters that share ele-
ments with the examined one, and n, the length of the vector is the maximal
possible degree in the graph. The example cluster nodes from Figure 3 include the
corresponding NDD vectors.

In the second step of pattern search, speci�c NDD vectors are located as follows.
Cluster pairs with (1, 0, 0, . . .) NDD vectors are part of an Ideal pattern, so they
are reported �rst. Each discrepancy pattern is then composed of several clusters
of both types, which need to have NDD vectors in the following combination:

14 T. Gergely, G. Balogh, F. Horváth et al.

(1,0,. . .)

P

C

(1,0,. . .)

?

I
(
P
,
C

)
=

1
.0

6

I
(
C

,
P
)
=

1
.0

(a) Ideal

. . .

P1 P2

C1 C2

. . .

? ?

I
(
P
1
,
C
1
)
=

0
.2

6

I
(
C
1
,
P
1
)
=

.
.
.

?

I
(
P
1
,
C
2
)
=

0
.8

6

I
(
C
2
,
P
1
)
=

0
.4

?

I
(
P
2
,
C
2
)
=

.
.
.

6

I
(
C
2
,
P
2
)
=

0
.6

6

(b) Other

(3,0,. . .)

P

C1 C2 C3

(0,0,1,0,. . .) (0,0,1,0,. . .) (0,0,1,0,. . .)

?

I
(
P
,
C
1
)
=

0
.6

6

I
(
C
1
,
P
)
=

1
.0

?

I
(
P
,
C
2
)
=

0
.3

6

I
(
C
2
,
P
)
=

1
.0

?

I
(
P
,
C
3
)
=

0
.1

6

I
(
C
3
,
P
)
=

1
.0

(c) Busy Package

(2,. . .)

P

. . .

C1 C2 C

(0,0,1,. . .)(0,0,1,. . .)

?

I
(
P
,
C
1
)
=

0
.4

6

I
(
C
1
,
P
)
=

1
.0

?
I
(
P
,
C
2
)
=

0
.4

6

I
(
C
2
,
P
)
=

1
.0

?

I
(
P
,
C

)
=

0
.2

6

I
(
C

,
P
)
=

.
.
.

?

(d) Extractable Feature

(0,0,1,0,. . .) (0,0,1,0,. . .) (0,0,1,0,. . .)

P1 P2 P3

C

(3,0,. . .)

?

I
(
P
1
,
C

)
=

1
.0

6

I
(
C

,
P
1
)
=

0
.4

?

I
(
P
2
,
C

)
=

1
.0

6

I
(
C

,
P
2
)
=

0
.4

?

I
(
P
3
,
C

)
=

1
.0

6

I
(
C

,
P
3
)
=

0
.2

(e) Dirty Packages

(0,0,1,. . .)(0,0,1,. . .)

P P1 P2

. . .

C

(2,. . .)

6

?

I
(
P
,
C

)
=

.
.
.

6

I
(
C

,
P
)
=

0
.4

?

I
(
P
1
,
C

)
=

1
.0

6

I
(
C

,
P
1
)
=

0
.4

?

I
(
P
2
,
C

)
=

1
.0

6

I
(
C

,
P
2
)
=

0
.2

(f) Dirty Subfeature

Fig. 3 Patterns recognized in the Cluster Similarity Graph. The dashed areas represent the
pattern instances.

� Busy Package patterns are composed of a P cluster with (x, 0, 0, . . .) vector,
where x > 1, and exactly x number of related C clusters with NDD vectors of
the form (0, 0, . . . , dx, 0, 0, . . .), dx = 1.

� Dirty Packages can be identi�ed in the same way as Busy Package, but with
the roles of P and C exchanged.

� In the case of Extractable Feature, we are looking for C clusters with NDD
vectors of the form (0, 0, . . . , 1, 0, 0, . . .), which are not part of regular Busy
Package patterns.

� Dirty Subfeature patterns can be detected by locating P clusters with NDD
vectors (0, 0, . . . , 1, 0, 0, . . .), which are not part of any Dirty Packages.

� Finally, all other clusters not participating in any of the above are treated as
parts of a general Other discrepancy pattern.

Static and Dynamic Test-to-Code Traceability Recovery 15

In the case of Other patterns (including the two subtypes) reporting gets more
complicated as we need to decide what parts of the CSG should be included as
one speci�c pattern instance. To ease the analysis, we report an instance for each
participating cluster individually (see the dashed parts in the example in Figure 3).

4 Empirical study

The usefulness of the method described above has been veri�ed in an empirical
study presented in this section, with the details of manual analysis of discrepancies
found in the next one. The study involved three research questions:

� RQ1: In a set of open source projects, which use JUnit-based unit tests, how
di�erent are the traceability links identi�ed by the two automatic cluster based
approaches? In particular, how many discrepancy pattern instances in the
traceability results can we detect using the method described in the previous
section?

� RQ2: What are the properties and possible reasons for the found discrepancy
pattern instances? This includes the identi�cation of any structural test bad
smells and refactoring suggestions as well. We address this question by manual
analysis.

� RQ3: What general guidelines can we derive about producing the �nal recov-
ered traceability links and possible refactoring suggestions?

To answer these questions, we conducted an experiment in which we relied on 8
non-trivial open source Java programs. On these programs we executed all phases
of the method, including a detailed manual investigation of the traceability links
and discrepancy patterns generated by the automatic methods.

4.1 Subject programs and detection framework

Our subject systems were medium to large size open source Java programs which
have their unit tests implemented using the JUnit test automation framework.
Columns 1�5 of Table 1 show some of their basic properties. We chose these systems
because they had a reasonable number of test cases compared to the system size.
We modi�ed the build processes of the systems to produce method level coverage
information using the Clover coverage measurement tool2.This tool is based on
source-code instrumentation and gives more precise information about source code
entities than tools based on bytecode instrumentation (Tengeri et al (2016)).

2 https://www.atlassian.com/software/clover (last visited: 2018-06-26)
3 https://github.com/checkstyle/checkstyle (last visited: 2018-06-26)
4 https://github.com/apache/commons-lang (last visited: 2018-06-26)
5 https://github.com/apache/commons-math (last visited: 2018-06-26)
6 https://github.com/JodaOrg/joda-time (last visited: 2018-06-26)
7 https://github.com/jankotek/mapdb (last visited: 2018-06-26)
8 https://github.com/netty/netty (last visited: 2018-06-26)
9 https://github.com/Orientechnologies/orientdb (last visited: 2018-06-26)

10 https://github.com/cloudera/oryx (considered obsolete, made private)

https://www.atlassian.com/software/clover
https://github.com/checkstyle/checkstyle
https://github.com/apache/commons-lang
https://github.com/apache/commons-math
https://github.com/JodaOrg/joda-time
https://github.com/jankotek/mapdb
https://github.com/netty/netty
https://github.com/Orientechnologies/orientdb
https://github.com/cloudera/oryx

16 T. Gergely, G. Balogh, F. Horváth et al.

Table 1 Subject programs and their basic properties

Program tag / hash LOC Methods Tests P C

checkstyle3 checkstyle-6.11.1 114K 2 655 1 487 24 47
commons-lang4 #00fafe77 69K 2 796 3 326 13 276
commons-math5 #2aa4681c 177K 7 167 5 081 71 39
joda-time6 v2.9 85K 3 898 4 174 9 22
mapdb7 mapdb-1.0.8 53K 1 608 1 774 4 7
netty8 netty-4.0.29.Final 140K 8 230 3 982 45 35
orientdb9 2.0.10 229K 13 118 925 130 39
oryx10 oryx-1.1.0 31K 1 562 208 27 40

For storing and manipulating the data, e.g. to process the coverage matrix, we
used the SoDA framework by Tengeri et al (2014). Then, we implemented a set
of Python scripts to perform clusterings, including a native implementation of the
community detection algorithm, and the implementation of pattern search.

4.2 Cluster statistics

Once we produced the coverage data for the subjects, we processed the lists of
methods and test cases and the detailed coverage data in order to extract package
based clustering information and to determine coverage based clusters. The last
two columns of Table 1 show the number of clusters found in the di�erent subject
programs. As can be seen, the proportion of P and C clusters is not balanced in
any of the programs, and di�erences can be found in both directions.

However, by simply considering the number of clusters is not su�cient to draw
any conclusions about their structure, let alone identify reliable traceability links
and discrepancies. Consider, for instance, orientdb: here, we could not decide
whether P clusters are too small or the developers are using mocking and stubbing
techniques inappropriately, hence the relatively low number of C clusters. Or, if in
the case of commons-lang where there are 21-times more C that P clusters, should
the packages be split into smaller components? Are the package or the coverage
based traceability links more reliable in these cases? To answer these kinds of
questions, a more detailed analysis of the patterns found in the CSG is required.

4.3 Pattern counts

After determining the clusters, we constructed the CSGs and computed the NDD
vectors for each program and cluster. Then, we performed the pattern search with
the help of the vectors to locate the Ideal pattern and the four speci�c discrepancy
patterns, Busy Package, Dirty Packages, Dirty Subfeature and Extractable Feature
(for the Other pattern, we consider all other clusters not present in any of the
previous patterns).

The second column of Table 2 shows the number of Ideal patterns the algo-
rithm found for each subject (every instance involves one cluster of each type). As
expected, generally there were very few of these patterns found. But purely based
on this result, we might consider the last three programs better in following unit

Static and Dynamic Test-to-Code Traceability Recovery 17

Table 2 Pattern counts � Ideal, Busy Package and Dirty Packages; columns `count' indicate
the number of corresponding patterns, columns `C count' and `P count' indicate the number
of C and P clusters involved in each identi�ed pattern

Program Ideal pattern Busy Package Dirty Packages

count count C count count P count

checkstyle 0 1 {4} 0
commons-lang 0 0 0
commons-math 0 0 0
joda-time 0 0 0
mapdb 0 0 0
netty 4 1 {2} 0
orientdb 2 0 1 {2}
oryx 9 5 {4,4,4,2,2} 0

testing guidelines than the other �ve programs. For instance, 1/3 of the packages in
oryx include purely isolated and separated unit tests according to their code cov-
erage. These instances can be treated as reliable elements of the �nal traceability
recovery output.

Table 2 also shows the number of Busy Package and Dirty Packages patterns
found in the subjects. Columns 3 and 5 count the actual instances of the cor-
responding patterns, i.e. the whole pattern is counted as one regardless of the
number of participating clusters in it. The numbers in columns 4 and 6 corre-
spond to the number of connected clusters in the respective instances. That is, for
Busy Package it shows the number of C clusters connected to the P cluster, and
in the case of Dirty Packages it is the number of connected P clusters. We list
all such connected cluster numbers in the case of oryx, which has more than one
instance of this type.

It can be seen that there are relatively few discrepancy pattern instances in
these two categories, and that the connected cluster numbers are relatively small
as well. This suggests that the de�nitions of Busy Package and Dirty Packages
might be too strict, because they require that there is a complete inclusion of the
connected C clusters and P clusters, respectively. Cases when the corresponding
pattern is present but there are some outliers will currently not be detected. This
might be improved in the future by allowing a certain level of tolerance in the
inclusion values on the CSG edges. For instance, by introducing a small threshold
value below which the edge would be dropped, we would enable the detection of
more patterns in these categories.

The biggest hit was the set of �ve Busy Package instances for oryx, and this,
together with the 9 Ideal patterns for this program, leaves only 13 and 15 clusters
to be present in the corresponding Other categories.

Table 3 shows the number of di�erent forms of Other discrepancy patterns
found, but in this case each participating cluster is counted individually (in other
words, each cluster is individually treated as one pattern instance). Clusters par-
ticipating in the Other pattern instances are divided into two groups, P Other and
C Other, consisting of the package and coverage cluster elements, respectively.
Dirty Subfeature and Extractable Feature are the two speci�c subtypes of Other,
and as explained, the former are subsets of P Other clusters, and the latter of C
Other clusters.

18 T. Gergely, G. Balogh, F. Horváth et al.

Table 3 Pattern counts � Other; columns P Other and C Other indicate the number of clusters
involved in these speci�c patterns, columns `all' indicate the number of all involved clusters
(including the speci�c ones)

Program P Other count C Other count
Dirty Extractable

all Subfeature all Feature

checkstyle 23 3 43 29
commons-lang 13 1 276 260
commons-math 71 22 39 26
joda-time 9 1 22 14
mapdb 4 0 7 3
netty 40 30 29 17
orientdb 126 48 36 25
oryx 13 6 15 7

Due to the low number of Busy Package and Dirty Packages instances, the
number of clusters participating in the Other category is quite high. Fortunately,
a large portion of Other can be categorized as either Dirty Subfeature or Extractable
Feature, as can be seen in Table 3.

This answers our RQ1, namely the quantitative analysis of the detected pat-
terns.

5 Analysis of traceability discrepancies

We manually analyzed all discrepancy pattern instances found in the results pro-
duced by the static and dynamic traceability detection approaches. In this process,
we considered the corresponding patterns in the CSGs, the associated edge weights,
and examined the corresponding parts of the production and test code. In the �rst
step, each subject system was assigned to one of the authors of the paper for
initial comprehension and analysis of the resulted patterns. The analysis required
the understanding of the code structure and the intended goal of the test cases to
a certain degree. API documentation, feature lists, and other public information
were also considered during this phase. Then, the researchers made suggestions on
the possible recovered traceability links and eventual code refactorings. Finally,
all the participants were involved in a discussion where the �nal decisions were
made. The edge weights in the CSGs helped during the analysis to assess the
importance of a speci�c cluster. For example, small inclusions were often ignored
because these were in many cases due to some kind of outlier relationships not
a�ecting the overall structure of the clusters.

The results of the analysis were possible explanations for the reported discrep-
ancies with concrete suggestions (answering RQ2), as well as the corresponding
general guidelines for traceability recovery, structural test smells and refactoring
possibilities (responding to RQ3). In this section, we �rst present the analysis
for each pattern category, and then we summarize the recovery options in general
terms.

Static and Dynamic Test-to-Code Traceability Recovery 19

5.1 Busy Package

The detection algorithm found 7 Busy Package patterns, 5 of which belong to oryx
(see Table 2). We examined these patterns in detail and made suggestions on their
traceability links and whether their code and test structure should be refactored.

In all the cases we found that the C clusters produced more appropriate trace-
ability relations. However, there was just a single package, com/cloudera/oryx/-
kmeans/common, where we could suggest the refactoring of the package struc-
ture exactly as the C clusters showed it. In three cases, com/puppycrawl/tools/-
checkstyle/doclets, com/cloudera/oryx/common/io, and com/cloudera/oryx/-
kmeans/computation/covariance, the split would result in very small packages;
thus, although the C clusters correctly showed the di�erent functionalities, we
suggested no change in the package structure but using the C clusters for trace-
ability recovery purposes.

In the case of the io/netty/handler/codec/haproxy and com/cloudera/oryx/-
common/stats even the C clusters could not entirely identify the separate func-
tionalities of the packages. After the examination of these situations, we suggested
in both case the refactoring of the package, namely, the split of it into more
packages and also the refactoring of the tests to eliminate unnecessary calls that
violate the isolation guideline. The last Busy Package pattern we found was com/-
cloudera/oryx/als/common. Although the C clusters correctly capture the trace-
ability among the elements, forming packages from all of them would result in
some very small packages. Thus, we suggested to split the package into three sub-
packages, two according to two C clusters, and one for the remaining C clusters.

5.2 Dirty Packages

The only Dirty Packages pattern the algorithm detected belongs to the subject
orientdb. This pattern consists of a C cluster and two connected P clusters. One
of the packages does not contain tests, but is indirectly tested by the other one.

Both package or coverage based traceability links could potentially be consid-
ered in this case. However, since the not tested package contains a bean-like class,
it should probably not be mocked. Thus, merging the two packages would be a
possible refactoring in this case, which, again, corresponds to the coverage based
traceability links.

5.3 Other

All clusters not belonging to the Ideal pattern or any of the two previous discrep-
ancy patterns are treated as Other patterns, and as we can observe from Table 3,
there are many of them. We investigated these as well, and apart from the two
speci�c subtypes, Extractable Feature and Dirty Subfeature, we identi�ed two addi-
tional explanations in this category. However, these are di�cult to precisely de�ne
and quantify, so we will present them only in general terms below.

Extractable Feature The last column of Table 3 shows the number of C clusters
that qualify for Extractable Feature, which is a quite big portion of the C Other

20 T. Gergely, G. Balogh, F. Horváth et al.

cases. These patterns, as mentioned earlier, are usually simple to refactor by cre-
ating a new package for the corresponding extractable subfunctionality, similarly
to Busy Package. Also, coverage based traceability should be considered in this
case.

Dirty Subfeature Similarly, a subset of P Other clusters will form Dirty Subfeature
patterns (see column 3 of Table 3). In this case, there can be di�erent explanations
and possible refactorings (they can be merged into other packages or the involved
functionalities be mocked, as is the case with Dirty Packages). Consequently, either
package based or coverage based traceability links should be used, depending on
the situation.

Utility Functions The root cause for this issue is that the units are directly us-
ing objects and methods of other units, either called from the production code
or from the tests, while they are not in sub-package relation with each other. In
many cases, this is due to implementing some kind of a utility function that con-
tains simple, general and independent methods used by large parts of the system.
Mock implementation of these would usually be not much simpler than the real
implementation, so these pieces of code should not be refactored, and the original
package based traceability should be used.

Lazy Subpackages This is the case when a C cluster is connected to more P clus-
ters, but these are related to each other by subpackaging in which the subpackages
often do not contain test cases. In other words, the functionality is separated into
subpackages but the tests are implemented higher in the package hierarchy. This
pattern can be seen as a special case of the Dirty Subfeature pattern in which the
coverage based traceability links should be used. Reorganization and merging of
packages could be a viable refactoring in this case to better re�ect the intended
structure of the tests and code.

5.4 Summary of traceability recovery and refactoring options

Results from the manual analysis presented in the previous section suggested that
the �nal traceability recovery options depend on the actual situation and are
heavily context dependent. Therefore, it is di�cult to set up general rules or devise
precise algorithms for deciding which automatic traceability analysis approach is
suitable in case of a discrepancy. Yet, there were typical cases which we identi�ed
and may serve as general guidelines for producing the �nal recovered links. Also,
in most of the cases, we can suggest typical refactoring options for the particular
discrepancy patterns. However, the question if a speci�c pattern should be treated
as an actual refactorable smell or not, is di�cult to generalize. In Table 4, we
summarize our �ndings.

Generally speaking, handling Busy Package patterns is the simplest as it typ-
ically means that the coverage based traceability is clear, which is not re�ected
in the package organization of the tests and code. In this case, refactoring could
also be suggested: to split the package corresponding to the P cluster in the pat-
tern into multiple packages according to the C clusters. However, in many cases
other properties of the system do not justify the actual modi�cations. These new

Static and Dynamic Test-to-Code Traceability Recovery 21

Table 4 Traceability recovery and refactoring options

Discrepancy pattern Suggested trace-

ability type

Possible refactoring

Busy Package Coverage Split package

Dirty Packages Coverage Merge packages
Dirty Packages Package Create mock objects
Dirty Packages Mixed Mixed

Extractable Feature Coverage Create new package

Dirty Subfeature Coverage Merge into package
Dirty Subfeature Package Create mock objects

Utility Functions Package None

Lazy Subpackages Coverage Merge packages

packages could also be subpackages of the original one if it is not eliminated com-
pletely. The contents of the new packages are automatically provided based on
the C clusters in the discrepancy pattern, hence refactoring is straightforward and
mostly automatic.

We identi�ed two basic options for handling Dirty Packages if refactoring is
required: merging the P packages of the pattern (this is the case we found in our
subject system) or eliminating the external calls between the P packages by intro-
ducing mock objects. These two cases re�ect also the two suggested traceability
types to use: coverage based in the case of package merge and package based for
mock objects. Merging means moving the contents of the packages into a bigger
package (perhaps the container package), hence following the dynamic relation-
ships indicated by the C cluster. This option may be implemented in a mostly
automatic way. However, eliminating the calls between the P packages is not so
trivial, as it requires the introduction of a mock object for each unit test violating
the isolation principle. In many cases, the solution might be a mixed one in which
also package reorganization and mocking is done, depending on other conditions.
In this case, the �nal traceability recovery will be mixed as well. Also, in some
cases, the Dirty Packages pattern should not involve refactoring at all, which is
typical when the tested units are some kind of more general entities such as utility
functions.

The traceability recovery and refactoring options for the two speci�c Other
patterns are similar to that of Busy Package and Dirty Packages. In the case of
Extractable Feature, a new package is created from the corresponding C cluster,
and this functionality is removed from the participating P cluster, which means
that coverage based traceability is to be used. Similarly to Dirty Packages, Dirty
Subfeature also has two options: merging packages into larger ones or introducing
mock objects with the corresponding traceability options. Finally, the two addi-
tional cases listed for the Other category have similar solutions to the previous
ones.

22 T. Gergely, G. Balogh, F. Horváth et al.

6 Conclusions

6.1 Discussion

Previous works have already demonstrated that fully automatic test-to-code trace-
ability recovery is challenging, if not impossible in a general case (Rompaey and
Demeyer (2009); Gaelli et al (2005); Kanstrén (2008)). There are several funda-
mental approaches proposed for this task: based on, among others, static code
analysis, call-graphs, dynamic dependency analysis, name analysis, change history
and even questionnaire based approaches (see Section 2 for details). But there
seems to be an agreement among researchers that only some kind of a combined
or semi-automatic method can provide accurate enough information.

Following this direction, we developed our semi-automatic recovery approach,
whose initial description was given by Balogh et al (2016), and which was extended
in this work. Our goal was to limit the manual part to the decisions which are
context dependent and require some level of knowledge about the system design
and test writing practices, hence are hard to automate. In particular, we start with
two relatively straightforward automatic approaches, one based on static physical
code structure and the other on dynamic behavior of test cases in terms of code
coverage. Both can be seen as objective descriptions of the relationship of the unit
tests and code units, but from di�erent viewpoints. Our approach to use clustering
and thus form mutually traceable groups of elements (instead of atomic traceability
information) makes the method more robust because minor inconsistencies will not
in�uence the overall results. Also, the manual phase will be more feasible because
a smaller number of elements need to be investigated.

After completing the automatic analysis phase of the recovery process, we aid
the user of the method by automatically computing the di�erences between these
results and organizing the di�erences according to a well-de�ned set of patterns.
These patterns are extensions of those presented by Balogh et al (2016), and
here we introduced the NDD to help the detection of these patterns in the CSG.
Experience shows from our own empirical study that this information can greatly
help in deciding on the �nal traceability links. As we detail in Section 5.4, we were
able to provide some general guidelines as well on how to interpret the results of
the automatic analysis.

Our empirical study also demonstrated that the proposed method is able to
detect actual issues in the examined systems in relation to the two investigated
unit testing principles, isolation and separation. This means that, as a side e�ect
of the traceability recovery e�ort, such �ndings can be treated as structural bad
smells and may be potential refactoring tasks for these projects.

Although we implemented the approach to handle Java systems employing
the JUnit automation framework for unit testing, the method does not depend
on a particular language, framework or, in fact, unit testing granularity level. In
di�erent settings, other code entities might be considered as a unit (a module, a
service, etc.), but this does not in�uence the applicability of the general concepts
of our approach.

Similarly, the two automatic traceability recovery algorithms, the package
based and coverage based clustering, could easily be replaced with other anal-
ysis algorithms. The comparison and the pattern detection framework could still
be used to aid a possibly di�erent kind of manual phase and �nal decision making.

Static and Dynamic Test-to-Code Traceability Recovery 23

Finally, the analysis framework, including the two clustering methods, the CSG
and pattern detection using the NDD vectors, proved to be scalable on these non-
trivial systems. Hence, we believe it would be appropriate for the analysis of bigger
systems as well.

6.2 Threats to validity

This work involves some threats to validity. First, we selected the subjects assum-
ing that the integrated tests using the JUnit framework are indeed unit tests, and
not other kinds of automated tests. However, during manual investigation some
tests turned out to be higher level tests, and in these cases the traceability links
had a slightly di�erent meaning than for unit tests. Also, in practice the gran-
ularity and size of a unit might di�er from what is expected (a Java method).
Generally, it is very hard to ascertain automatically if a test is not intended to be
a unit test or if the intended granularity is di�erent, so we veri�ed each identi�ed
pattern instance manually for these properties as well. However, in actual usage
scenarios, this information will probably be known in advance.

Another aspect to consider about the manual analysis is that this work was
performed by the authors of the paper, who are experienced researchers and pro-
grammers as well. However, none of them was a developer of the subject systems,
hence the decisions made about the traceability links and refactorings would have
been di�erent if they had been made by a developer of the system.

Finally, the generalizations we made as part of RQ3 might not be directly
applicable to other systems, domains or technologies as they were based on the
investigated subjects and our judgments only, and no external validation or repli-
cation has been performed.

6.3 Future work

This work has lots of potential for extension and re�nement. Our most concrete
discrepancy patterns, Busy Package and Dirty Packages located relatively few
instances, but in the case of the Other variants there were more hits. We will
further re�ne this category, possibly by the relaxation of the CSG edge weights, and
de�ning other pattern variants, to increase the number of automatically detectable
patterns.

Our framework including the two clustering methods, the CSG and the NDD
vectors, can be extended to detect traceability links for other types of testing. In
particular, we started to develop a pattern detection decision model for integration
tests. In this case, it is expected that tests span multiple modules and connect them
via test execution (contrary to a unit test).

The other planned improvements are more of a technical nature, for instance,
introduction of a threshold for CSG inclusion weights (as discussed in Section 4).
We also started to work on methods for more automatic decision making about
the suitable traceability and refactorings options, for instance, based on the CSG
edge weights or other features extracted from the production and test code.

24 T. Gergely, G. Balogh, F. Horváth et al.

References

Anquetil N, Lethbridge T (1998) Extracting concepts from �le names: a new �le
clustering criterion. In: Proceedings of the 20th international conference on Soft-
ware engineering, IEEE Computer Society, pp 84�93

Balogh G, Gergely T, Beszédes Á, Gyimóthy T (2016) Are my unit tests in the
right package? In: Proceedings of 16th IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM'16), pp 137�146

Beck K (ed) (2002) Test Driven Development: By Example. Addison-Wesley Pro-
fessional

Bertolino A (2007) Software testing research: Achievements, challenges, dreams.
In: 2007 Future of Software Engineering, IEEE Computer Society, pp 85�103

Black R, van Veenendaal E, Graham D (2012) Foundations of Software Testing:
ISTQB Certi�cation. Cengage Learning

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of
communities in large networks. Journal of statistical mechanics: theory and ex-
periment 2008(10):P1000

Bóta A, Krész M, Pluhár A (2011) Dynamic communities and their detection.
Acta Cybernetica 20(1):35�52

Bouillon P, Krinke J, Meyer N, Steimann F (2007) Ezunit: A framework for asso-
ciating failed unit tests with potential programming errors. Agile Processes in
Software Engineering and Extreme Programming pp 101�104

Breugelmans M, Van Rompaey B (2008) Testq: Exploring structural and main-
tenance characteristics of unit test suites. In: WASDeTT-1: 1st International
Workshop on Advanced Software Development Tools and Techniques

Bruntink M, Van Deursen A (2004) Predicting class testability using object-
oriented metrics. In: Source Code Analysis and Manipulation, 2004. Fourth
IEEE International Workshop on, IEEE, pp 136�145

De Lucia A, Fasano F, Oliveto R (2008) Traceability management for impact
analysis. In: Frontiers of Software Maintenance, 2008. FoSM 2008., IEEE, pp
21�30

Demeyer S, Ducasse S, Nierstrasz O (2002) Object-oriented reengineering patterns.
Elsevier

Deursen Av, Moonen L, Bergh Avd, Kok G (2002) Refactoring test code. In: Succi
G, Marchesi M, Wells D, Williams L (eds) Extreme Programming Perspectives,
Addison-Wesley, pp 141�152

Feathers M (2004) Working e�ectively with legacy code. Prentice Hall Professional
Fortunato S (2010) Community detection in graphs. Physics reports 486(3):75�174
Gaelli M, Lanza M, Nierstrasz O (2005) Towards a taxonomy of SUnit tests. In:
Proceedings of 13th International Smalltalk Conference (ISC'05)

Gaelli M, Wamp�er R, Nierstrasz O (2007) Composing tests from examples. Jour-
nal of Object Technology 6(9):71�86

Hamill P (2004) Unit Test Frameworks: Tools for High-Quality Software Develop-
ment. O'Reilly Media, Inc.

Hamilton J, Danicic S (2012) Dependence communities in source code. In: Software
Maintenance (ICSM), 2012 28th IEEE International Conference on, IEEE, pp
579�582

Horváth F, Vancsics B, Vidács L, Beszédes Á, Tengeri D, Gergely T, Gyimóthy
T (2015) Test suite evaluation using code coverage based metrics. In: Proceed-

Static and Dynamic Test-to-Code Traceability Recovery 25

ings of the 14th Symposium on Programming Languages and Software Tools
(SPLST'15), pp 46�60, also appears in CEUR Workshop Proceedings, Vol-1525,
urn:nbn:de:0074-1525-1

Kanstrén T (2008) Towards a deeper understanding of test coverage. Journal of
Software: Evolution and Process 20(1):59�76

Meszaros G (2007) xUnit test patterns: Refactoring test code. Pearson Education
Mitchell BS, Mancoridis S (2006) On the automatic modularization of software
systems using the bunch tool. IEEE Transactions on Software Engineering
32(3):193�208

Müller HA, Orgun MA, Tilley SR, Uhl JS (1993) A reverse-engineering approach to
subsystem structure identi�cation. Journal of Software Maintenance: Research
and Practice 5(4):181�204

Myers GJ, Sandler C, Badgett T (2011) The art of software testing. John Wiley
& Sons

Palla G, Barabási AL, Vicsek T (2007) Quantifying social group evolution. Nature
446(7136):664

Pietrzak B, Walter B (2006) Leveraging code smell detection with inter-smell re-
lations. In: International Conference on Extreme Programming and Agile Pro-
cesses in Software Engineering, Springer, pp 75�84

Qusef A, Oliveto R, De Lucia A (2010) Recovering traceability links between unit
tests and classes under test: An improved method. In: 2010 IEEE International
Conference on Software Maintenance, IEEE, pp 1�10

Qusef A, Bavota G, Oliveto R, De Lucia A, Binkley D (2014) Recovering test-
to-code traceability using slicing and textual analysis. Journal of Systems and
Software 88:147�168

Rompaey BV, Demeyer S (2009) Establishing traceability links between unit test
cases and units under test. In: Software Maintenance and Reengineering, 2009.
CSMR '09. 13th European Conference on, pp 209�218

Schwanke RW (1991) An intelligent tool for re-engineering software modularity.
In: Software Engineering, 1991. Proceedings., 13th International Conference on,
IEEE, pp 83�92

Spanoudakis G, Zisman A (2005) Software traceability: a roadmap. Handbook of
Software Engineering and Knowledge Engineering 3:395�428

�ubelj L, Bajec M (2011) Community structure of complex software systems: Anal-
ysis and applications. Physica A: Statistical Mechanics and its Applications
390(16):2968�2975

Tengeri D, Beszédes Á, Havas D, Gyimóthy T (2014) Toolset and program repos-
itory for code coverage-based test suite analysis and manipulation. In: Pro-
ceedings of the 14th IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM'14), pp 47�52

Tengeri D, Beszédes Á, Gergely T, Vidács L, Havas D, Gyimóthy T (2015) Be-
yond code coverage - an approach for test suite assessment and improvement. In:
Proceedings of the 8th IEEE International Conference on Software Testing, Ver-
i�cation and Validation Workshops (ICSTW'15); 10th Testing: Academic and
Industrial Conference - Practice and Research Techniques (TAIC PART'15), pp
1�7

Tengeri D, Horváth F, Beszédes Á, Gergely T, Gyimóthy T (2016) Negative e�ects
of bytecode instrumentation on Java source code coverage. In: Proceedings of
the 23rd IEEE International Conference on Software Analysis, Evolution, and

26 T. Gergely, G. Balogh, F. Horváth et al.

Reengineering (SANER 2016), pp 225�235
Van Rompaey B, Demeyer S (2008) Exploring the composition of unit test suites.
In: Automated Software Engineering-Workshops, 2008. ASE Workshops 2008.
23rd IEEE/ACM International Conference on, IEEE, pp 11�20

Vidács L, Horváth F, Tengeri D, Beszédes Á (2016) Assessing the test suite of a
large system based on code coverage, e�ciency and uniqueness. In: Proceedings
of the IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering, the First International Workshop on Validating Software Tests
(VST'16), pp 13�16

Wagner S, Wagner D (2007) Comparing clusterings: an overview. Universität Karl-
sruhe, Fakultät für Informatik Karlsruhe

	1 Introduction
	2 Background and related work
	3 Method for semi-automatic traceability recovery
	4 Empirical study
	5 Analysis of traceability discrepancies
	6 Conclusions

